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Introduction



“Linear algebra is the central subject of mathematics. You can’t learn too much linear algebra.”
B. Gross, former Dean of Harvard College

“Mathematical research can go farther and deeper than experiments ever will go. It can give guarantees
that certain outcomes will always result or that certain outcomes will never result. When you first hear of
such a guarantee, it can rock your world. [. . . ] This got the attention of MRI researchers [. . . ] Mathematics
can also be a floodlight illuminating clearly the poorly understood path ahead.”

D. Donoho [Do, Sec. 3]

Why is linear algebra important? The 21st century is an age of data. In computer science, natural
sciences, engineering, social sciences, and daily life, mountains of data are pervasive on a scale that would
have been unimaginable at the end of the 20th century. Differential equations provided the mathematical
framework for many of the advances of the 20th century, but linear algebra (the algebra and geometry of
vectors and matrices in arbitrary dimensions) is the mathematical tool par excellence (alongside statistics)
for the systematic analysis and management of the data-driven tasks of the 21st century. Even for modern
applications of differential equations, linear algebra far beyond 3 dimensions is an important tool.

Stanford is unique among its peer universities in teaching “high-dimensional” linear algebra alongside
multivariable differential calculus right from the start in its Math courses aimed at all students (not just
future Math majors). You might wonder: why should I care about “high dimensions” (whatever that
means), since we live in a 3-dimensional world? The reason is the following:

Many contemporary real-world problems (in medicine, computer science, engineering, economics,
physics, etc.) involve millions or even billions of variables that must be managed in a sensible way,
and the only systematic way to handle this is via the language of high-dimensional linear algebra.

Here are some examples:

(i) A breakthrough in medical imaging as described in [Do], harnessed insights from linear algebra
with 1,000,000-dimensional spaces (applied to 1000 × 1000 pixel arrays). In 2017 a further
speed-up was brought to market, impacting millions of MRI scans annually.

(ii) Machine learning and AI systems involve real-world optimization problems in zillions of un-
knowns that must be solved in a reasonably short time. This relies on a lot of math, such as the
multivariable Chain Rule for functions of an arbitrary number of variables, which can only be
truly understood in an intuitive way via the framework of linear algebra we will teach you.

(iii) The crucial insight that made possible Google’s PageRank algorithm (and thereby so many sub-
sequent webpage-ranking advances) was a synthesis of two fundamental concepts from linear al-
gebra taught in this course – eigenvalues and Markov chains – applied to N -dimensional spaces
with N on the order of billions (the total number of webpages on the Internet).

(iv) Google’s quantum computing breakthrough [Aru1] used random quantum circuits expressed as
points in N -dimensional spaces with N = 253 ≈ 1016 for the quantum mechanical analysis.

(v) The structural analysis of tall buildings and oil rigs (via the “finite element method”) leads to n
equations in n unknowns for n in the thousands (or beyond). For the design of modern integrated
circuits, Kirchhoff’s laws can amount to n equations in n unknowns with n ≈ 100, 000.

Topics we cover in linear algebra (e.g., Markov chains, eigenvalues) and multivariable optimization
(e.g., gradient descent, least squares) pervade many applications. That is why CS229, CS230, and CS231N
list this course as the math prerequisite: it is the only course at Stanford teaching both the linear algebra
and optimization (“matrix calculus”) techniques used in many data analysis and machine learning courses.
It also provides all of the linear algebra background for EE263, useful in engineering and economics.

https://medium.com/@Noodle_LLC/the-crucial-role-of-mathematics-in-ai-development-dd31d4d6e55c


The fundamental insight of single-variable calculus is that any (reasonable) function f(x) is approx-
imated near x = c by a function of the form ax + b (where a = f ′(c)). The fundamental insight of
multivariable calculus is that any (reasonable) function f(x1, . . . , xn) of n variables is approximated by a
multivariable generalization Ax+b, where now x and b are vectors and A is a matrix. To make sense of
this, we need linear algebra.

In this course, we develop linear algebra because this language expresses the ideas of multivariable
calculus in a manner that provides visual insight even for n-variable problems with n > 3 and looks
very similar to single-variable calculus in its language.

You may be surprised at how much emphasis we place on linear algebra: approximately 2/3 is linear
algebra, and 1/3 is calculus (in the derivative aspects, which pervade all quantitative fields). Introducing
linear algebra at the outset allows us to develop multivariable calculus very efficiently and to understand
where concepts come from and (at least informally) why things work as they do. Moreover, linear algebra
is fundamentally important in its own right! Multivariable calculus is crucial in the natural sciences (e.g.,
physics, engineering), economics, and machine learning, but linear algebra arises across even more fields,
and provides an essential framework for statistics, biology, and data science. By learning multivariable
calculus with insights from theorems (not just language) of linear algebra, you can do even more.

Why haven’t computers made human understanding of math obsolete? Knowledge of the linear
algebra in this book will give you “geometric intuition” for problems involving a large number of variables,
as arise in practical problems in many fields. The ability of AlphaZero to rediscover (and go beyond) in
a matter of hours all human knowledge in chess and Go acquired over thousands of years is a dramatic
illustration of the power of neural networks [SH]. But human creativity and intelligence remain as valuable
as ever because life is not a 2-player complete-information board game: AI systems are easily fooled [He],
susceptible to bizarre flaws, and lack both scientific creativity [DM] and true intelligence.

The widespread use of computers makes it more important, not less, for users of math to understand
concepts. It is not necessary to know proofs, but novel users of quantitative tools are those with an
intuitive understanding of ideas and how they fit together with applications and examples.

Many (especially online) courses enable people with little or no knowledge of math to apply powerful
existing software to datasets. Those courses want to make everything look as simple as possible, so they
teach how to use packages such as Tensorflow and sklearn that make it very easy to use a black box hiding
all of the difficulties. That is “applied math” truly in the past tense: applying math that other people have
already done so that you can solve the same problems they did but with different numbers. We will teach
you ideas alongside techniques and motivation so you can be confident when “applying math”: using it as
a creative tool to solve new problems. Algorithms in the real world don’t always work as desired, and then
figuring out what to do requires knowledge of the underlying math and how concepts relate to each other.

A solid command of linear algebra and multivariable optimization will enhance your ability to turn
informal ideas into working products and give you a substantial creative edge over those who only know
how to plug into black-box formulas without real conceptual understanding. We will teach you the tools
to handle many mathematical problems and concepts, illustrated with examples in modern contexts.

We put less emphasis on extensive bare-hands computation and more emphasis on matrix algebra as
well as awareness of contemporary applications and the role of mathematical software when appropriate
to solve problems. But just as practice with bare-hands arithmetic using small numbers in elementary
school gave you some “number sense”, a modest amount of bare-hands computation helps to aid your
understanding when encountering new ideas. Hence, we do ask you to compute some examples by hand
without getting too messy, and knowledge of programming is not at all necessary for this course. Please
pass along any corrections, typos, etc. to math51book@lists.stanford.edu.
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NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page iii

https://www.youtube.com/watch?v=WXuK6gekU1Y
https://www.youtube.com/watch?v=WXuK6gekU1Y
https://hdsr.mitpress.mit.edu/pub/wot7mkc1
https://hdsr.mitpress.mit.edu/pub/rim3pvdw


How you should read this book. Anything in a blue box (or purple or lavender in some PDF viewers),
such as the following, is a core mathematical result or concept. Do not skip it, no matter what.

Here is a very important result. Please read and understand me.

Such boxed text will make more sense if you read the surrounding material, so don’t ignore everything else
written there. Study worked examples to see what new concepts and results mean in specific situations.
As a study guide, at the end of each chapter is a 1-page summary of notation, concepts, results, and skills.

In mathematics, a result that is important is often called a “theorem”. We label such results in this way:

Theorem. The solutions of x2 + bx+ c = 0 are x =
−b±

√
b2 − 4c

2
.

The word “theorem” should not be confused with the word “theory”; a theorem is a mathematical
fact which has been proved to be true, and (in contrast with how theories develop in some other fields) a
theorem in mathematics does not become false later on as new ideas are discovered.

A less important (even if very useful) result is sometimes called a “proposition”:
Proposition. If a and b are numbers then a+ b = b+ a.
A consequence of a theorem or proposition is sometimes referred to as a “corollary”, such as this:
Corollary. If b2 − 4c < 0 then x2 + bx+ c = 0 has no solutions in the set R of real numbers.

In this course we will never ask you to prove a theorem (or proposition or corollary). Sometimes
we provide an informal explanation for why a result is true, when we feel that some awareness of the
explanation can aid in one’s understanding (but you won’t be tested on reproducing such arguments).
We have included optional sections, typically near the end of chapters, which provide more details about
justifications for those who are interested in such things; these can be safely ignored by those who are not
interested (i.e., an “optional” label truly means what it says, and there is no extra credit for the study of the
optional material). The end of an Example is denoted with ■. When we give a proof of a result (typically
in an optional section), we often denote the end of the proof with the symbol □; you can ignore proofs!

Especially in the calculus portions of this book, there is a lot of “legal language” associated with the
mathematics. For example, in order to differentiate a function, it must satisfy some technical conditions.
We have tried to suppress this type of discussion whenever possible. (If you want to learn the subject more
deeply, you will have to come back and learn some of those things, such as by reading optional material
in this book and/or taking further Math courses.) Material that is skippable and only of interest for
technical completeness appears in a gray box so you don’t feel overly tempted to read such things
(but it may appeal to those seeking a deeper understanding). Here is a sample (which you can ignore).

Einstein discovered that the underlying geometry of the universe on a global scale is not that of
Euclidean geometry as taught to students everywhere for more than 2000 years, but rather is a different
kind of geometry introduced by Riemann in the 19th century. However, the theorems of Euclidean
geometry remain as valid as always within their own framework and are used every day in modern
data analysis techniques and so much more. The applicability of a single mathematical theorem to
a wide array of different-looking contexts is possible precisely because mathematical truth depends
only on logical reasoning from precise definitions and not on a specific application, though certainly
applications provide useful motivation for and intuition behind the mathematics.

Terminology and notation. We often use the phrase “the following are equivalent”, like this:

Theorem. For a quadratic polynomial f(x) = x2+ bx+ c, the following are equivalent:
(i) b2 − 4c > 0.

(ii) the equation f(x) = 0 has two different solutions in R;

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
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(iii) the parabolic graph of y = f(x) passes below the x-axis;

What this means is: if any of (i), (ii), or (iii) holds for some specific b and c then the other two hold as well
(and so correspondingly, if even one of them is false for specific b and c then all are false for that b and c).

Let’s see why those statements (i), (ii), and (iii) are equivalent to each other. Suppose (i) is true, so
b2 − 4c > 0. Then the equation f(x) = 0 has two different solutions in R because the quadratic

formula
−b±

√
b2 − 4c

2
consists of two different real numbers, and likewise the parabola y = f(x)

then cuts through the x-axis at those two real roots. So if (i) is true then so are (ii) and (iii).
On the other hand, when (ii) is true (i.e., f(x) = 0 has two different solutions in R) then by

inspecting the output of the quadratic formula the values ±
√
b2 − 4c are different real numbers and

so the real number b2 − 4c must be positive. This says that if (ii) is true then so is (i), and hence so is
(iii) (since we have seen already that (iii) holds whenever (i) does).

Finally, if (iii) holds then the parabola y = f(x) that is largely above the x-axis (since the leading
coefficient of the quadratic polynomial f(x) is positive) must cross the x-axis at two different points
(one on the way down, the other on the way up) and hence (ii) holds. We have already seen that when
(ii) holds then so does (i).

So if one of (i), (ii), or (iii) is true (for a given b and c) then all are true (for the same b and c).

We need some notation for efficiency of language. Here is a summary table (in which the final symbol
refers to points of space much as R2 refers to points in a plane with an origin and coordinate axes):

When you see the symbol . . . read it as
{ } “the set of ” (or “the collection of”)
⊂ “is a subset of”
∈ “belongs to” or “belonging to” or “is an element of”

: or | “for which” or “such that”∑10
i=1 ci “c1 + c2 + · · ·+ c10”

f : A→ B “f is a function taking input from A and producing output in B”
R3 “the collection of triples (x, y, z) of real numbers”

TABLE 0.0.1. Some useful notation

Here is an example: (1,−3, 2) ∈ {(x, y, z) ∈ R3 |x + y + z = 0}. Using the translation guide
above, this turns into the following sentence: (1,−3, 2) belongs to the set of all (x, y, z) in R3 for which
x+ y + z = 0. And this is true just because 1 + (−3) + 2 = 0. Another example is:

The function f : R → R defined by f(x) =
n∑

j=0

xj is equal to
xn+1 − 1

x− 1
if x ̸= 1.

This asserts the formula for computing a finite geometric series. And for one more example:

{x ∈ R : x = y2 + y for some y ∈ R} ⊂ [−1,∞). (∗)

This says that a real number x that can be written in the form y2 + y for a real number y must belong to
the interval [−1,∞) of real numbers greater than or equal to −1. In other words, this says y2 + y ≥ −1
for all y, or equivalently y2 + y + 1 ≥ 0 for all y. (In fact, numbers of the form y2 + y are exactly those at
least −1/4, so the containment of sets in (∗) above leaves room for improvement at the left endpoint.)
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Applications

In the main text, discussions related to significant real-world applications (which can be looked at or
ignored, according to your interests) are generally indicated by a green box, like this:

The singular value decomposition of matrices, a consequence of the Spectral Theorem and orthogonal
complements, is one of the most important concepts in machine learning. It is used in robotics, gene
expression analysis, image compression, ridesharing, web search, quantum information, . . . .

Below is a table of some of the applications discussed in the book, to give you a sense of the wide
range of utility of the mathematical techniques that we develop. There are many additional application
contexts mentioned in the book for motivational purposes. A good understanding of these applications
requires a solid grasp of numerous general concepts covered in the course.

Math topic Some application(s) Location in course text
Rn for big n genomic analysis, MRI, massive data page 1 of Intro., Ex. 1.2.3
Distance in Rn clustering algorithms Ex. 1.6.13
Angles in Rn document/protein similarity, correlation Ex. 2.2.4, Sec. 2.4
Pythagorean Theorem in Rn error estimation via correlation Sec. 2.3, (7.3.5), Sec. 7.5
Projection to a line balance of forces, quantum mechanics Ex. 6.1.3, Ex. 6.1.6
Projection to a subspace modern portfolio theory, support vectors Ex. 4.1.9, Rem. 19.3.9, Ex. 19.4.4
Linear least squares computing best-fit line to big data Ch. 7, Ex. 10.3
Functions Rn → Rm Marshallian demand, mechanics, SVM Ex. 2.1.10, Ex. 13.5.7, Sec. 24.5
Non-linear least squares energy minimization, curve fitting Exs. 10.1.3, 10.3.2
Linear programming extrema in economics, strange diets Ex. 12.4.2, Exs. 12.4.4, 13.3.11
Gradient descent machine learning, physics, bio., chemistry Sec. 11.3, Sec. G.3
Lagrange multipliers constrained extrema (econ., entropy, SVM) Ch. 12, Ex. 19.4.4
Interior point methods extrema for very many unknowns Ex. 12.4.4
Derivative matrix Kalman filter, materials science, robotics Exs. 13.5.10, 13.5.7, 18.5.7, 24.6.7
Affine functions computer visualization, linear classifiers Exs. 14.1.4-14.1.6, Ex. 19.4.4
AB ̸= BA for matrices quantum mechanics, computer science Rem. 14.3.6, Rem. D.2.1
Markov chains gambling, pop. dynamics, PageRank Ch. 16, Rem. J.2.1
Chain Rule backpropagation in neural networks Ch. 17, App. G
Matrix inverse Newton’s method (GPS, graphics), robotics Sec. 18.5, Ex. 18.5.7
Matrix transpose quantum comp., efficient curve-fitting Rem. 20.1.11, Secs. 20.6, 20.8
Orthogonal matrices modeling rigid motions, robotics Sec. 20.4
Gram–Schmidt signal processing, finance Rem. 19.2.1, Rem. 19.3.9
Linear systems electronics, input-output model in econ. Sec. 21.1
Column/Null space, rank overfitting, Netflix algorithm Secs. 21.4, 21.6
QR-, LU -decompositions high-dim. least squares, Cholesky decomp. Ex. 22.5.3–Ex. 22.5.5, Ex. 26.1.10
Eigenvalues long-term dynamics, PageRank Secs. 24.4, 27.1, 27.2; Rem. D.2.1
QR algorithm computing eigenvalues for many fields App. H
Quadratic forms rigid-body mechanics, thermodynamics Rem. 20.3.13, Exs. 20.3.14, 24.2.7
Spectral Theorem rot. mechanics, material stress, SVM, SVD Secs. 24.2, 24.5, 24.6, 27.3
Higher partial derivatives Partial diff. eqns in all scientific fields Ex. 25.1.2
Hessian optimization, robotics, molecular structure Rem. 26.1.6, App. I, App. J
Singular value decomp. rank reduction, PCA, genetics/eigengenes Ex. 27.3.8, Rem. 27.3.9, Ex. 27.3.11
Polynomial interpolation cryptography Rem. E.5.6
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Advice on studying, homework, and exams for math in college, and tutoring/online resources

“Mathematics is a language.”
J.W. Gibbs, inventor of vector calculus

“First you learn how to work the problem, and then you can go use the computer.”
Katherine Johnson, NASA mathematician

“Suppose that you are given a problem to solve . . . a very powerful approach to this is to attempt to
eliminate everything from the problem except the essentials; that is, cut it down to size. . . . if you can
bring this problem down into the main issues, you can see more clearly . . . and perhaps find a solution.”

Claude Shannon [Shan2]

Study and work habits

(a) Work with others, early and often! Even if you went through high school doing math largely on
your own, there is no reason to stick with that work habit. Explaining things to classmates is a
good way to identify gaps in your own understanding.

(b) Math is cumulative, so don’t let confusion pile up: ask questions in office hours, tutoring, class,
to classmates, etc. Asking for help is strongly encouraged. Do not blindly memorize things! If
the motivation for a definition or the meaning of a result or method is unclear, ask about it.

(c) Math can only be learned actively. There is almost no value to looking over notes (or a textbook,
or watching a video) and thinking “oh, I can do that; it makes sense”. Watching someone else do
a problem, or reading a solution, is wildly different than facing the problem on a blank sheet of
paper. One can’t learn to swim by just reading a book, or learn to build a tiled hut from sticks
and stones just by watching this video, and likewise math cannot be learned by only watching
others do it. In math, all reading must be done with paper and pen/pencil in hand. Instead of just
reading worked examples, actively write out solutions on your own.

(d) Math is about ideas as much as it is about computations and special cases; this is what makes it
useful in many different fields. Homework is essential to learning, since it is your opportunity to
use concepts in both familiar and new settings; the latter (not emphasized enough in high school)
yields robust understanding.

(e) Build up understanding of ideas first in a special case before the general case. After class, read
about the material in the book, reread things multiple times, and look through the highlight sum-
mary at the end of the chapter. After reading the statement of a result, work out what it is saying
in some special cases (e.g., low dimensions, three vectors instead of k vectors, etc.).

(f) When thinking about a worked example, make sure all steps make sense and are consistent with
everything else (there are no inconsistencies in mathematics). If you encounter any inconsistency
or something makes no sense even as a statement (setting aside what its derivation might be), sort
out the confusion right away or make a note to come back to it soon.

(g) Use special cases and low-dimensional pictures to remember things. Remembering an idea or a
visualization is often easier than memorizing a formula, and is a more reliable kind of knowledge.

(h) Read solution sets (for homework and worksheets) in detail, even for problems that you solved
correctly; if a solution set uses a different method than you did or expresses the same method
differently, try to understand it. If you get a correct answer but don’t understand what you’re
doing, talk to someone to understand it.

(i) More than in perhaps any other field, definitions are absolutely crucial in mathematics (not em-
phasized much in high school). Read definitions very carefully. Make sure the syntax makes
sense, terms make sense as written, and that they “work” on some examples you make in special
cases (plug in numbers, etc.).
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(j) Reread definitions, try them in special cases. If there are too many variables, plug in small
numbers to see what something is saying. However, sometimes structure is rendered invisible
after computing too explicitly; e.g., the factorization 9373 = 103 × 91 is not obvious, but when
written as 972−62 = (97+6)(97−6) we recognize the rule for factoring a difference of squares.

(k) If something seems meaningless, go back to the definitions (or check hypotheses of results being
used) and try to express it in a special case.

Homework and exams in college-level math classes
Homework is an essential part of your learning. Copying someone else’s homework or not trying

to complete the homework will hurt your understanding of the material and consequently your grade (and
your ability to apply the material elsewhere). Treat homework as your opportunity to improve your skills
and practice in preparation for exams. Homework is also how you become better at mathematics.

Homework will have problems that you have not seen in class. In contrast with high school, the goal
of the course is not to teach you how to repeat previously seen patterns; it is to give you an understanding
of concepts so you can apply them with confidence to a variety of scenarios, as well as new circumstances
later in other fields. In class you’ll be shown some ideas and results, and how to think about them, and
some examples. But homework is by far the best way for you to identify gaps in your understanding and
to internalize how ideas fit together. A good analogy is that we give you a hammer and nails/screws and
show you how to build a table, but then ask you to build a chair at home.

Homework problems can sometimes be harder than the problems done in class. College math
classes explain main ideas and results, discuss motivation behind them, and show how to use them. Home-
work is intended to challenge your understanding of the material. Only by being pushed beyond your level
of comfort can you truly understand the concepts and broaden your mathematical skills.

There will be homework problems that you will not know how to do immediately. Getting stuck
on problems or being confused about the material is a normal part of a college math class. If you never
get stuck and always know what to do instantly, you are probably wasting your time in this class. If you
get stuck, and remain so after mulling things over in your mind, ask for help.

Exams will include questions that you have not done in class or in homework. The goal of exams
is to probe if you understand the concepts in addition to applying procedures, not to confirm that you can
memorize previously-seen examples. Some exam questions may closely resemble those seen in homework
or class, but others may check your understanding of the material by using it in a new context.

For good exam preparation, work through practice exams without the solutions in hand. Check
your understanding via worked examples in the book, practice problems, and homework solutions. If you
go through practice exams passively by reading solutions rather than first working on things by yourself,
you will gain no benefit and will badly misjudge the level of understanding measured in exams.

The value of your Stanford degree reflects an expectation that you can handle new circumstances.
Parroting procedures to solve known problems is often sufficient for success in high school math classes,
but not here and not in future careers. Struggle is good in math (as in sports and music); it is how you
improve your persistence and problem-solving abilities.

Tutoring
Here are some free tutoring resources for Stanford students that previous Math 51 students have found

to be helpful.

• CTL tutoring (with many tutors available in math)
• Academic Coaching is a free resource on managing many skills related to academic success.
• AARC drop-in and group tutoring for student-athletes

Computational software (no coding needed)
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• WolframAlpha for checking matrix calculations, contour plots
• Reshish is a matrix calculator, useful with: matrix inverse, powers, transpose, multiplication
• Matrixcalc for matrix calculations
• Desmos for 2d graphs of level curves f(x, y) = c (or equations f(x, y) = g(x, y)).
• CalcPlot3D for dynamic 3d surface graphs z = f(x, y) (enter f(x, y))
• Geogebra for dynamic 3d surface graphs z = f(x, y) (enter f(x, y))

Internet video and website resources
Please be aware that many online video tutorials and website written material deviate from this book:

they may develop material in a different order, rely on concepts or techniques that we do not use, and/or
formulate important definitions or results in a more abstract or less useful manner than we do.

Two guiding principles in the writing of this book were to give (i) concrete definitions and numer-
ical experience before more conceptual perspectives (without diminishing the importance of the latter),
(ii) concepts, techniques, and results that are applicable uniformly to Rn for all n (important for many
contemporary applications of linear algebra and multivariable optimization across many fields).

By the end of the book you will know the standard main concepts and results (and beyond!), but the
route to get there is not the traditional one. The approach used is designed to provide a more confident and
applicable command of the material than the traditional order in which it is taught. So please be cautious
when using other resources (e.g., MIT OpenCourse videos for linear algebra).

• 3blue1brown has a popular video series Essence of Linear Algebra giving excellent dynamic
visual illustrations (the mastermind behind the website is a former Stanford Math major)

• Khan Academy has linear algebra videos with some foundational deviations from how topics are
developed in this book, but they are generally useful anyway.

• PatrickJMT is a huge collection of math videos, including a large section on linear algebra, of
which the most relevant ones are on matrix multiplication (here, here, and here) and applications
of Markov matrices (here and here).

Beware that for some other topics, the methods used in the PatrickJMT videos are conceptu-
ally very different from the methods in this book. For example, the videos on Lagrange multipli-
ers are essentially pure algebra, without any discussion of the role of gradient vectors.

• Paul’s Onine Notes for geometry in R3 (with lines, planes, and vectors), as well as partial deriva-
tives and applications thereof. Each section includes practice problems with solutions.
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Preparedness for Math 51

“We choose [to do things] not because they are easy, but because they are hard, because that goal will
serve to organize and measure the best of our energies and skills.”

John F. Kennedy

Please take seriously the guidance from the placement diagnostic, and use it as an opportunity to
meaningfully assess your background (especially to identify any rusty areas that you can reinforce with
the recommended video reviews and practice problems). If the diagnostic indicates that you are not yet
ready for Math 51, please do not disregard its recommendations. Here are some reasons that Math 21 is
an enforced prerequisite for taking Math 51:

(1) Math 21 material arises in essentially all quantitative areas: differential equations (Math 53),
probability & statistics (so machine learning and data-intensive experimental scientific work),
finance & economic models, efficiency estimates in CS, etc. A former Math 21 student said:

“there is no hope of you being a minimally decent engineer/physicist if you don’t know
how to do any of these things.”

This applies equally well to future economists, chemists, biologists, and computer scientists.
(2) A Stanford student who did well in math in high school by rote learning once wrote:

“my foundational math skills were poor and I struggled [with] new material [in other
fields] more than I should have. [. . . ] I [spent] a summer break working through calculus
books to make up for it. Don’t make the same mistake I did: put in the time to learn the
material properly. It will pay for itself many times over.”

The purpose of required math courses in a major is not merely to fulfill a requirement. It is to
give you the skills to apply what you have learned in a confident and reliable manner. It is not
about blasting ahead as quickly as possible. Short-term thinking does not serve long-term goals.

(3) Math 21 homework gives students practice writing more complex solutions than they ever see in
Math 20’s syllabus (AB-level AP calculus). Those higher-level skills are similar to what arises in
Math 51, even if the content is not directly encountered in Math 51. So the content of Math 21
improves one’s overall thinking about math, which is relevant even in circumstances where the
Math 21 content is not.

(4) For those who take Math 20: the demands of a 5-unit course (such as Math 51) are a significant
ramp-up from a 3-unit course (such as Math 20), especially if the latter was at least a partial
review for the student, since then the student had a cushion (in Math 20) that will not exist for
them in the succeeding course. So it is a more gentle adjustment to go through Math 21 (a 4-unit
course) before Math 51.

You will go through this course once, so please make it as beneficial as possible for your future. The
syllabus has been designed for breadth and depth of relevance across a large number of fields (as this
book amply illustrates). Hard work put into the course will pay off in a stronger quantitative skill set for
whatever your future studies will be.
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Advice to Instructors

The meaning of each notation in Table 0.0.1 should be discussed when it first naturally arises in class
(typically within the first 2 weeks). Students should be reminded about looking at Table 0.0.1 at the start
of class for the first 6 or 7 meetings of the course (since new students are entering the course each day in
the early weeks, and the notation in Table 0.0.1 is unfamiliar to nearly all students).

Some of the order of development of the linear algebra material in this book differs from how text-
books on linear algebra are traditionally written, and an instructor should be aware of these aspects before
teaching the course (to avoid tacitly invoking ideas or results before they have actually appeared). This is
motivated by two considerations: giving concrete definitions and numerical experience before more con-
ceptual perspectives (without diminishing the importance of the latter), and recognizing that workers in
other scientific fields always use software for certain computations (and we don’t want to discuss proce-
dures that most students will never encounter again if there are other ways to teach the essential concepts).
Here are the main points:

(i) The notion of “linear subspace” (of Rn) is initially defined in this book as the span of a finite col-
lection of vectors. The equivalence with the more conceptual definition via closure under linear
combinations is given only much later, in Section 21.3 (see Theorem 21.3.7). So in particular,
the fact that the solutions to a homogeneous system of linear equations in n unknowns is a linear
subspace of Rn is not essentially a tautology (in effect, it requires something akin to the fact that
a vector subspace of a finite-dimensional vector space is finitely generated); explicit examples in
Chapters 4 and 5 indicate to the student early on that this fact should be true.

(ii) Since “linear subspace” is defined in terms of span, we initially define “dimension” of a linear
subspace V of Rn (in Chapter 4) to be the smallest size of a spanning set of V , so there is no well-
definedness issue with the concept of dimension. We later define a “basis” of a linear subspace V
of Rn in Chapter 5 to be a spanning set of V with the smallest size, so by definition all bases of
V have size dimV . Computing the dimension when it is at most 3 is discussed in Chapter 5, and
some facts about dimension are stated and used long before they can be logically proved because
linear independence is postponed to Chapter 19 (delaying this concept until it is really needed
reduces cognitive overload among a large number of early definitions).

This approach shifts the burden of work to computing dimension and showing that a basis
is the same thing as a linearly independent spanning set. This latter fact is recorded as Theorem
19.2.3, the proof of which is given in Appendix B.1. We use orthogonality and the Gram–Schmidt
process as the foundation for our approach to the logical development of linear independence and
dimension. This has the merit of being rather visual right from the start, and by the end of the
course the student is fully aware of all of the usual ways of thinking about the core concepts
of linear algebra developed in the course over R. Many linear algebra proofs are referenced to
Appendix B (of course, there is no circular reasoning).

(iii) The mechanics of matrix multiplication are initially explained in Section 14.3 via a method that
displays the information in a more visually convenient way than literally writing one matrix to the
left of another. This is mentioned on the Wikipedia page for matrix multiplication and deserves
to be more widely known.

(iv) The Gram–Schmidt process as presented in Chapter 19 (see in particular Section 19.2 for the
algorithm, and Section 19.3 for many worked examples) does not normalize the output vectors to
be unit vectors. The rationale for this is explained in Remark 19.3.3.

(v) Gaussian elimination is not developed at all in this book (though bare-hands work with 2 equa-
tions in 3 unknowns is included, and LU -decompositions are introduced and used in Part IV).

(vi) The emphasis on eigenvalues and eigenvectors is on what they mean (algebraically and geomet-
rically) and how they are used in all dimensions. We introduce the characteristic polynomial and
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computation of eigenvalues and eigenvectors only for the 2-dimensional case, but students learn
in all dimensions how to check that an eigenvector given “out of thin air” really is an eigenvector
and how to compute its eigenvalue. (Appendix E discusses characteristic polynomials in general.)

(vii) The notion of 2×2 determinants is introduced (in Section 18.2) but general n×n determinants are
not discussed in the main text (though developed in Appendix E to provide a basic introduction
for interested students to read on their own); the reason is that the course doesn’t have compelling
applications of general determinants (see (iii) above). In particular, the discussion of computing
matrix inverses is founded upon LU - and QR-decompositions; this is how inverses are really
computed outside pure-math settings (beyond the 2× 2 case and other special situations).

(viii) We do not use complex numbers. Experience shows that complex numbers create too much
unease and/or confusion for many students, so that aspect of linear algebra is best postponed to
a later course where it serves a compelling purpose (e.g., linear ODE’s or quantum mechanics).
Much of the discussion of eigenvalues focuses on the symmetric case (such as for Hessians),
where the Spectral Theorem has a starring role, but we also treat some non-symmetric examples.

Acknowledgments. This book is the outcome of a 4-year collaboration of many people in the Stanford
Math department, at all levels: professors, lecturers, postdocs, and graduate students. The Math depart-
ment is grateful to colleagues from other departments at Stanford and at other institutions for their feedback
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Bouman (Caltech, Computational Imaging), Pat Burchat (Physics), Chris Chidsey (Chemistry), Marlene
Cohen (University of Pittsburgh, Neuroscience), Keith Conrad (University of Connecticut, Math), John
Duchi (Statistics & EE), Marcus Feldman (Biology), Iain Johnstone (Statistics & Biostatistics), Shamit
Kachru (Physics), Roger Lee (University of Chicago, Financial Math), Chris Makler (Economics), Ian
Morrison (Fordham University, Math), Jonathan Pritchard (Biology), Noah Rosenberg (Biology), Omar
Rutledge (Neurology), Mehran Sahami (CS), Jonathan Taylor (Statistics), Carl Wieman (Physics). We are
also grateful to many Math 51 students who have provided feedback to improve the book.
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Part I

Geometry of vectors and projections



“And I cherish more than anything else the Analogies, my most trustworthy masters. They know all
the secrets of Nature . . . ”

J. Kepler

“. . . the geometry of n dimensions has no mathematical characteristics essentially different from those
of ordinary geometry. Spaces of 4, 5, . . . dimensions, as we have defined them, exist for the mathematician
precisely in the same way as space of 3 dimensions exists; and they may be studied by the same methods.”

C. Segre [Seg, p. 463]
Overview of Part I

This Part, which comprises Chapters 1–7, is primarily about vectors and how to do geometry with
them. Using geometric experience in 2 and 3 dimensions as the take-off point (e.g., Pythagorean
Theorem and the Law of Cosines from plane geometry, and daily life in a 3-dimensional world), we
develop a powerful geometric and algebraic language (called linear algebra) for working with the
collection Rn of all ordered n-tuples of numbers (x1, . . . , xn) (also called n-vectors) for any n ≥ 1.
Examples are given to demonstrate the genuine utility of Rn for n > 3 in the study of real-world
questions (stemming from the fact that many mechanical systems, data sets, networks, and biological
and economic models often involve the interdependence of a large number of ingredients).

Notions such as distance, angle, and (linear) subspace are defined for Rn extending the notions
of distance, angle, and plane that are more readily visualized in our 3-dimensional experience. In
particular, the concept of dimension (of a subspace) is introduced, providing a precise way to develop
“geometric intuition” while navigating around inside Rn with n > 3. With a bit of practice, one can
eventually “feel” that certain results in high dimensions ought to be true, even though strictly speaking
our visual experience is limited to dimension at most 3; this illustrates the power of mathematical
concepts to provide us with novel yet sure-footed ways to gain insight into situations where it may
have initially seemed impossible to argue in a geometric manner.

Reasoning in higher dimensions turns out not to be at all mysterious, and it is even liberating by
enlarging the array of situations where the human brain’s capacity for visual thought is a good guide.
Along the way in this first Part of the book we discuss two concrete applications of the initial circle of
ideas we develop in vector geometry: to linear regression (finding the best-fit line to a set of data points
by using the geometric perspective of linear algebra that will later guide us into more sophisticated
viewpoints on curve-fitting) and to statistics (with correlation). A wide array of applications of higher-
dimensional considerations arises throughout the rest of the book.

A student who enters this course with an eye towards the differential calculus material (which is aimed
at tackling optimization problems for functions of many variables, including appropriate analogues of
single-variable calculus notions such as: derivative, Chain Rule, first-derivative test, and second-derivative
test) may now be wondering: why is it appropriate to devote this entire first Part of the book to vector
geometry before embarking on multivariable calculus aspects?

The answer is seen by thinking back to the experience of learning single-variable calculus. In that
subject, the notion of derivative encodes the tangent line as the “best linear approximation” at a point on the
graph of a function. Thus, a real understanding of single-variable derivatives (and geometric intuition for
their properties) requires first understanding graphs of straight lines both algebraically and geometrically.
Linear algebra is the multivariable replacement for “graphs of straight lines”, and vector geometry is the
foundation for visualization in linear algebra. Thus, a good understanding of multivariable differential
calculus requires first learning some ideas and computational techniques in linear algebra. The interplay
between linear algebra (in its geometric and algebraic aspects) and multivariable differential calculus is a
recurring theme in this book.



1. Vectors, vector addition, and scalar multiplication

The goal of this chapter is to introduce vectors and some ways to manipulate them. By the end of this
chapter, you should be able to:

• add vectors, and multiply vectors by scalars;
• meaningfully interpret linear combinations of vectors arising in science and data analysis;
• compute the length (also called magnitude) of a vector.

1.1. Vectors (and scalars).

Example 1.1.1. You are flying a drone in the sky near your house. How do you describe exactly where it
is? You could mark the spot on the ground directly below the drone and measure (say in units of feet):

• how far north of your house that spot on the ground is;
• how far east of your house that spot on the ground is;
• how high in the sky the drone is above that spot on the ground.

Thus the position of the drone is completely specified by these three numbers:

(distance north of house, distance east of house, height) .

If the position is (200, 300, 25) it means that the spot on the ground is 200 feet north and 300 feet east of
your house, and the drone is 25 feet in the air above it. If the spot is instead 200 feet south of your house
(and keep the same distances east and in the air) then the position is (−200, 300, 25). ■

What we have just described is called the displacement vector from the house to the drone. It is an
example of a “3-vector”:

Definition 1.1.2. For a whole number n, an n-vector is a list of n real numbers. We denote by Rn the
collection of all possible n-vectors.

Example 1.1.3. For instance, (200, 300, 25) is a 3-vector and (−3, 4.9,
1

2
, 0, 1) is a 5-vector. We will

usually write vectors “top to bottom”, so the 3-vector just mentioned is written as



200
300
25


. ■

The reason to prefer writing vectors vertically rather than horizontally is because of certain features
of “matrix algebra” to be used a lot later on in this book.

Definition 1.1.4. To distinguish ordinary real numbers from vectors, we use the word scalar to refer
to a real number.

Example 1.1.5. For instance, 1.3289 is a scalar but
[
0.2
−0.9

]
is a vector. ■

As in high school algebra, symbols such as x, y, z, a, b, c, . . . denote numbers (or scalars, as we shall
often say). In linear algebra, bold-face symbols x,y, z,v,w, a,b, c, . . . denote vectors. Some books
denote vectors as x⃗, y⃗, z⃗, v⃗, w⃗, a⃗, b⃗, c⃗, . . . , and to distinguish vectors from scalars in handwriting you may
want to use such arrow notation (or “half-arrow” variants ⇀x, ⇀y, ⇀z, ⇀v, ⇀w, ⇀a, ⇀b, ⇀c, . . . to save time).1

The aim of a large part of this book is to teach you how to do both algebra and geometry with vectors
(and why it is so useful). This subject is called linear algebra. We will use algebra with vectors to develop

1In the early 1900’s, several attempts to achieve universal notation for vectors among all scientists ended in total failure.
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the derivative aspects of multivariable calculus. In Math 52 and Math 53 these ideas are used to go further,
developing multivariable integration and the study of ordinary differential equations. (If you later wish to
supplement this with additional linear algebra, good options are Math 104 or Math 113 depending on your
mathematical preferences; see Section 26.5.)

For n = 2 or n = 3, we can visualize n-vectors as arrows. For example, with n = 2, we can visualize

the vector v =

[
v1
v2

]
as an arrow in the coordinate plane R2 pointing from the origin (0, 0) to the point

(v1, v2), and similarly for a 3-vector by working in R3. Examples are shown in Figure 1.1.1 below.
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

FIGURE 1.1.1. Visualization of a 2-vector and a 3-vector

1.2. Vectors in physical science, social science, and data science. The words vector and vehicle
have the same Latin root: vehere (“to carry”). Can you see why? Here are two sources of vectors:

(V1) In the physical sciences, vectors are used to represent quantities that have both a magnitude
and a direction. Examples of such quantities include displacement, velocity, force, and angular
momentum. For instance, the vector in Example 1.1.1 is the displacement vector from the house
to the drone. In general the displacement vector from one point P to another point Q is the vector
represented by the arrow connecting those two points with the arrowhead at Q.

In a lot of physical examples, n is at most 3. However, in physical systems having many
parts, it is convenient to group together various 3-vectors from the various parts into a single
N -vector with N > 3. Thus, it is incorrect to think that linear algebra in Rn for n > 3 is not
relevant to the study of the natural world! Many scientific phenomena (protein folding, the
behavior of dynamical systems, the spread of a disease through a population, the balancing
of forces in a mechanical system consisting of many parts, etc.) depend on a rather large
number of unknowns, and linear algebra in Rn for large n is essential in their study.

The mathematical models used to study these phenomena typically involve collecting
such data into vectors in Rn for various n. For example, genetic work often uses Rn for
n ≈ 200,000 (see Example 1.2.3). The utility of Rn for n > 3 pervades many scientific
disciplines, far beyond data science. The “magnitude and direction” viewpoint is NOT
a meaningful definition of “n-vector” when n > 3.

The importance of n-vectors with n > 3 was foreseen by the great physicist J.C. Maxwell
who said in 1870 about the then-new theory of 3-vectors [Max, pp. 215-229] that

“. . . [it is] a branch of mathematics which, when it shall have been thoroughly un-
derstood . . . , will become, perhaps under some new name, a most powerful method
of communicating truly scientific knowledge . . . ”
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(V2) In data science, economics, and many industrial applications of mathematics, vectors are used to
keep track of collections of numerical data. This type of example is much more varied than the
examples arising from natural sciences, and nearly always n is very large.

Example 1.2.1. (Climate data) To keep track of the daily variation of temperature at Stanford in a given
year (ignoring leap years), we can arrange it into a 365-vector

T =




T1
T2
...

T365




where T1 is the noontime temperature on day 1, T2 is the noontime temperature on day 2, and so forth.
To record more precise temperature information, say hourly rather than daily, you might measure the

temperature at each hour on each day and correspondingly use an n-vector for n = 24× 365. ■

Example 1.2.2. (Grade data) Suppose that there are 100 students in a class. We can keep track of all of
their grades on the final exam by forming a 100-vector

E =




E1

E2
...

E100


 ,

where E1 is the final exam grade of the first student, E2 the final exam grade of the second student, and so
on. Similarly, we can form vectors that represent their scores on the first and second midterms respectively:

X =




X1

X2
...

X100


 ,Y =




Y1
Y2
...

Y100


 .

■

Example 1.2.3. (Genomic data) When trying to analyze genetic information, such as to predict the
risk of disease, it is often helpful to encode part of a person’s genome by an n-vector G with n very
large, such as around 200,000, which encodes information only about certain positions in the human
genome (called single nucleotide polymorphisms, or SNP’s).

Thus, for example, the kth entry of the vector G gives information about the kth polymorphism.
In the simplest possible version, one would enter 0 if the person’s DNA at this spot coincides with the
most frequent version found among the human population. Otherwise – that is, if the person’s DNA
doesn’t match with the most frequent version found among the whole population – we would put a 1
in entry k of G. (This is a simplification of what is usually done; for example one certainly wants to
take account of both copies of a chromosome.) ■

Up to this point, calling these “vectors” doesn’t help at all. They are just lists of numbers that give
information about a situation, and we have only introduced some new language and notation; that is not
progress. But we will soon see that linear algebra gives us powerful tools to organize and work with
information encoded in such lists of numbers.
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1.3. Operations on vectors and their visual meaning. We now introduce two algebraic operations
permitted on vectors: vector addition and scalar multiplication.

Definition 1.3.1. The sum v +w of two vectors is defined precisely when v and w are n-vectors for

the same n. In that case, we define their sum by the rule




v1
v2
...
vn


+




w1

w2
...
wn


 =




v1 + w1

v2 + w2
...

vn + wn


 .

Definition 1.3.2. We multiply a scalar c against an n-vector v =




v1
v2
...
vn


 by the rule c




v1
v2
...
vn


 =




cv1
cv2

...
cvn


.

Example 1.3.3. (vector addition in R2 and R3)

y

x0

0

1

1

2

2

3

3

4

4

5

5

•

u = (1, 2)

v = (3, 1)

u+ v = (4, 3)

FIGURE 1.3.1. Addition of vectors in R2

1
2
3
4
5
6

0 1 2 3 4 5 x

z

(0, 0, 0)•

u = (3, 1, 2)

v = (1, 3, 3)

u+ v = (4, 4, 5)

FIGURE 1.3.2. Addition of vectors in R3

As in Figure 1.3.1 above for n = 2 and Figure 1.3.2 above for n = 3, the vector u+ v is represented
by the diagonal arrow in the parallelogram with one vertex at the origin and two edges given by u and
v. This description of vector addition for n = 2 and n = 3 is called the parallelogram law.

■
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We define subtraction v − w as we did addition, or equivalently v − w = v + (−1)w. It is very
common to use both the operations at once – for example, we can form 2v + 3w, where v and w are
n-vectors. Here is the relevant terminology:

Definition 1.3.4. A linear combination of two n-vectors v,w is an n-vector av + bw for scalars a, b.
More generally, a linear combination of k such n-vectors v1,v2, . . . ,vk is a1v1 + a2v2 + · · ·+ akvk

for scalars a1, a2, . . . , ak. (In physical sciences, this is often called a “superposition” of v1, . . . ,vk.)

Example 1.3.5. Here are some numerical examples of the above concepts.

(i)




2
1
−8


+



3
2
4


 =




2 + 3
1 + 2
−8 + 4


 =




5
3
−4




(ii) 5 ·
[
−1
8

]
=

[
5 · (−1)
5 · 8

]
=

[
−5
40

]

(iii)



2
1
8


−



3
2
4


 =



2− 3
1− 2
8− 4


 =



−1
−1
4




(iv) 3



1
2
3


+ 6




1
−1
2


 =




3 · 1 + 6 · 1
3 · 2 + 6 · (−1)
3 · 3 + 6 · 2


 =



9
0
21




(v) 2




−1
0
1
2


+ 3




2
1
−3
4


− 5




0
2
−2
1


 =




2 · (−1) + 3 · 2− 5 · 0
2 · 0 + 3 · 1− 5 · 2

2 · 1 + 3 · (−3)− 5 · (−2)
2 · 2 + 3 · 4− 5 · 1


 =




4
−7
3
11




■

Example 1.3.6. The expression



1
3
2


+

[
1
4

]
makes no sense: one can’t “add” a 3-vector and a 2-vector. ■

Remark 1.3.7 (online resource). The video series “Essence of Linear Algebra” at 3blue1brown pro-
vides illuminating visualizations of a variety of concepts in linear algebra. Its first video relates to the
material in this chapter.
Alert. Please be aware that many online tutorials/references deviate from how things are done in
this book: they may develop material in a different order, rely on concepts or techniques that we do
not use, and/or formulate important definitions or results in a more abstract or less useful manner.
Two guiding principles in the writing of this book were to give (i) concrete definitions and numerical
experience before more conceptual perspectives (without diminishing the importance of the latter),
(ii) concepts, techniques, and results that are applicable uniformly to Rn for all n (important for many
contemporary applications of linear algebra and multivariable optimization across many fields).

By the end of the course you will know the standard main concepts and results (and beyond!),
but the route to get there is not the traditional one. The approach here is designed to provide a more
confident and applicable command of the material than the traditional order in which it is taught.

Example 1.3.8. A special type of linear combination that arises in applications such as linear program-
ming, weighted averages, and probability theory is convex combination: in the case of two n-vectors v
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and w this means a linear combination of the form (1− t)v + tw = v + t(w − v) with 0 ≤ t ≤ 1. This
adds to v a portion (given by t) of the displacement w−v from v to w. It has the geometric interpretation
(for n = 2, 3) of being a point on the line segment between the tips of v and w; e.g., it is v when t = 0,
it is the midpoint when t = 1/2, and it is w when t = 1. Figure 1.3.3 below illustrates this in R2 with
t = 1/4, 1/2, 2/3 corresponding to the indicated vectors u,u′,u′′2 respectively.

x

y

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

−1
−1

•

v

w

u′′u′
u

v = (1, 4)

w = (7, 1)

u = (3/4)v + (1/4)w = (5/2, 13/4)

u′ = (1/2)v + (1/2)w = (4, 5/2)

u′′ = (1/3)v + (2/3)w = (5, 2)

FIGURE 1.3.3. Blue segment of vectors (1− t)v + tw = v + t(w − v) for 0 ≤ t ≤ 1

For any n-vectors v1, . . . ,vk, a convex combination of them means a linear combination

t1v1 + · · ·+ tkvk

for which all tj ≥ 0 and the sum of the coefficients is equal to 1; that is, t1 + · · · + tk = 1. When the k
coefficients are all equal, which is to say every tj is equal to 1/k, this is the average (sometimes called the
centroid) of the k vectors. Working in R2, a convex combination such as

2

3
v1 +

1

4
v2 +

1

12
v3

is a point inside the polygon with vertices given by the vj’s, with its distance to each vj weighted by the
corresponding coefficient. If all coefficients are equal, it is the “center of mass” of the polygon. Two
convex combinations are shown in Figure 1.3.4 below (see u and w there).

x

y

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

−1
−1

•

v1

v2

v3

w

u

v1 = (2, 2)

v2 = (7, 1)

v3 = (1, 5)

w = (1/3)v1 + (1/3)v2 + (1/3)v3

= (10/3, 8/3)

u = (1/10)v1 + (4/5)v2 + (1/10)v3

= (59/10, 3/2)

FIGURE 1.3.4. The vector w is the “center of mass” of v1, v2 and v3.
■

2Notation such as u′ and u′′ does not denote derivatives (indeed, it would make no sense). In math, such dashes denote
additional versions of some common structure (such as vectors here, or t, t′, t′′ for time variables, etc.) when not functions.
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Example 1.3.9. In Figure 1.3.3 we described the line segment with specified endpoints v = (1, 4) and
w = (7, 1): it consists of points tv+(1− t)w = v+ t(w−v) for a “parameter” t that varies from 0 to 1.
But we can allow t to vary through the entirety of R (not just the interval [0, 1]) and thereby get the entire
line in R2 through those two points. To be specific, the linear combinations

(1− t)v + tw = v + t(w − v) =

[
1
4

]
+ t

[
6
−3

]
=

[
1 + 6t
4− 3t

]

for all t (no constraint) are the points of the line ℓ in R2 through (1, 4) and (7, 1).
The slope of the line ℓ is (4 − 1)/(1 − 7) = 3/(−6) = −1/2, and it passes through (1, 4), so the

“point-slope” equation of ℓ is y − 4 = −(1/2)(x − 1) = −x/2 + 1/2, or equivalently y = −x/2 + 9/2.
We have shown that ℓ admits the “parametric form” (1 + 6t, 4− 3t) with t varying through R. In Section
3.3 we will discuss the “parametric form” of a general line, first in R3 and then in Rn for any n. ■

Example 1.3.10. For an n-vector x = (x1, . . . , xn), the numbers tj(x) = exj/(ex1 + ex2 + · · ·+ exn)
are positive and sum to 1! Such expressions first arose in statistical mechanics. Convex combinations
with coefficients of the form t1(x), . . . , tn(x) are used all over the place in machine learning (where
the function sending x to (t1(x), . . . , tn(x)) is called the (unit) softmax function). ■

Example 1.3.11. Iterating the parameterization of a line segment gives rise to an important con-
struction in computer graphics called Bézier curves. More specifically, if we define LP0,P1(t) =
(1− t)P0 + tP1 for two points P0 and P1 and 0 ≤ t ≤ 1, then the quadratic curve

LP0,P1,P2(t) = LLP0,P1
(t),LP1,P2

(t)(t) = (1− t)LP0,P1(t)+ tLP1,P2(t) = (1− t)2P0+2(1− t)tP1+ t
2P2

for 0 ≤ t ≤ 1 is a path from P0 (at t = 0) to P2 (at t = 1) with “control point” P1 (through which the
path usually doesn’t pass!). Likewise,

LP0,P1,P2,P3(t) = (1− t)LP0,P1,P2(t)+ tLP1,P2,P3(t) = (1− t)3P0+3(1− t)2tP1+3(1− t)t2P2+ t
3P3

for 0 ≤ t ≤ 1 is a cubic curve from P0 to P3 with “control points” P1 and P2. Moving the control
points gives a flexible array of curves with specified endpoints. Joining such curves end to end using
suitable control points underlies computer fonts for letters and many computer graphics applications
(such as Adobe Illustrator and Javascript). ■

Let us now record a very ubiquitous bit of terminology that we have already implicitly invoked.

In linear algebra, the phrase point in Rn means exactly the same thing as “n-vector” (as well as
“vector”, when we don’t need to specify n). The mental image for a given situation may suggest a
preference between the words “point” and “vector”, such as “displacement vector” or “closest point”,
but there is absolutely no difference in the meanings of these words in linear algebra.

You might imagine that a “point” is the tip of an arrow emanating from 0, or that a “vector” is
a directed line segment with specified endpoints (which you may slide around parallel to itself to
visualize addition as in Figure 1.3.2). But during this course you will see that in the context of linear
algebra it is best to forget that and to regard “point” and “vector” as meaning exactly the same thing
(this has no effect on the tremendous utility in other fields of the linear algebra we will teach you).

1.4. Interpreting the vector operations in examples. Here are some examples of the real-life mean-
ing of the vector operations, with reference to the examples above. Please check for yourself that they work
as claimed, to make sure you understand the definition and interpretations of the vector operations.
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Example 1.4.1. (differences of displacement as relative displacement) If v expresses the displacement
from position 1 to position 2, and w expresses the displacement from position 2 to position 3, then v +w
expresses the displacement from position 1 to position 3.

y

x

−1 −1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

•P

•
Q

•R
v w

v +w

FIGURE 1.4.1. Net displacement as vector addition

For example, as in Figure 1.4.1, suppose a particle is moving in R2 beginning at the point P = (−1, 1).
The particle then moves to the point Q = (3, 4). The displacement from P to Q is the vector

v =

[
3
4

]
−
[
−1
1

]
=

[
4
3

]
.

This says that to get from P to Q the particle has to move 4 units to the right and 3 units up.
Now suppose the particle moves from Q to R = (4, 2). The displacement from Q to R is the vector

w =

[
4
2

]
−
[
3
4

]
=

[
1
−2

]

since to get from Q to R the particle has to move 1 unit to the right and 2 units down. We draw w in
Figure 1.4.1 emanating from the tip of v to remind us of its physical significance as a displacement, as is
also useful for visualizing v +w. The net displacement from P to R is

[
4
2

]
−
[
−1
1

]
=

[
5
1

]
,

and this agrees with the sum of the two intermediate displacements, as we can see in two ways:

w + v =

[
1
−2

]
+

[
4
3

]
=

[
5
1

]
, or w + v =

([
4
2

]
−
[
3
4

])
+

([
3
4

]
−
[
−1
1

])
=

[
4
2

]
−
[
−1
1

]
=

[
5
1

]
.

This shows why adding displacement vectors computes net displacement: (u1−u2)+(u2−u3) = u1−u3.
■

Example 1.4.2. (velocities) If v describes the velocity of carA and w describes the velocity of carB then:

(i) 2v describes the velocity of a car traveling in the same direction as A but moving twice as fast.
(ii) −v describes the velocity of a car that is moving as fast as A but in the opposite direction.

(iii) v −w represents the velocity of car A relative to (i.e., viewed from) B.

Examples of this are shown in Figure 1.4.2 below.
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x

y

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

6

7

−4
−4

•

•

•

•

••

•

v

w

−w

2v

v −w

−v

v = (2, 3)

w = (3, 0)

2v = (4, 6)

v −w = (−1, 3)

−w = (−3, 0)

−v = (−2,−3)

FIGURE 1.4.2. Some velocity vectors

Why is the order of subtraction v −w in case (iii) rather than w − v? One way to understand this is
to consider a special case: cars moving in the same direction on the same line, say car A at 90 km/hr and
car B at 75 km/hr. The relative velocity of A from the viewpoint of B is then 15 km/hr, and 15 = 90− 75.
Why is 75− 90 = −15 km/hr the reasonable “relative velocity” of B from the viewpoint of A?

Remark 1.4.3. In general, if we denote by x the “relative” velocity of car A from the viewpoint of
someone in car B, it should mean that when we add the velocity w of car B to x then we get the
velocity v of car A. Hence, x+w = v, so x = v −w. That explains the general case.

■

Example 1.4.4. (linear combination of grades) In Example 1.2.2, suppose that the total score for the class
is weighted 25% for each of two midterms and 50% for the final exam. Arrange the grades on each exam
in a list according to alphabetical order of the names, with respective grade vector X for the first midterm
and Y for the second midterm, and final exam grade vector E. These are all 100-vectors, and the vector

(0.25)X+ (0.25)Y + (0.5)E =
1

4
X+

1

4
Y +

1

2
E

(which is a convex combination as in Example 1.3.8) is a 100-vector whose entries are the weighted scores
for all students in the class (again, arranged in alphabetical order). ■

Example 1.4.5. (linear combination of temperature vectors) In Example 1.2.1, suppose that T2001, T2002,
. . . , T2016 are 365-vectors that describe the daily average temperatures in Palo Alto (say in Celsius) in
years 2001, 2002, . . . , 2016 (let’s ignore February 29 in leap years). Then

1

16
(T2001 + · · ·+T2016)

is a 365-vector that tells us, for each given day, the average temperature in the years 2001–2016. For
example, the first entry of this vector is the average January 1 temperature during this period. ■
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Example 1.4.6. (quantum computation) In Google’s advance [Aru1] on quantum computing, random
quantum circuits were expressed as D-vectors for D = 253 ≈ 1016. The computational process was
modeled as a convex combination Fv+(1−F )w [Aru2, IV.A, (2); IV.B, (24)] for D2-vectors v and
w respectively corresponding to an “ideal” output and “errors”, and a “fidelity” scalar F in the range
10−3 ≤ F ≤ 10−2 [Aru2, XI.A, (112)]. We’ll come back to this in Remark 20.1.11. ■

1.5. Legal and illegal operations of vector algebra. All the familiar rules of usual algebra apply
to the vector algebra operations we have seen so far (and are verified by just plugging in the algebraic
formulas used in the definitions). For example,

c(v +w) = cv + cw

for any n-vectors v,w and any scalar c. We give a more comprehensive list below in Theorem 1.5.2,
but there’s no point in memorizing that list since everything in it is reminiscent of a familiar property of
addition and multiplication with numbers.

It is much more important at this stage to remember some things you shouldn’t do.

• You are never allowed to add v +w if v is an n-vector and w is an m-vector with n ̸= m. For
example, it is meaningful to carry out the computation



1
2
3


+




4
−5
6


 =




5
−3
9




but the “sum”



2
4
6


+

[
3
1

]
makes no sense. It also makes no sense to add a scalar to a vector.

• You cannot (and so should not try to) multiply or divide vectors to get another vector. In Chapter
2 we will define a special type of product for vectors called the “dot product.” However, the dot
product of two n-vectors is a scalar, not a vector.

Remark 1.5.1. In physics and engineering, a special “cross product” of 3-vectors (the output of which is
also a 3-vector) shows up a lot. This has no analogue in Rn for n ̸= 3, and it behaves very differently
from products of numbers; e.g., it is neither commutative nor associative! If you’re curious to learn about
it, read the optional Appendix F after getting through Part I. We do not use the cross product because
we develop techniques applicable to Rn for all n. The cross product is introduced and used in Math 52.

Theorem 1.5.2. For vectors in Rn, we have:3

• (commutative law) v +w = w + v,
• (associative law) (v + v′) + v′′ = v + (v′ + v′′),
• (distributive law) c(v +w) = cv + cw for any scalar c,
• (more distributive and associative laws) (c+ c′)v = cv+ c′v and c(c′v) = (cc′)v for scalars c, c′.

1.6. Length for vectors and distance in Rn. Returning to Example 1.1.1, how far is the drone from
the house? The answer is given by a 3-dimensional version of the Pythagorean Theorem:

distance =

√
(distance north of house)2 + (distance east of house)2 + (height)2.

3Notation here such as v′, v′′, c′ does not denote derivatives (it would make no sense). In math, such dashes denote
additional versions of some common structure (such as vectors, or scalars, or t, t′, t′′ for time variables, etc.) when not functions.
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In other words, if the position of the drone is described by the vector d = (d1, d2, d3), the distance of the
drone from the house is given by

√
d21 + d22 + d23.

This motivates a general definition (whose utility will become apparent with experience):

Definition 1.6.1. The length or magnitude of an n-vector v =




v1
v2
...
vn


, denoted ∥v∥, is the number

∥v∥ =
√
v21 + v22 + · · ·+ v2n ≥ 0.

Note that the length is a scalar, and ∥−v∥ = ∥v∥ (in accordance with the visualization of −v as “a
copy of v pointing in the opposite direction”) because signs disappear when squaring each −vj .

If c is any scalar then ∥cv∥ = |c|∥v∥ (i.e., if we multiply a vector by c then the length scales by
the factor |c|). For example, (−5)v has length 5∥v∥.

(In other references, you may see ∥v∥ called the “norm” of v.)

Example 1.6.2. The length of the vector




0.3
−0.7
2.4


 is

√
(0.3)2 + (−0.7)2 + (2.4)2 =

√
6.34 ≈ 2.52. If we

multiply this vector by 2 then we get the vector




0.6
−1.4
4.8


 whose length is

√
(0.6)2 + (−1.4)2 + (4.8)2 =

√
25.36 ≈ 5.04 = 2(2.52). ■

Example 1.6.3. If a car is moving with velocity v then the magnitude ∥v∥ represents the speed of the
car. By contrast, for the vector of daily temperatures in Example 1.2.1 the magnitude ∥T∥ does not have
a physical meaning but it is still a measure of the “size” of T. For instance, if we write down vectors
T2015 and T2016 for daily temperatures at Stanford in 2015 and 2016 respectively and find that ∥T2016∥ is
bigger than ∥T2015∥ then it suggests that on average 2016 was a warmer year than 2015 (since negative
temperatures in Celsius essentially never occur in Palo Alto). ■

Definition 1.6.4. The distance between two n-vectors x,y is defined to be ∥x− y∥.
(This will soon be visualized as the familiar notion of distance between tips of arrows for n = 2, 3.

In general it also equals ∥y − x∥ since y − x = −(x − y) and any vector has the same length as its
negative, so the order of subtraction doesn’t matter.)

The preceding definition is just that: a definition. There is no “physical justification” to be given
when n > 3. What is important is that (i) for n = 2, 3 we convince ourselves that it is the usual notion
of distance, and (ii) for general n it satisfies reasonable properties for a notion of “distance” to provide
helpful geometric insight. Such a property with general n will be discussed in Remark 1.6.12.

Let’s convince ourselves that Definition 1.6.4 is the right concept when n = 2, 3. If n = 2, this follows
from the Pythagorean Theorem in plane geometry (yielding the usual “distance formula” between points
in R2) by thinking about displacement vectors: look at Figure 1.4.1, taking x to be v +w there and y to
be v there, so x− y = w is the displacement vector.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 13



Example 1.6.5. Figure 1.6.1 below shows why Definition 1.6.4 is the usual notion of distance in R3,
by computing the distance e between two vectors u and v via two applications of the 2-dimensional
Pythagorean Theorem. The conclusion is that e equals ∥u− v∥ as defined in Definition 1.6.4 for n = 3.

v

u

•

•

b a

ce
d

u− v = (a, b, c)

e = distance from v to u

e2 = d2 + b2.

d2 = a2 + c2.

e2 = a2 + b2 + c2.Thus

‖u− v‖2 = a2 + b2 + c2.

e2 = ‖u− v‖2.Therefore

By definition

FIGURE 1.6.1. Pythagorean Theorem in R3

■

We next illustrate this using numerical examples. There is nothing special about the numbers we chose;
the same considerations work quite generally in R2 and R3.

Example 1.6.6. Suppose that to drive from Pat’s house to Casey’s house, Pat had to drive 3 miles east, and
then turn left and drive 1 mile north. Furthermore, suppose that to get to Sam’s house from Pat’s house,
Pat had to drive 1 mile west and 2 miles south. How far would a bird fly, taking the most direct route,
between Sam’s house and Casey’s house?

To figure this out, imagine a grid on the surface of the city where Pat, Sam, and Casey live. Set things
up so that Pat’s house is at the origin and the units on this grid are measured in miles: this is illustrated in
Figure 1.6.2 below.

x

y

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

−2
−3

P

C

S

•

•

•

FIGURE 1.6.2. Houses of Pat, Casey, and Sam
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Pat’s house is represented by the vector
[
0
0

]
, Casey’s house is represented by the vector

[
3
1

]
, and Sam’s

house is represented by the vector
[
−1
−2

]
. The distance the bird would fly is the distance from the vector

[
−1
−2

]
to the vector

[
3
1

]
, which is the length of the difference:

∥∥∥∥
[
3
1

]
−
[
−1
−2

]∥∥∥∥ =

∥∥∥∥
[
4
3

]∥∥∥∥ =
√
42 + 32 =

√
25 = 5.

So the bird would fly 5 miles to get from Sam’s house to Casey’s house.
The difference vector just used can be interpreted as an instance of the notion of displacement vector

discussed in Example 1.4.1. ■

Example 1.6.7. For v =

[
7
3

]
and w =

[
4
4

]
, the distance between them is the length of the difference

v −w =

[
7
3

]
−
[
4
4

]
=

[
3
−1

]
.

This is shown in Figure 1.6.3 below.

x

y

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

0
0

v

w

v −w

•
•

•

FIGURE 1.6.3. Distance as length of a difference vector

This length is
√

32 + (−1)2 =
√
9 + 1 =

√
10 ≈ 3.1623. (When we give decimal approximations in

this book, it is solely for expository purposes; you are never expected to provide such approximations on
exams, where exact numerical answers are always sufficient.) ■

Example 1.6.8. Let u =

[
1
1

]
and v =

[
3
0

]
. By Definition 1.6.4, the distance from u to v is

∥u− v∥ =

∥∥∥∥
[
−2
1

]∥∥∥∥ =
√
4 + 1 =

√
5.

This is shown in Figure 1.6.4.
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x

y

•

u

v

√
5

FIGURE 1.6.4. Two vectors with distance
√
5 from each other

■

Example 1.6.9. Let u =

[
1
0

]
and v =

[
1/2√
3/2

]
. What is the distance from u (with length 1) to v (with

length 1)? By Figure 1.6.5 and trigonometry, v makes an angle of 60° with u. Hence, the triangle is
equilateral and so the distance is 1. Alternatively, we can compute with the difference vector:

u− v =

[
1/2

−
√
3/2

]
, so ∥u− v∥2 =

(
1

2

)2

+

(
−
√
3

2

)2

=
1

4
+

3

4
= 1 and hence ∥u− v∥ = 1,

which again shows that the triangle formed by the unit-length edges u and v is indeed equilateral.

u

v
u− v

FIGURE 1.6.5. An equilateral triangle

■

Example 1.6.10. For4 v′ =




3
−1
2


 and w′ =



2
5
1


, the distance between them is the length of the difference

v′ −w′ =




3
−1
2


−



2
5
1


 =




1
−6
1


 .

This length is
√
12 + (−6)2 + 12 =

√
1 + 36 + 1 =

√
38 ≈ 6.1644. ■

4Notation such as v′ and w′ here does not denote derivatives (it would make no sense). In math, such dashes denote
additional versions of some common structure (such as vectors here, or t, t′, t′′ for time variables, etc.) when not functions.
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Example 1.6.11. For an example in R4 (which we can’t draw), consider5

v′′ =




1
2
1
−2


 , w′′ =




3
−2
1
1


 .

The distance between them is the length of the difference

v′′ −w′′ =




−2
4
0
−3


 ,

which is
√
(−2)2 + 42 + 02 + (−3)2 =

√
4 + 16 + 9 =

√
29 ≈ 5.3852. ■

Remark 1.6.12. It is a fact of experience that “the shortest distance between two points is a straight line”.
This inspires an insight about vectors. To explain it, consider points P,Q,R in R3 as in Figure 1.6.6.

P

Q

R
•

•

•

FIGURE 1.6.6. Traveling from P to R via Q

If we travel from point P to point R by first going from P straight to Q and then from Q straight to
R, we conclude that (distance from P to Q) + (distance from Q to R) ≥ (distance from P to R). In the
language of displacement vectors from Example 1.4.1, if the vectors corresponding to the points P,Q,R
are respectively denoted as v1,v2,v3 then this relation among distances says

∥v2 − v1∥+ ∥v3 − v2∥ ≥ ∥v3 − v1∥.
But this final inequality is meaningful to consider for vectors in Rn for any n. In other words:

Question: for any n, do all n-vectors v1,v2,v3 satisfy the inequality

∥v3 − v1∥ ≤ ∥v2 − v1∥+ ∥v3 − v2∥? (1.6.1)

This Question is inspired by experience in the familiar cases n = 2, 3 and so is thereby geometrically
“plausible” to contemplate for any n. Due to the motivation from going two ways around a triangle, the
inequality (1.6.1) is called the triangle inequality. But is it true for all n?

In the special case that v2 =



0
...
0


 is the n-vector whose entries are all equal to 0, if we define x = −v1

and y = v3 then it is the same to ask if

∥x+ y∥ ≤ ∥x∥+ ∥y∥ (1.6.2)

5Notation such as v′′ and w′′ here does not denote derivatives (it would make no sense). In math, such dashes denote
additional versions of some common structure (such as vectors here, or t, t′, t′′ for time variables, etc.) when not functions.
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for all n-vectors x,y. This is an equivalent formulation of (1.6.1), as we see by substituting v2 − v1 for x
and v3−v2 for y in (1.6.2) (since then x+y = v2−v1+v3−v2 = v3−v1). For those who are interested,
Theorem 2.5.1 affirmatively answers the Question about (1.6.1) by using the formulation (1.6.2).

Example 1.6.13. An important application where averaging of n-vectors and distance of n-vectors
arise in essential ways is the K-means algorithm, an “unsupervised learning” algorithm that is used
by computers to divide (or “cluster”) Rn-data into K batches. It is explained by Andrew Ng in this
video using just the concepts we have discussed so far (he writes “x ∈ Rn” as shorthand for “x is
an n-vector”); check it out! This algorithm is widely used (often with n > 3), such as in computer
vision [CBJD], market segmentation [KW, Ch. 5], and even fantasy sports, though other clustering
algorithms are preferred for some applications; e.g., to satisfy driver preferences, Uber uses “spectral
biclustering” [FF] based on the Singular Value Decomposition introduced in Section 27.3. ■

1.7. Unit vectors.

Definition 1.7.1. The zero vector in Rn is 0 =




0
0
...
0


, and a unit vector is a vector with length 1.

Always ∥v∥ ≥ 0, and ∥v∥ = 0 precisely when v = 0. If v ̸= 0 then dividing v by its length (i.e.,

multiplying by the scalar
1

∥v∥ > 0) yields a unit vector “pointing in the same direction” as v.

It should feel reasonable that to stretch or shrink a nonzero n-vector v to become a unit vector, we
should divide it by its length (really: multiply v by the scalar 1/∥v∥). Let’s visualize this in R3, then work
out an example in R3, and finally use general algebraic definitions to understand it for Rn with any n.

If v is a nonzero vector in R3 and c is any positive real number, then the two vectors cv and v point in
the same direction. For example 7v points in the same direction but it is 7 times as long (akin to changing
the units of distance by a factor of 7), whereas (2/3)v points in the same direction but is shorter by a factor
of 2/3. Let’s see in an example what happens when we divide by the length:

Example 1.7.2. Let v =



−2
1
2


, so ∥v∥ =

√
4 + 1 + 4 =

√
9 = 3. Hence, dividing by the length yields

1

3
v =



−2/3
1/3
2/3


, which has length

√
4/9 + 1/9 + 4/9 =

√
9/9 = 1 as desired. ■

In general the length of cv for c > 0 is c∥v∥, so in order that cv be a unit vector the condition is
precisely that c∥v∥ = 1, which is to say c = 1/∥v∥. In other words, the scalar multiple

1

∥v∥ v

of v is indeed the unique unit vector pointing in the same direction as v. (In the opposite direction we
have the unit vector (−1/∥v∥)v.)

In a situation where only the direction of a vector matters, it is often useful to describe that direction by
using a unit vector. In Section 11.3 we will discuss the technique of gradient descent that is a ubiquitous
tool for solving multivariable optimization problems in many applied settings, such as for backpropagation
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in machine learning (which we discuss in Appendix G) and linear regression (which we introduce in Chap-
ter 7). This technique uses the unit vector in the direction of a “gradient vector” (a type of multivariable
derivative) of a function: see Theorem 11.3.2.

Example 1.7.3. Consider a map where the positive y-axis points north and the positive x-axis points east.

The unit vector that points due west is
[
−1
0

]
. What is the unit vector that is pointing in the exactly

southwest direction? To figure this out, let’s first give some vector pointing in exactly the southwest
direction, and then divide by its length to get a unit vector.

S

N

W E
1√
2

1
=

[
−1
−1

]

=

[
−1/
√
2

−1/
√
2

]

FIGURE 1.7.1. A unit vector pointing southwest

A vector in the southwest direction is
[
−1
−1

]
, as in Figure 1.7.1. This isn’t a unit vector: its length is

√
(−1)2 + (−1)2 =

√
2. Dividing by its length gives a unit vector in the same direction:

[
−1/

√
2

−1/
√
2

]
.

■

Remark 1.7.4. Two themes of this book, the first of which has been illustrated in this chapter, are:

(i) geometric concepts in R3 can be usefully generalized to Rn for any n (e.g., length and
distance; we’ll discuss angles in Chapter 2),

(ii) such generalizations provide visual insight into many real-world situations, such as: physical
systems with many parts (cars, bridges, circuits, etc.), friendship networks, economic fore-
casts, Netflix recommendations, neural networks, and so on (as we’ll discuss later, such as in
Example 4.1.9, Example 14.2.3 Section 16.4, Section 21.1, Example 21.6.3, and Appendix
G).

Geometry in Rn for big n (to be discussed and used more fully later on) is an entirely human
creation and doesn’t require any universal interpretation in terms of the world around us.

There’s a lot of nonsense written about a mystical “fourth dimension”, or saying it is time, etc. It
is all irrelevant baloney which you should ignore. There are zillions of real-world problems involving
many unknowns; in all of them it is very convenient to use Rn for various (often big) values of n.
There is no need to assign cosmic meaning to a “dimension” irrespective of a problem at hand.

The geometric language of vectors and distance (and other notions to come later) in Rn is a pow-
erful psychological device, with which human beings can harness their visualization skills to “feel”
what is going on and think efficiently when working with n-vectors for any value of n whatsoever.
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Chapter 1 highlights (link to highlights in next chapter)

Notation Meaning Location in text
Rn the collection of all n-vectors Definition 1.1.2
v +w the sum of n-vectors v and w Definition 1.3.1
cv multiple of scalar c against n-vector v Definition 1.3.2
∥v∥ length (or magnitude) of an n-vector v Definition 1.6.1

Concept Meaning Location in text

n-vector list of n real numbers, written vertically as
[ v1

...
vn

]
Definition 1.1.2

scalar a real number (the type of number arising in calculus) Definition 1.1.4

vector addition operation on n-vectors adding corresponding entries
(cannot add n-vector to m-vector if n ̸= m)

Definition 1.3.1

scalar multiplication operation on a scalar c and n-vector multiplying all
entries by c

Definition 1.3.2

linear combination for given n-vectors v1, . . . ,vk, it is any n-vector of
the form c1v1 + · · ·+ ckvk for scalars c1, . . . , ck

Definition 1.3.4

convex combination for given n-vectors v1, . . . ,vk, it is c1v1+ · · ·+ ckvk

with 0 ≤ c1, . . . , ck ≤ 1 and
∑k

j=1 cj = 1
Example 1.3.8

length for v =

[ v1
...
vn

]
it is the scalar

√
v21 + · · ·+ v2n Definition 1.6.1

distance for n-vectors x and y, it is ∥x− y∥ = ∥y − x∥ Definition 1.6.4 (Figure
1.6.1 for n = 3)

unit vector an n-vector whose length equals 1 Definition 1.7.1

Result Meaning Location in text
parallelogram law visualization of vector addition in R2 and R3 (has no analogue

in Rn for n > 3, but is useful mental guide for what to expect
with vector addition for general n)

Example 1.3.3

displacement visualizes going from tip of n-vector P to tip of n-vector Q via
adding to P the vector difference Q− P

Example 1.4.1

properties of vector
addition and scalar
multiplication

both operations satisfy “all” meaningful analogues of properties
of addition and multiplication of ordinary numbers

Theorem 1.5.2

Skill Location in text
add n-vectors and multiply them by scalars Example 1.3.5

know how linear combinations of n-vectors arise (e.g., with grades)
and how to visualize convex combinations when n = 2

Section 1.4

compute length of and distance between n-vectors Examples 1.6.2, 1.6.10, 1.6.11

compute unit vector in same direction as a given nonzero n-vector Examples 1.7.2 and 1.7.3
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1.8. Exercises. (link to exercises in next chapter)

Exercise 1.1. After clicking on a cross-reference link in this book, it is then useful to be able to go back
to where you had been in the text. That can likely be done if you download the book as a PDF file on your
laptop; e.g., for Adobe on a Mac, one holds down the “command” button and presses “left-arrow”; for
Preview on a Mac, one holds down the “command” button and presses “[ ”. (Ask Google or a tech-savvy
friend for what to do on other laptops.) Try it with this link to a picture of an ellipse. (Nothing to submit.)

Such a “back button” option doesn’t exist for reading the book in a web browser (e.g., Safari, Firefox,
Chrome), so if you want that feature then please download the book to your laptop.

Exercise 1.2. Write each of the following as a single column vector.

(a) 3



1
0
0


− 2



0
1
0


+ 5



0
0
1




(b)




4
−1
2
7


− 3




2
0
−1
1


+ 2




4
−5
3
1




Exercise 1.3. The visual meaning of the algebra in this exercise will be discussed in Figure 3.1.2 via
laying out a parallelogram grid on a plane.6

(a) Find scalars t and t′ so that t
[
1
2

]
+ t′

[
2
3

]
=

[
4
5

]
. (Hint: Computing the left side in terms of t

and t′ and equating entries on both sides yields 2 equations in 2 unknowns. Then solve it.)

(b) Find scalars t and t′ so that t
[
1
2

]
+ t′

[
2
3

]
=

[
−2
−1

]
.

(c) For any x, y, find scalars t, t′ (expressed in terms of x and y) so that t
[
1
2

]
+ t′

[
2
3

]
=

[
x
y

]
. Check

that for (x, y) = (4, 5) this recovers your answer in (a), and that for (x, y) = (−2,−1) it recovers
your answer in (b).

Exercise 1.4. On square grids, draw pictures of your answers to Exercise 1.3(a) and 1.3(b).

Exercise 1.5. For each of the following vectors v, compute and draw −v, 2v, (1/2)v,−(4/3)v.

(a) v =

[
2
3

]
.

(b) v =

[
1
−2

]
.

Exercise 1.6. For each of the following 2-vectors v,w, compute and draw the following vectors: v +w,
v −w, 2w, 3w, v + 2w, v + 3w.

(a) v =

[
3
1

]
,w =

[
1
2

]
.

(b) v =

[
3
1

]
, w =

[
−1
−2

]
.

6Notation such as t′ here does not denote a derivative (indeed, that would make no sense). In math, such dashes denote
additional versions of some common structure (such as scalars here, or vectors v,v′,v′′, etc.) when not functions.
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Exercise 1.7. In Example 1.3.8 it is asserted that for any 2-vectors v,w and 0 ≤ t ≤ 1, the convex
combination (1− t)v + tw lies on the line segment joining the tips of the vectors v and w.

In each of the following cases, verify that assertion directly by: computing the equation of the line L
through the tips of v and w, checking that (1−t)v+tw satisfies the equation of L, and using x-coordinates
to confirm that this point on L lies between v and w. Draw a picture of this for t = 1/4 (showing L, v,
and w too), and sketch the region described by the vectors rv + sw where both r, s ≥ 0 and r + s ≤ 1
hold (Hint: rv + sw = rv + sw + (1− r − s)0 interprets this as a convex combination).

(a) v =

[
1
0

]
,w =

[
0
2

]
.

(b) v =

[
1
2

]
, w =

[
2
−1

]
.

Exercise 1.8. Consider 8 students (labeled as student 1, student 2, etc.) in their first quarter at Stanford
with the same course schedule consisting of courses C1, . . . , C5, with C1 and C2 worth 5 units of credit,
C3 worth 4 units, and C4 and C5 worth 3 units (so a total of 20 units). Let vi be the 8-vector of grades
given to them in course Ci, where the jth entry of vi is the grade of the jth student (with A+ = 4.3, A
= 4.0, A– = 3.7, etc.).

(a) If each course grade is weighted in the GPA by the unit value of the course, write a linear com-
bination of the vi’s whose jth entry is the GPA of the jth student at the end of that first quarter.
Check that this is a convex combination, and explain why it must be convex regardless of the unit
values of the courses.

(b) Suppose student 1 earned three A+’s and two A’s, and student 2 earned two A+’s and three A’s.
Devise a distribution of these course-grade outcomes for these students (i.e., which grade in which
course) for which student 2 has the same GPA as student 1.

Exercise 1.9. For each of the following pairs of vectors v and w, compute the distance between v and w.

(a) v =

[
−2
2

]
,w =

[
1
−2

]
.

(b) v =




3
−1
4
1


 ,w =




−2
3
3
−2


.

Exercise 1.10. For each of the following vectors v, compute ∥v∥ and the unit vector pointing in the same
direction as v.

(a) v =




1
3
−1




(b) v =

[
−8
15

]

(c) v =




1
1
...
1


 an n-vector (your answer should be in terms of n)

Exercise 1.11. The polarization identity asserts that for any n-vectors v,w,

∥v +w∥2 + ∥v −w∥2 = 2∥v∥2 + 2∥w∥2.
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v −w

v +w

0

v

w

•

FIGURE 1.8.1. The parallelogram in R3 formed by two 3-vectors v and w. The vectors
on the diagonals of the parallelogram are v −w and v +w.

(a) For the case n = 2, apply the Law of Cosines to each of the triangles made by cutting the
parallelogram in half along a diagonal (regard the chosen diagonal as the side opposite the “angle”
being used in the Law of Cosines) to establish the polarization identity.

(b) For general n, establish the polarization identity by algebraic calculation with the definition of
“length” for n-vectors.

Exercise 1.12. One of the most basic “unsupervised machine learning” algorithms is the K-means algo-
rithm discussed in Example 1.6.13. This exercise describes the algorithm and asks you to carry it out; it
does not require reading Example 1.6.13 or knowing anything about computers or machine learning.

Given x1, . . . ,xm ∈ Rn and a whole number K, we want to collect this data into K clusters of
“collectively nearby points”. This should be done via a systematic process that can be applied usefully to
large data sets (especially with n > 3, so one can’t visualize the information). Here is the algorithm.

(1) Choose arbitrarily K distinct points among the given data; call them C1, . . . , CK .
(2) For each xi, find the Cj closest to xi (assume we don’t have ties: no two Cj’s are equidistant to

xi). This puts x1, . . . ,xm into K clusters, according to which of the Cj’s is nearest.
(3) For the jth cluster, replace Cj with the average of the xi’s in that cluster.
(4) Repeat Step 2 using the new Cj’s obtained in Step 3, and keep going in this way until the process

stops (meaning that some pass through Step 2 and then Step 3 has the same collection of K
clusters at the start of Step 2 and end of Step 3).

Suppose m = 6 consumers rate their preference for Coca-Cola and Pepsi on a scale of 1 to 5 (with 5 being
“like very much”, and 1 being “dislike very much”). The result of the survey is as follows, where the first
component is the rating for Coca-Cola and the second component is the rating for Pepsi:

x1 =

[
1
1

]
, x2 =

[
1
5

]
, x3 =

[
2
4

]
, x4 =

[
3
1

]
, x5 =

[
3
2

]
, x6 =

[
4
1

]
.

We will use the K-means algorithm with K = 2.

(a) Make the initial choices C1 = x4, C2 = x5. Use the algorithm to separate the 6 customers into
2 clusters. (You don’t need to include the computations of the distances in your solution, but
for each pass through Step 3 compute the averages exactly as vectors with fractional entries; the
denominators are small.)

(b) Do the same as in (a) but with the initial choices C1 = x2, C2 = x3. (In the end you should arrive
at the same two clusters as in (a), but with a swap in which is “first” and which is “second”, an
irrelevant distinction for the purpose of clustering the data.)

Exercise 1.13. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):
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(a)
[
3
1

]
is a convex linear combination of

[
1
5

]
and

[
4
−1

]
.

(b) If v and w are non-zero vectors in Rn then ∥v +w∥ ≥ ∥v −w∥.
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2. Vector geometry in Rn and correlation coefficients

Near the end of Chapter 1 we defined “length” for vectors in Rn. Geometric reasoning with vectors can
go much further, and to develop “geometric intuition” in Rn it is best to begin in the more familiar setting
of R3. In this chapter we first show how many questions in 3-dimensional geometry that can be answered
via trigonometry are a lot easier to answer with the language of vectors. That motivates how we can use
geometric language to work with vectors in new ways. In particular, we generalize some considerations in
3-dimensional space to Rn with n > 3; this will be very fruitful in our later study and use of vectors.

By the end of this chapter, you should be able to do the following for vectors in any Rn:

• compute the dot product between vectors;
• compute angles between vectors, and check for perpendicularity, by using the dot product;
• compute the correlation coefficient using n-vectors, and recognize graphically from a plot of
n data points the significance of positive and negative correlation coefficients.

2.1. Angles. In Section 1.6 we defined the notion of length of a vector. In R2 this expressed the
Pythagorean Theorem, in R3 it was deduced from instances of the planar case (see Example 1.6.5), and
for n-vectors we used the analogous formula as a definition. We now carry out a similar discussion for
angles, building on the Law of Cosines in place of the Pythagorean Theorem:

Proposition 2.1.1. The angle 0° ≤ θ ≤ 180° between nonzero 2-vectors a = (a1, a2) and b = (b1, b2)
satisfies

cos θ =
a1b1 + a2b2
∥a∥∥b∥ . (2.1.1)

In other words, the angle θ is equal to arccos (sometimes denoted cos−1) applied to the right side of (2.1.1).

This is the Law of Cosines in disguise. Indeed, consider the triangle with vertices at the origin (0, 0),
(a1, a2), and (b1, b2), as in Figure 2.1.1.

b
a

a− b

x

y

•

‖a‖ = A

‖b‖ = B

‖a− b‖ = C

FIGURE 2.1.1. Triangle in R2 with vertices at 0, a, and b

Let A = ∥a∥ and B = ∥b∥ denote the lengths of the sides joining (0, 0) to (a1, a2) and (b1, b2)
respectively. The third side has length C given by that of the difference vector a − b as shown in Figure
2.1.1, so C = ∥a− b∥. The Law of Cosines says C2 = A2 +B2 − 2AB cos θ, so

cos θ =
A2 +B2 − C2

2AB
. (2.1.2)

This numerator A2 +B2 − C2 = (a21 + a22) + (b21 + b22)− ((a1 − b1)
2 + (a2 − b2)

2) expands out to

a21 + a22 + b21 + b22 − ((a21 − 2a1b1 + b21) + (a22 − 2a2b2 + b22)) = 2(a1b1 + a2b2).
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Plugging that into the numerator of (2.1.2) and cancelling the common factor of 2 in the top and bottom
yields (2.1.1).

Example 2.1.2. Let’s find a nonzero vector in R2 perpendicular to u =

[
3
4

]
; i.e., a nonzero 2-vector v

that makes an angle of π/2 radians (or 90°) with
[
3
4

]
, such as shown in Figure 2.1.2.

u
v

x

y

•

FIGURE 2.1.2. A vector v perpendicular to a given vector u

Since cos(π/2) = 0, by (2.1.1) we seek a nonzero 2-vector v =

[
a
b

]
so that

u · v
∥u∥∥v∥ = 0, which is

tantamount to the numerator being 0. In other words, we seek a, b not both zero with

0 = u · v = 3a+ 4b.

So we just pick whatever value b ̸= 0 we like, and then define a to be −4b/3. For example, by setting

b = 3 we get a = −4, so the vector
[
−4
3

]
is perpendicular to

[
3
4

]
(as are

[
−8
6

]
,
[
4
−3

]
,
[
−4/3
1

]
, and more

generally
[
−4y/3
y

]
for any y ̸= 0). ■

Theorem 2.1.3. The angle 0° ≤ θ ≤ 180° between two nonzero 3-vectors a = (a1, a2, a3) and b =
(b1, b2, b3) satisfies

cos θ =
a1b1 + a2b2 + a3b3

∥a∥∥b∥ . (2.1.3)

In other words, the angle θ is equal to arccos (sometimes denoted cos−1) applied to the right side of (2.1.3).

Remark 2.1.4. In Section 2.5, for those who are interested, we justify (2.1.3) using the Law of Cosines.

We have not seen the numerator a1b1 + a2b2 + a3b3 before, and we give it a special name: the dot
product, denoted a · b. Thus a · b = a1b1 + a2b2 + a3b3 is a scalar, not a vector.

Example 2.1.5. Let’s determine the angle between the vectors u =



3
0
4


 and v =




1
3
−2


 in Figure 2.1.3.
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0

v

u

•

•

•

z = −2

z = 0

z = 4

y

x

z

FIGURE 2.1.3. Angle between u and v is that of the purple triangle at the corner 0

We compute the dot product and lengths

u · v = 3 + 0− 8 = −5, ∥u∥ =
√
32 + 02 + 42 = 5, ∥v∥ =

√
12 + 32 + (−2)2 =

√
14.

Therefore, the angle θ satisfies cos(θ) = −5/(5
√
14) = −1/

√
14, so θ = arccos(−1/

√
14) ≈ 105.5°. ■

The preceding in R2 and R3 motivates how to define appropriate concepts with n-vectors for any n:

Definition 2.1.6. Consider n-vectors x =




x1
x2
...
xn


 and y =




y1
y2
...
yn


.

(i) The dot product of x and y is defined to be the scalar

x · y = x1y1 + x2y2 + · · ·+ xnyn =
n∑

i=1

xiyi.

(The dot product is only defined if the two vectors are n-vectors for the same value of n.)
(ii) The angle θ between two nonzero n-vectors x,y is defined by the formula

cos(θ) =
x · y

∥x∥∥y∥ (2.1.4)

with 0° ≤ θ ≤ 180°. (For emphasis: x and y must be nonzero n-vectors for a common n.)
(iii) When x · y = 0 (same as θ = 90° if x,y ̸= 0), we say x and y are perpendicular; the word

orthogonal is often used for this (“orthogōnios” is ancient Greek for “right-angled”), though
only rarely7 at the U.S. Supreme Court.

Always remember that the dot product of vectors is a scalar (it is not a vector).

Example 2.1.7. Dot products are easy to compute. For an example with R3,

2
1
3


 ·




3
−2
4


 = 2 · 3 + 1 · (−2) + 3 · 4 = 6 +−2 + 12 = 16.

7An audio version begins at 22:29 in the Oral Argument link here. The meaning of orthogonality there is also the reason
for the name of the field bioorthogonal chemistry, whose development by Carolyn Bertozzi at Stanford earned her a 2022 Nobel
Prize in Chemistry.
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Similarly with R4,




3
1
0
1/2


 ·




1
−2
3
6


 = 3− 2 + 0 + 3 = 4. ■

Remark 2.1.8. The visual meaning of v · w is addressed in Chapter 6, but let’s state it now for nonzero
3-vectors v and w making an acute angle θ as in Figure 2.1.4. For the (colored) right triangle with hy-
potenuse v and a leg along the line through w, the length ℓ of that leg is ∥v∥ cos θ = (∥v∥∥w∥ cos θ)/∥w∥ =
(v ·w)/∥w∥, so v ·w = ∥w∥ℓ. This equation is a special case of Proposition 6.1.1.

v

w
θ

ℓ
•

ℓ = ∥v∥ cos θ = ∥v∥∥w∥ cos θ
∥w∥ =

v ·w
∥w∥

FIGURE 2.1.4. Right triangle formed by two 3-vectors making an acute angle

Inspired by Figure 2.1.4, you might wonder: why not geometrically define v · w to be ∥w∥ times
the length of that leg? This would be terrible, for a few reasons: (i) it doesn’t (yet) make sense for
n > 3 (but the dot product with n > 3 will later pervade a vast array of real-world applications,
due to geometric results in Chapter 6), (ii) it treats v and w in very different roles whereas in fact
v ·w = w · v (see Theorem 2.2.1), (iii) it makes important algebraic properties of the dot product (in
Theorem 2.2.1) hard to understand.

Remark 2.1.9. We emphasize again that it does not make sense to compute a dot product v ·w if v is an
n-vector and w is an m-vector with n ̸= m. If you ever find yourself trying to compute the dot product of
a vector in R4 and a vector in R3, for example, you have made a mistake earlier in your work.

Example 2.1.10. Here is an example of dot products that arises in the study of consumer satisfaction
in microeconomics. Suppose there are n goods available to consumers in some small part of the
economy. For example, if the goods under consideration are rice and beans then n = 2. Let pi denote
the price of the ith good (so pi ≥ 0) and let xi denote the quantity of the ith good that a person
chooses to purchase (so xi ≥ 0). These assemble into a “price n-vector” p and a “quantity n-vector”
x respectively. In the case of rice and beans, we may have

p = (price of rice in dollars per pound, price of beans in dollars per pound),

x = (pounds of rice purchased, pounds of beans purchased).

Note that the dot product
p · x =

∑
pixi

is the total amount spent by the consumer.
In economics, consumer satisfaction for a given vector x of purchased goods is measured by a

number u(x), where u : Rn → R is a utility function (whose precise definition depends on the
specific economic circumstances). If a consumer is constrained not to spend more than a given amount
w ≥ 0 of wealth, which is to say p · x ≤ w, then maximizing customer satisfaction subject to such a
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budgetary constraint is expressed mathematically by

f(p, w) = the n-vector x maximizing u(x) subject to the condition p · x ≤ w.

Under suitable assumptions on u (studied in consumer theory) there is exactly one such maximizer
x, so the n-vector f(p, w) makes sense unambiguously and is called the optimal quantity vector. For a
given p, a consumer with wealth at most w should purchase the goods in accordance with the optimal
quantity vector f(p, w) to maximize their satisfaction. The function f is called the Marshallian
demand function in economics (and by design, it depends on the specific utility function u). ■

The notion of angle in Definition 2.1.6(ii) above is a definition in Rn for general n: it is motivated by
(2.1.3) in the case n = 3 (as that ensures Definition 2.1.6(ii) recovers the familiar notion of angle when
n = 3), but for general n there is nothing to “physically justify” in Definition 2.1.6(ii). The real content in
making this definition for general n is that (as you will learn with experience) this notion of angle behaves
like our visual experience in R2 and R3 (see the beginning of Example 2.2.4 for an illustration) and so
provides useful visual guidance with n-vectors for any n.

Remark 2.1.11. If we multiply either x or y by −1 in the definition of angle then the dot product is
replaced with its negative (e.g., x · (−y) = −(x · y)) but the lengths don’t change, so the cosine of the
angle is replaced with its negative. That corresponds to passing to the supplementary angle 180° − θ, as
indicated in Figure 2.1.5 below, since cos(180° − θ) = − cos(θ).

x

y

−x

−y

angle
supplementary angle

FIGURE 2.1.5. Angle and supplementary angle

Whenever we speak of an angle between two lines through the origin, there is always an ambiguity
(when they’re not perpendicular) of whether we want the acute angle between them or the (supplementary)
obtuse angle between them. This corresponds to the fact that when we set it up as a vector problem, we
have to choose a direction along each line (coming out of the intersection point). Depending on the choice,
we will get the acute or the obtuse angle. Flipping the choice of direction corresponds to multiplying the
choice of vector along the line by −1, and so is consistent with our observation above with the formula
(2.1.4) that multiplying x or y by −1 causes the angle to switch to its supplement.

Example 2.1.12. In R2, any pair of vectors of the form
[
a
b

]
and

[
−b
a

]
are perpendicular since

[
a
b

]
·
[
−b
a

]
=

−ab+ ba = 0. We saw an instance of this in Example 2.1.2 with a = 3 and b = 4. ■

Example 2.1.13. Here is an interesting geometric application of the ability to compute angles between
vectors in R3 via dot products: what is the acute angle between two diagonal lines of a cube? Consider
the “unit cube” in R3 consisting of points (x, y, z) with 0 ≤ x, y, z ≤ 1, as in Figure 2.1.6. The diagonals
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are also diagonals of a rectangle with side lengths 1 and
√
2 as shown, so the problem can be analyzed via

plane geometry. We will solve it using dot products of displacement vectors.

P

Q
R

S

length 1 length
√
2

FIGURE 2.1.6. Unit cube in R3

The 8 vertices are

P = (0, 0, 0), S = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), R = (0, 1, 1), Q = (1, 1, 1).

Two of the diagonals are the segments PQ and RS, with corresponding displacement vectors (up to sign,
keeping in mind Remark 2.1.11)

x =



1
1
1


−



0
0
0


 =



1
1
1


 , y =



1
0
0


−



0
1
1


 =




1
−1
−1


 .

The angle θ between these satisfies cos(θ) =
x · y

∥x∥∥y∥ =
−1√
3
√
3
= −1

3
. This is obtuse (as its cosine is

negative), so via Remark 2.1.11 we flip the sign to get that the acute angle is arccos(1/3) ≈ 70.5°. ■

Remark 2.1.14 (optional). Now that we have some experience with Definition 2.1.6(ii), we should
acknowledge a subtlety: does it even make sense to say the right side of (2.1.4) is the cosine of an
angle? The values of cosine lie between −1 and 1, so if that right side could ever equal 8/7 (or
anything else outside the interval [−1, 1]) then it could not be written as the cosine of anything!

The graph of cosine across the closed interval of angles from 0° to 180° (or equivalently, the closed
interval of radians from 0 to π) attains exactly the values between cos 0° = 1 and cos 180° = −1, due
to the graph of cosx as in Figure 2.1.7.

0◦ 90◦ 180◦
−1

0

1

FIGURE 2.1.7. The graph of cosx for angles x from 0° to 180°

Note that cosx attains each value between −1 and 1 without repetition on [0°, 180°]: different
angles in this interval have different cosine values, as we see since the graph is strictly decreasing
across the interval. Thus, for Definition 2.1.6(ii) to make sense (necessarily unambiguously) as a
definition it must be shown that the right side of (2.1.4) always lies between −1 and 1. That this holds
is not at all obvious; it is part of Theorem 2.3.2, which rests on properties of dot products.
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2.2. Properties of dot products. The following properties of the dot product can be established by
direct algebraic manipulation with the formula that defines the dot product:

Theorem 2.2.1. For any n-vectors v, w, w1, and w2, the following hold:

(i) v ·w = w · v,
(ii) v · v = ∥v∥2,

(iii) v · (cw) = c(v ·w) for any scalar c, and v · (w1 +w2) = v ·w1 + v ·w2.
(iii′) Combining both rules in (iii), for any scalars c1, c2 we have

v · (c1w1 + c2w2) = c1(v ·w1) + c2(v ·w2).

To illustrate the type of work which explains the general properties in Theorem 2.2.1, assertion (i)
amounts to the calculation v · w =

∑n
i=1 viwi =

∑n
i=1wivi = w · v. (For those who are interested,

in Remark 2.5.2 the algebraic Theorem 2.2.1 and the geometric Theorem 2.1.3 – in effect, the Law of
Cosines – are used together to give a nifty proof of the Law of Sines.)

Example 2.2.2. Consider the vectors v =



1
3
2


 and w =



−2
4
3


 in R3. Illustrating (i) above, we have

v ·w =



1
3
2


 ·



−2
4
3


 = 1 · (−2)+ 3 · 4+ 2 · 3 = 16, w ·v =



−2
4
3


 ·



1
3
2


 = (−2) · 1+ 4 · 3+ 3 · 2 = 16,

so v ·w = w ·v. Illustrating (ii) above, we have v ·v = 12+32+22 = 14, ∥v∥ =
√
12 + 32 + 22 =

√
14,

so ∥v∥2 = 14 = v · v. Finally, to illustrate (iii′) above, we have


1
3
2


 ·


5



−2
4
3


+ 2



3
1
2




 =



1
3
2


 ·





−10
20
15


+



6
2
4




 =



1
3
2


 ·



−4
22
19


 = −4 + 66 + 38 = 100

and

5



1
3
2


 ·



−2
4
3


 + 2



1
3
2


 ·



3
1
2


 = 5 · 16 + 2 · 10 = 80 + 20 = 100.

■

Example 2.2.3. Let’s see that with the definition of angle we have given, for any nonzero n-vector x and
scalar c ̸= 0, the angle between x and cx behaves as we would expect from experience in R2 and R3:

• 0 radians (or 0°) if c > 0 (in this case x and cx “point in the same direction”);
• π radians (or 180°) if c < 0 (in this case x and cx “point in opposite directions”).

For instance, in Figure 2.2.1 we use scalars c1 > 0 and c2 < 0:

x

c1x

c2x
•
0

FIGURE 2.2.1. Vectors making angles 0 and π with a nonzero vector x

The reason this works is just plugging into the definition, using Theorem 2.2.1(ii),(iii), and recalling

that cx has length |c|∥x∥. We get cos(θ) =
(cx) · x
∥cx∥∥x∥ =

c(x · x)
|c|∥x∥∥x∥ =

c(x · x)
|c|∥x∥2 yet ∥x∥2 = x · x, so
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cancellation leaves us with c/|c|; this is 1 when c > 0 and −1 when c < 0. Hence, if c > 0 then the angle
is arccos(1) = 0° and if c < 0 then it is arccos(−1) = 180° as desired.

In fact, it turns out that this is the only situation in which such angles can arise. That is, if x,y
are nonzero vectors in Rn for which the angle between them is either 0° or 180° (equivalently, x · y =
±∥x∥∥y∥) then we claim that necessarily y = cx for some scalar c (which is the same thing as x = by for
some scalar b: since x,y ̸= 0 such a scalar multiplier in either case must be nonzero, so it can be brought
to the other side as its reciprocal). In R2 and R3, this is a fact we can “see”. In Rn for general n, this
amounts to the second assertion in Theorem 2.3.2 below (for those who are interested). ■

Example 2.2.4 (Cosine similarity). Visualization in R3 suggest that for any n, two unit vectors in Rn

or more generally two n-vectors v and w with the same length ℓ should be “close” when the angle θ
between them is near 0° and should be “unrelated” when the angle between them is close to 90°. To
turn this informal idea into precise mathematics, we go to the definitions and get a handle on ∥v−w∥
by computing its square via the general formula x · x = ∥x∥2:

∥v −w∥2 = (v −w) · (v −w) = v · v − v ·w −w · v +w ·w
= ∥v∥2 − 2(v ·w) + ∥w∥2

= ∥v∥2 − 2∥v∥∥w∥ cos(θ) + ∥w∥2

= ℓ2 − 2ℓ2 cos(θ) + ℓ2

= 2ℓ2(1− cos(θ)),

and this is very small for θ near 0° since then 1 − cos(θ) ≈ 0, so its square root ∥v − w∥ is also
small! This illustrates how vector algebra extracts geometric consequences for n-vectors with any n
even though our literal visualization is limited to the case n ≤ 3 (but thinking is seeing!).

Using the cosine of the angle as a measure of similarity for unit vectors in Rn for large n has
a striking real-world application: the natural language processing technique called latent semantic
analysis (also called latent semantic indexing). This is a powerful way to do information retrieval on
the Internet and to search for “similar” documents; it avoids difficulties in linguistic-based methods
caused by synonyms and multiple meanings of words. (Applying this to a large sample of papers in
materials science was used in [Tsh] to predict that specific materials generate electricity from heat
differences and so can improve fuel efficiency of cars, power smart watches via body heat, etc.).

The method assigns to every word from a collection of n documents an n-vector whose jth entry
is a certain numerical statistic measuring the significance of the word in the jth document. (Most
entries in each “word vector” are 0.) Sophisticated linear algebra methods at the end of this course (in
Section 27.3) are applied to the resulting huge collection of “word vectors”, yielding modified word
vectors for which the cosine of angles between them is a useful measure of similarity among parts
of documents. This is one of the techniques used by Spotify when it recommends songs and by the
software DALLE-2 that creates striking images from text input, both using Rn with n in the millions.
The use of cosine similarity to measure performance of large language models is mentioned here.

Since the method is based entirely on mathematics and not on any linguistic information at all
(no dictionaries, no grammar, etc.), the technique is independent of the language in which documents
are written and it is even effective at discovering similarities among documents written in different
languages (even with different alphabets)! In fact, there’s no need to limit oneself to comparing text
in human languages: variants of the method have been applied with success to biological problems
such as classifying proteins (by treating each long protein sequence as if it is a collection of “words”,
with the protein sequence then regarded as a “document”). ■
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2.3. Pythagorean Theorem in Rn and the Cauchy–Schwarz Inequality. As an application of
the dot product rules in Theorem 2.2.1, we can establish a version of the Pythagorean Theorem for
n-vectors with any n (not just n = 2) and we can show that the subtlety lurking in the definition of
“angle” between n-vectors (see Remark 2.1.14) is really not a problem at all.

Theorem 2.3.1 (Pythagoras). If n-vectors v1 and v2 are nonzero and perpendicular (i.e., at an angle
of 90°) then

∥v1 + v2∥2 = ∥v1∥2 + ∥v2∥2. (2.3.1)

If we imagine a triangle with vertex at 0 and two sides along v1 and v2 then the other side corre-
sponds to the displacement vector v1 − v2, so upon replacing v2 with its negative in (2.3.1) we see
that this claimed equality really does express the geometric content of the Pythagorean Theorem.

PROOF. To establish (2.3.1), expand the left side as a dot product:

(v1 + v2) · (v1 + v2) = v1 · (v1 + v2) + v2 · (v1 + v2) = v1 · v1 + v1 · v2 + v2 · v1 + v2 · v2.

We’ve used the rules for dot products at each step, to expand. But the common value v1 · v2 and
v2 · v1 is 0 because v1 and v2 are assumed to be perpendicular (which means by definition that their
dot product equals 0). Thus, the right side equals v1 ·v1+v2 ·v2 = ∥v1∥2+∥v2∥2, as we wanted. □

Of course, this doesn’t give a new proof of the Pythagorean Theorem in the Euclidean geometry
case n = 2! Indeed, the motivation for our definitions of perpendicularity and more generally angle
between vectors in Rn and length of vectors in Rn for general n (especially n > 3) came from our
knowledge of how things work in R2 based on knowing the Pythagorean Theorem in plane geometry.
Making up definitions of words cannot ever replace the work involved in proving a real theorem.

Since we now have several good properties of dot products in hand, we can establish a fact that we
saw in Example 2.2.3 is needed to confirm that our definition of “angle” between nonzero n-vectors
makes sense for any n:

Theorem 2.3.2 (Cauchy–Schwarz Inequality). For n-vectors v,w, we have

−∥v∥ ∥w∥ ≤ v ·w ≤ ∥v∥ ∥w∥
(or equivalently the absolute value |v · w| is at most ∥v∥ ∥w∥). Moreover, one of the inequalities is
an equality precisely when one of v or w is a scalar multiple of the other.

PROOF. If v = 0 or w = 0 then everything is clear (note that 0 is a scalar multiple of any
n-vector: multiply it by the scalar 0), so now we assume v,w ̸= 0. The idea of the proof is to
explore how the length of v + xw depends on x. This is most conveniently done by analyzing the
squared-length, which is a dot product:

∥v + xw∥2 = (v + xw) · (v + xw).

Using Theorem 2.2.1(iii′) a few times, we have

(v + xw) · (v + xw) = (v + xw) · v + x((v + xw) ·w)

= v · v + (xw) · v + x((v ·w) + x(w ·w))

= v · v + x(w · v) + x(v ·w) + x2(w ·w).

But w · v = v ·w, so combining the middle two terms yields:

∥v + xw∥2 = ∥v∥2 + 2(v ·w)x+ ∥w∥2x2.
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The squared length of a vector is always ≥ 0, and it equals 0 precisely when the vector equals 0.
But the vector v+xw equals 0 for some value x = c precisely when v = −cw, which is to say v is a
scalar multiple of w, and that is the same as w being a scalar multiple of v (since the scalar multiplier
can be brought to the other side as its reciprocal as long as the scalar cannot be 0, and indeed such a
scalar cannot be 0 since we have arranged that v,w ̸= 0). So we just need to analyze what it means
that the quadratic polynomial in x given by

q(x) = ∥w∥2x2 + 2(v ·w)x+ ∥v∥2

is always non-negative, and determine when this polynomial does actually attain the value 0 for some
value of x.

Let’s review when a quadratic polynomial ax2 + bx+ c with positive leading coefficient (such as
a = ∥w∥2 for q(x) above) is ≥ 0 everywhere. This happens precisely when its concave-up parabolic
graph lies entirely on one side of the x-axis (possibly touching the x-axis at one point), which is
exactly the situation that the graph does not cross the x-axis at two different points. This is exactly
the situation when the output of the quadratic formula does not yield two different real numbers. The
opposite case of having two different real roots occurs exactly when the “b2−4ac” part of the quadratic
formula inside the square-root is > 0, so in our situation we must have the exactly opposite situation:
b2 − 4ac ≤ 0, with equality happening precisely when there is a real root.

Applying the preceding review with a = ∥w∥2, b = 2(v ·w), c = ∥v∥2 for q(x), we get

(2(v ·w))2 − 4∥w∥2∥v∥2 ≤ 0

with equality happening exactly when v and w are scalar multiples of each other. Bringing the second
term on the left over to the other side, we conclude that

(2(v ·w))2 ≤ 4∥w∥2∥v∥2

with equality precisely when v and w are scalar multiples of each other. Dividing each side by 4, this
is the same as the inequality

|v ·w|2 ≤ (∥w∥ ∥v∥)2,
so taking square roots of both sides gives what we want. □

2.4. The correlation coefficient. Given data points (x1, y1), . . . , (xn, yn), it is often useful to seek a
line which gives a “best fit” to this collection of points. The first example of this arose in the early 19th
century when astronomers lost an asteroid that they had recently discovered and sought to rediscover it via
extrapolation from the limited measurements they had made (we will return to this in Example 7.2.1).

The problem of finding a “best fit” line to some data is called linear regression, and we will address
that task using later linear algebra techniques in Chapter 7. But at a more basic level we may seek a
measure of the extent to which it is reasonable to try to find a line that could be regarded as a good fit
to the data (setting aside what that specific line may be). There is a widely used measure of whether one
should seek such a line: this measure is called the correlation coefficient of the data points.

Example 2.4.1. Consider the 5 data points (xi, yi) given by

(−3, 4), (−2, 1), (0,−1), (1,−1), (4,−3).

These points and the corresponding (not so good) “line of best fit” are shown in Figure 2.4.1 below. In
Chapter 7 we will learn how to determine which line may be reasonably considered to be the one that best
fits the data, but it is appropriate to first ask if such a line should be considered useful or not.
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FIGURE 2.4.1. Data points: (−3, 4), (−2, 1), (0,−1), (1,−1), (4,−3).

■

In general, to what extent is there an approximately “linear” relationship between yi and xi for n given
data points (xi, yi)? Even though this question concerns points in the plane R2, to answer it we will use
the language of vectors in Rn! This illustrates how considerations with Rn for n > 3 arise very naturally
in contexts that do not initially seem to involve anything outside R2 or R3.

Let’s describe a process that answers this question for the data in Example 2.4.1, using the 5-vectors

X =




x1
x2
...
x5


 =




−3
−2
0
1
4



, Y =




y1
y2
...
y5


 =




4
1
−1
−1
−3




whose entries respectively record the x-coordinates and the y-coordinates of the data. The general pro-
cedure will involve working with the associated unit vectors X/∥X∥ and Y/∥Y∥ obtained by dividing
each of the 5-vectors by its length. Since any effect of multiplying all entries of X or Y by a common
scaling factor, such as arise under change of units of measurement (e.g., measuring in feet or in meters),
cancels out when passing to these unit vectors, we get a concept that is insensitive to “change of units” in
the measurements and hence has more genuine significance.

Consider n data points (x1, y1), (x2, y2), . . . , (xn, yn) in R2. Assume (as will happen in examples you
are given) they don’t all lie on a common vertical line nor on a common horizontal line (i.e., the xi’s
are not all equal to each other, and the yi’s are not all equal to each other, so in particular X,Y ̸= 0).

Definition 2.4.2. In the above setup, assume furthermore (as will happen in examples you are given)
that the averages x = (1/n)

∑
xi and y = (1/n)

∑
yi of the x-coordinates and of the y-coordinates

both equal 0. The correlation coefficient r between the xi’s and yi’s is defined to be the cosine of the
angle between X and Y, or equivalently between the unit vectors X/∥X∥ and Y/∥Y∥:

r = cosine of the angle between X and Y =
X ·Y

∥X∥∥Y∥ =
X

∥X∥ · Y

∥Y∥ . (2.4.1)
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Example 2.4.3. Returning to Example 2.4.1, the respective lengths of the corresponding 5-vectors are
∥X∥ =

√
30, ∥Y∥ =

√
28. Thus, the correlation coefficient is

r =
X ·Y

∥X∥∥Y∥ =
−27√
30 · 28

≈ −0.9316.

We will come back to the meaning of this in Example 2.4.6. ■

Remark 2.4.4. You may be bothered by the assumption that the averages x and y of the coordinates of the
data both equal 0, since in practice it is rarely satisfied. What is done in real-world problems is that the
data is recentered: we replace xi with x̂i = xi − x and replacing yi with ŷi = yi − y. Such subtraction
of the averages makes “center of mass” move to (0, 0) (i.e., x̂, ŷ = 0). The correlation coefficient of the
original data is defined to be the application of Definition 2.4.2 to this recentered data. You will learn more
about such recentering in a course on statistics; we won’t dwell on it here.

Having defined the correlation coefficient as a cosine and computed it in an example, we next address
the meaning of this number.

Theorem 2.4.5. The correlation r always lies between −1 and 1. When r is close to 1 this means the
data points (xi, yi) are close to a line of positive slope, and when r is close to −1 this means that the
data points (xi, yi) are close to a line of negative slope.

A correlation coefficient close to 0 means that there does not appear to be a strong linear relation
between xi and yi.

A general explanation of Theorem 2.4.5 is best expressed in the language of vector algebra, so we
postpone it (for those who are interested) to Section 7.5. But we can get some insight into why corre-
lation coefficients measure how close the y-components of the data are to being linearly related to the
x-components by considering some special situations as follows.

Let’s imagine the case of 3 data points (x1, y1), (x2, y2), and (x3, y3) for which the y-components
depend exactly linearly on the x-components. In other words, suppose we have exact relationships

yi = mxi + b

for some constants m and b with m ̸= 0. Assume furthermore (as in the setup for Definition 2.4.2) that
the xi’s aren’t all equal to each other, the yi’s aren’t all equal to each other (so X,Y ̸= 0), and that the

averages x =
1

3
(x1 + x2 + x3) and y =

1

3
(y1 + y2 + y3) both equal 0. Since

y =
1

3
(y1 + y2 + y3) =

1

3
((mx1 + b) + (mx2 + b) + (mx3 + b)) = mx+ b

with x = 0 and y = 0, we must have b = 0. Hence, yi = mxi for all i, so Y = mX.
So in this case Y is m times X. Hence, the nonzero vectors Y and X point in the same direction if

m > 0 and point in opposite directions if m < 0. In other words the angle between X and Y is 0° if the
slope m is positive and is 180° if the slope m is negative (see Example 2.2.3). The correlation coefficient
is the cosine of the angle between these vectors by its definition, so it is cos(0°) = 1 if m > 0 and is
cos(180°) = −1 if m < 0.

If one has data (x1, y1), . . . , (xn, yn) that lie near a line of slopem ̸= 0, then the correlation coefficient
r reflects this by being very near 1 if m > 0, and very near −1 if m < 0. If, however, the data is
scattered randomly in the plane, and not really near any line, then one would expect the correlation
coefficient to be near zero.
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Often people work with r2, which is always non-negative. This is

r2 =
(X ·Y)2

∥X∥2∥Y∥2 ; (2.4.2)

it is near 0 when there is little correlation, and near 1 when there’s a strong linear relationship (without
specifying the sign of the slope: r may be near 1 or near −1).

Don’t confuse the value of r with the slope of a “best-fit line”! The nearness of r2 to 1 (or of r to
±1) is a measure of quality of fit. The actual slope of the best-fit line (which could be any real number
at all) has nothing whatsoever to do with the value of r (which is always between −1 and 1).

Example 2.4.6. In Example 2.4.3, we found that r ≈ −0.9316. This is very close to −1, so the data should
be near a line with negative slope (though not slope −1!). This property can be seen from the plot of the
5 given data points in Figure 2.4.1. ■

If you look at any work that tries to quantify the extent of the correlation between, well, practically
anything (supply and demand? attendance and grades? air temperature and the running speed of lizards?
boredom and Internet addiction?) you will find that the correlation coefficient is an essential part of the
analysis. Correlation coefficients go hand in hand with linear regression (finding a “best fit” line for data)
and help one to understand how meaningful the results of a linear regression are.

But the correlation coefficient is just a single number and so cannot be ascribed magical powers: it is a
useful way to quantify the informal idea that data lies “near” a line but one should always look at the data
plot to make sure nothing strange is happening. Moreover, in the spirit of the old adage that “correlation
does not imply causation” (e.g., monthly crime rates and monthly ice cream sales), note that the correlation
coefficient treats X and Y in a symmetric manner whereas any causal relationship is asymmetric.

Example 2.4.7. Here is an example of how correlation coefficients are used in analyzing the statistics
in a lab science experiment. We consider an example from neuroscience. In this discipline, correlation
coefficients are often used to understand the relationship between the activity level of a neuron or group
of neurons and observations by the subject of the experiment (such as a monkey, dog, or human).

FIGURE 2.4.2. Activity graphs for three neurons in response to a visual stimulus

Imagine showing a subject a moving object. Neurons in the visual cortex respond to moving stimuli
by firing action potentials, or spikes, which are changes in voltage that are used to communicate with other
neurons in the network. We can calculate a correlation coefficient between a neuron’s activity (quantified
as the number of spikes it fires per second) and the speed of the moving object. Figure 2.4.2 shows such
data for three stimulated neurons.

The first neuron is selective for fast speeds: it fires more when the stimulus is moving quickly, so
its activity is positively correlated with the speed. The second neuron is selective for slow speeds, so its
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activity is negatively correlated with the speed. The response of the final neuron is uncorrelated with the
speed, which might mean that this neuron has a role in the brain that is unrelated to observing motion. ■

Example 2.4.8. For each of the following collections of 5 data points, all of which are plotted in Figure
2.4.3 below, verify the correlation coefficient and inspect the plot to see if it lies near a line.

-2 -1 0 1 2 3
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r ≈ −.513

FIGURE 2.4.3. Plots for Example 2.4.8

• (−2,−4), (−1,−2), (0, 0), (1, 2), (2, 4) with r = 1.
• (−2,−5), (−1, 3), (0, 1), (1,−3), (2, 4) with r =

√
6/5 ≈ 0.490.

• (−2, 6), (−1, 2), (0,−1), (1,−2), (2,−5) with r = −13/(5
√
7) ≈ −0.983.

• (−2, 4), (−1,−2), (0,−1), (1, 3), (2,−4) with r = −11/(2
√
115) ≈ −0.513.

(In each case, we have arranged that the averages x and y equal 0.) ■

Remark 2.4.9 (optional). Let’s see why the correlation coefficient equals 1 precisely when the points
(xi, yi) all lie exactly on a line y = mx whose slope m is positive. (We assume as always that the data
doesn’t all lie on a common vertical line or a common horizontal line, and that the averages x and y
equal 0.) By then replacing yi with −yi everywhere, it would follow that the correlation coefficient
equals −1 precisely when the points (xi, yi) all lie exactly on a line y = mxwhose slopem is negative.

Note that X,Y ̸= 0 since we assumed the data points aren’t on a common horizontal line and
aren’t on a common vertical line. We want to show that the correlation coefficient is 1 precisely when
the Y = mX for some m > 0.

But the correlation coefficient is the cosine of the angle between the nonzero vectors X and Y, so
the correlation coefficient is equal to 1 precisely when the angle between X and Y is 0°. In Example
2.2.3 we discussed why the angle θ between the (nonzero) vectors X and Y is 0° precisely when
Y = mX for some m > 0.

2.5. Dot product formula for angles in R3. In this section, we derive the formula (2.1.3) for
the angle between two nonzero vectors in R3, and we use the Cauchy–Schwarz Inequality (Theorem
2.3.2) to establish the “triangle inequality” from Remark 1.6.12. First, let’s establish (2.1.3).
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FIGURE 2.5.1. Geometric setup for dot product formula for angle between two vectors

Consider a triangle in R3 as in Figure 2.5.1, with side lengths A = ∥a∥, B = ∥b∥ and C =
∥a− b∥. We want to compute the angle θ between the sides along a and b. The Law of Cosines says
that C2 = A2 +B2 − 2AB cos(θ). Solving for cos(θ), this says

cos(θ) =
A2 +B2 − C2

2AB
. (2.5.1)

We have A2 = ∥a∥2 = a21 + a22 + a23 and B2 = ∥b∥2 = b21 + b22 + b23 by the 3-dimensional version of
the Pythagorean Theorem (see Example 1.6.5), and likewise

C2 = ∥a− b∥2 = (a1 − b1)
2 + (a2 − b2)

2 + (a3 − b3)
2.

Expanding out each square and simplifying, there is a lot of cancellation and one gets

A2 +B2 − C2 = 2(a1b1 + a2b2 + a3b3) = 2(a · b).
Note the appearance of the dot product! Plugging this back into (2.5.1) and cancelling the common
factor of 2 in the numerator and denominator thereby establishes (2.1.3).

To give an interesting application of the properties of dot products, let’s next revisit the Cauchy–
Schwarz Inequality

−1 ≤ x · y
∥x∥∥y∥ ≤ 1

from Theorem 2.3.2 and show that this provides exactly what is needed to answer the mystery raised
in Remark 1.6.12 concerning whether or not a “triangle inequality” (1.6.1) holds in Rn for any n. In
Remark 1.6.12 we saw that (1.6.1) amounts to determining if

∥v +w∥
?

≤ ∥v∥+ ∥w∥ (2.5.2)

for all n-vectors v,w (for all n ≥ 1).
For n ≤ 3, (2.5.2) can be visualized by drawing suitable triangles, and our aim here is to establish

it for all n by a uniform argument by using the Cauchy–Schwarz Inequality. This illustrates the power
of our “geometric intuition” as a guide for what to expect to be true when thinking about length and
distance in Rn regardless of how big n may be.

Theorem 2.5.1 (Triangle Inequality). For any n-vectors v,w, the inequality (2.5.2) holds.

PROOF. For any a, b ≥ 0, the inequality a ≤ b holds precisely when a2 ≤ b2 (this is not true if
we don’t require non-negativity: −3 ≤ 2 but (−3)2 = 9 > 4 = 22). Thus, to determine if (2.5.2)
always holds it suffices to check after squaring both sides. But the squared length of a vector is its
dot product against itself, so squaring both sides turns our task into determining whether or not the
inequality (v +w) · (v +w) ≤ ∥v∥2 + 2∥v∥∥w∥+ ∥w∥2 holds for all n-vectors v,w.
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By the general algebraic rules for dot products, the left side is equal to

v · v + v ·w +w · v +w ·w = ∥v∥2 + 2(v ·w) + ∥w∥2,
so our task is the same as showing ∥v∥2 + 2(v ·w) + ∥w∥2 ≤ ∥v∥2 + 2∥v∥∥w∥+ ∥w∥2. Cancelling
the common occurrence of ∥v∥2 and ∥w∥2 on both sides turns this into checking the inequality

2(v ·w) ≤ 2∥v∥∥w∥,
or equivalently

v ·w ≤ ∥v∥∥w∥
for all n-vectors v and w. But this is part of the Cauchy–Schwarz Inequality, so we are done! □

Remark 2.5.2. A neat application of (2.1.3) is to combine it with dot product algebra in Theorem
2.2.1 to establish the Law of Sines, as we now explain. The Law of Sines says that for any triangle in
R3 (or R2), if P is a vertex at which the interior angle is θ and the length of opposite side is L then
the ratio (sin θ)/L is the same regardless of which P we chose. These ratios are all positive (since
sin θ > 0 for 0° < θ < 180°), so to show that such ratios are the same for all three choices of vertex P
it is equivalent to show that the squares of these ratios are the same.

Our proof will be illuminating in a different way from most proofs since it explains the equality
of the ratios “(sin θ)/L” for all three vertices via a formula involving all three sides treated on equal
footing (another such proof is due to Ptolemy of Alexandria [KS, Figure 1, Prop. 1(i), Cor. 2(i)]):

(
sin θ

L

)2

=
(x · y)(x · z) + (y · x)(y · z) + (z · x)(z · y)

(x · x)(y · y)(z · z) (2.5.3)

for vectors x,y, z along the three sides directed so x+y+ z = 0 (i.e., the directions point “one way”
around the triangle; which way doesn’t matter, since negating all three has no effect on the formula),
as illustrated in Figure 2.5.2 below. The denominator on the right side of (2.5.3) is unaffected by
rearranging the sides; the numerator is also unaffected since it is a sum of three terms, each of which
is the product of the dot products of one vector against the other two. We are going to prove (2.5.3).

0
•

•

•z

x y
x+ y + z = 0

0
•

•

•z

x y
x+ y + z = 0

FIGURE 2.5.2. Sides of a triangle directed as vectors whose sum is 0

PROOF. Move the triangle so that one of the vertices is at 0; it looks as in Figure 2.5.1. Let θ
be the interior angle at the vertex 0, so cos θ = (a · b)/(∥a∥∥b∥) by (2.1.3) and L = ∥a − b∥ by
definition (implicitly using the parallelogram law to interpret a− b geometrically). Hence,

(
sin θ

L

)2

=
(sin θ)2

L2
=

1− (cos θ)2

∥a− b∥2 =
1− ((a · b)/(∥a∥∥b∥))2

∥a− b∥2 =
∥a∥2∥b∥2 − (a · b)2
(∥a− b∥∥a∥∥b∥)2 .

We have arrived at an expression f(a,b, a− b) in terms of the three sides of the triangle a, b, a− b.
The way each side appears in the expression as a vector is insensitive to negating it (which is good:
the choice of “direction” along each side should not matter).
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If we had focused on the squared ratio associated to either of the other two vertices then we would
obtain a modified version of the same expression in which the roles of the three sides would be shuffled
around (up to a choice of direction along each, which we have noted doesn’t matter in the end): we’d
get f(b, a−b, a) and f(a, a−b,b) (again keep in mind that f is insensitive to negating any of those
three side directions). Our goal is to show that all three of these expressions are equal to each other.

Since f(a,b, a − b) = f(−a,b, a − b) and the three vectors −a,b, a − b sum to 0, our task
reduces to a more “symmetric” goal: if x,y, z are 3-vectors that sum to 0, then we claim that the ratio

f(x,y, z) =
∥x∥2∥y∥2 − (x · y)2

(∥z∥∥x∥∥y∥)2 =
(x · x)(y · y)− (x · y)2

(∥z∥∥x∥∥y∥)2
is unaffected by rearranging the three vectors (i.e., f(x,y, z) = f(y, z,x) = f(x, z,y) = · · · ). In
fact, this statement is meaningful with n-vectors for any n (there is nothing special about 3-vectors)
and we claim it holds in that generality. The denominator is visibly unaffected by such rearrangement,
and for the numerator we use an identity: under the hypothesis x + y + z = 0 that treats all three
of the vectors on equal footing, we claim an equality with an expression that is visibly unaffected by
rearrangement:

(x · x)(y · y)− (x · y)2 = (x · y)(x · z) + (y · x)(y · z) + (z · x)(z · y). (2.5.4)

Why is the identity (2.5.4) true? If you plug z = −x− y into the right side and carefully expand
out the dot products in accordance with Theorem 2.2.1, you’ll get a big expression involving products
of dot products among x and y. Upon close inspection there is a huge amount of cancellation, leaving
the desired left side of (2.5.4) after the dust settles. Voilà. □
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Chapter 2 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
x · y dot product of n-vectors x and y Def. 2.1.6(i)

v for n-vector
[ v1

...
vn

]
, it is the average (1/n)

∑n
j=1 vj of all entries Def. 2.4.2

r correlation coefficient for n data points not on a common vertical or hori-
zontal line (and with each coordinate averaging to 0)

(2.4.1)

Concept Meaning Location in text

dot product x · y operation on n-vectors x =

[ x1
...
xn

]
and y =

[ y1
...
yn

]
,

yielding x1y1 + · · ·+ xnyn

Definition 2.1.6(i)

angle θ for nonzero n-vectors x and y, defined by cos(θ) =
(x · y)/(∥x∥∥y∥) with 0° ≤ θ ≤ 180°

Definition 2.1.6(ii)

orthogonal (or perpendic-
ular)

a pair of n-vectors whose dot product equals 0 Definition 2.1.6(iii)

correlation coefficient r for nonzero X =

[ x1
...
xn

]
and Y =

[ y1
...
yn

]
arising from

n data points (xi, yi) with x = 0 and y = 0, it is
cosine of angle between X and Y

(2.4.1)

Result Meaning Location in text
cosine formula for nonzero 2-vectors or 3-vectors a and b, angle θ

between them satisfies cos(θ) = (a · b)/(∥a∥∥b∥)
Theorems 2.1.1, 2.1.3

length via dot product ∥v∥ =
√
v · v for an n-vector v Theorem 2.2.1(ii)

properties of dot products dot products satisfy analogues of properties of multi-
plication of ordinary numbers, including interaction
with vector addition and scalar multiplication

Theorem 2.2.1(i),(iii),(iii′)

−1 ≤ r ≤ 1 for data points in R2, correlation coefficient r lies
between −1 and 1

Theorem 2.4.5

interpretation of r ≈ ±1
and r ≈ 0

data points in R2 are well-approximated by some line
if r ≈ ±1 (don’t confuse r with slope!), poorly ap-
proximated by all lines if r ≈ 0

discussion near (2.4.2)

Skill Location in text
compute dot products of n-vectors (any n) Example 2.1.7

express angle between nonzero n-vectors in terms of dot products, relate this to
an angle between lines when n = 2, 3

Examples 2.1.5, 2.1.13

verify orthogonality for two n-vectors (any n) Example 2.1.2
compute correlation coefficient for n given data points in R2 using formula with
dot products and lengths of associated n-vectors

Examples 2.4.3, 2.4.8

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 42



2.6. Exercises. (links to exercises in previous and next chapters)

Exercise 2.1. Let a =



1
2
3


, b =



1
1
1


 , and c =



3
2
1


 . For each of the following, calculate the number or

indicate that it is not defined.

(a) a · (b+ c)
(b) (a− b) · c
(c) ∥a+ c∥
(d) (a · b) + c
(e) ∥−a∥

Exercise 2.2. Let a,b, c be unit n-vectors. Assume a ·b = 0, a ·c =
1

2
, b ·c =

1

5
. Using that ∥v∥2 = v ·v

for n-vectors v, calculate:

(a) ∥a+ b∥2
(b) ∥b− c∥2
(c) ∥a+ b+ c∥2.

Exercise 2.3.

(a) Find all nonzero vectors perpendicular to
[
3
4

]
in R2, and describe geometrically what the collec-

tion of all vectors perpendicular to
[
3
4

]
looks like.

(b) Find all unit vectors perpendicular to
[
3
4

]
in R2.

Exercise 2.4.

(a) Find two nonzero vectors perpendicular to



1
2
2


 in R3 that are not scalar multiples of each other,

and describe geometrically what the collection of all vectors perpendicular to



1
2
2


 looks like.

(b) Find a unit vector perpendicular to



1
2
2


 in R3, and describe geometrically what the collection of

all such vectors looks like.

Exercise 2.5.

(a) Draw a picture of all 2-vectors
[
x
y

]
making an angle of 45◦ with the vector

[
1
−1

]
, and identify

which of these are unit vectors in your picture.
(b) Find the unit vectors in (a) by instead working algebraically with dot products (this illustrates

how algebraic work really does give the same conclusions as geometric work, which is important
for adapting ideas to Rn with n > 3 later on).

Exercise 2.6.

(a) Give two orthogonal 1000-vectors v,w with no entries equal to 0.
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(b) Give two orthogonal 999-vectors v,w with no entries equal to 0.

Exercise 2.7.

(a) Check that v =



3
4
5


 makes an angle of 45◦ with every vector u =



0
0
t


 with t > 0 (these are

vectors along the positive z-axis in R3).

(b) Compute in terms of x the cosine of the angle between the vector w =




1
−4
1


 and the vector

z =



x
1
−1


. Differentiate this expression to determine for what x the angle is largest (you may

try to convince yourself with pictures that the angle decreases as x → ∞, but we are not asking
you to show that), and use this to confirm that the largest angle is 150◦ (i.e., 60◦ beyond a right
angle). There is no need to use a calculator for any of this.

Exercise 2.8. By using the formula v ·w = (cos θ)∥v∥∥w∥ for nonzero 3-vectors v and w at an angle θ,
do the following:

(a) Give nonzero 3-vectors v,w for which |v ·w| < ∥v∥∥w∥.
(b) Give nonzero 3-vectors v,w for which |v ·w| = ∥v∥∥w∥.
(c) Explain why there are no nonzero 3-vectors v,w satisfying |v ·w| > ∥v∥∥w∥.

Exercise 2.9. Using the formula

∥v +w∥2 = (v +w) · (v +w) = ∥v∥2 + 2v ·w + ∥w∥2,
give nonzero v,w ∈ R3 satisfying each of the following possibilities:

(a) ∥v +w∥2 = ∥v∥2 + ∥w∥2
(b) ∥v +w∥2 > ∥v∥2 + ∥w∥2
(c) ∥v +w∥2 < ∥v∥2 + ∥w∥2

Exercise 2.10. Let v and w be two nonzero n-vectors.

(a) Show that if v +w and v −w are perpendicular then v and w have the same length.
(b) Show the opposite implication: if v and w have the same length then v + w and v − w are

perpendicular.

Exercise 2.11. Let v and w be nonzero 2-vectors with the same length.

(a) Use dot products (as defined in Definition 2.1.6) to show that v +w bisects the angle between v
and w. (In terms of the parallelogram law, this bisection property says that the angles between
v+w and each of v and w are the same, a formulation you may find easier to work with; it also
gives a new explanation of the fact from Euclidean geometry that a diagonal of a rhombus bisects
the angles of the rhombus at its endpoints.)

(b) For v =

[
3
4

]
and w =

[
5
0

]
, find a nonzero u ∈ R2 that bisects the angle between v and w.

(c) For v′ =

[
4
3

]
and w′ =

[
1
0

]
(not the same length!), find a nonzero u′ ∈ R2 that bisects the angle

between v′ and w′. (Hint: is the angle affected by replacing w′ with a positive scalar multiple?)
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Exercise 2.12. This exercise illustrates the relationship between algebraic and geometric ways to describe

a plane in R3, as we’ll explore in detail in Chapter 3. Consider the 3-vector n =



1
2
3


.

(a) Find a nonzero vector perpendicular to n.
(b) Find scalars a, b, c so that the 3-vectors perpendicular to n are precisely those satisfying ax +

by + cz = 0.
(c) Find a nonzero 3-vector perpendicular to the plane defined by 3x+ 4y + 5z = 0.

Exercise 2.13. Let P =

[
x
y

]
and v =

[
v1
v2

]
be nonzero 2-vectors. Let ℓ be the line through the origin

consisting of scalar multiples of v. The shortest distance from P to ℓ is given by the length of a line
segment L′ containing P and perpendicular to ℓ. Let v′ be the vector connecting the origin to the point
where ℓ meets L′ (so v′ is a scalar multiple of v). Pictures of this data are given in Figure 2.6.1 for the
cases when the angle between v and P is acute and when it is obtuse.

v

P

v′

`

L′

•0

v

P

v′

`

L′

•0

FIGURE 2.6.1. A sketch of the situations depending if the angle between v and P is acute
or obtuse.

Our aim is to find a formula for v′ as a scalar multiple of v, where the scalar is given by an algebraic
procedure based on dot products that works the same way in all cases; this illustrates how algebra with dot
products bypasses case-checking that arises (e.g., acute or obtuse angle?) when working just with pictures.
In Chapter 6 this will be a special case of a method applicable to n-vectors for any n (though the present
exercise with n = 2 gives the geometric inspiration for the method in general).

(a) Let w be a 2-vector parallel to L′ with the same length as L′ (i.e., same as the distance from P to
ℓ); there are two of these, depending on the choice of direction. Using the picture in Figure 2.6.1,
explain why P ±w = v′ (sign depends on the direction of w).

(b) Using (a) and the orthogonality of v and ±w, show that the scalar λ for which v′ = λv is
λ = (v · P )/∥v∥2.

Exercise 2.14. Consider the four data points (1, 1), (−1,−1), (k,−k), (−k, k) for a nonzero scalar k.

(a) Compute the correlation coefficient r when k = 1, and draw the four data points in this case
(these make a nice “symmetric” picture).
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(b) Compute the correlation coefficient r(k) of this data with general k, and explain first algebraically
and then geometrically why always −1 < r(k) < 1 (i.e., rule out the cases r(k) = ±1 by both
algebraic and geometric reasons).

Exercise 2.15. Below are four different sets of data with 5 data points. Compute the corresponding 5-
vectors X,Y and the correlation coefficient r. We have plotted the points in each case below; compare
the correlation coefficient with the plot, and describe in your own words what the correlation coefficient is
saying about the data in each case.

(a) (−2,−4), (−1,−2), (0, 0), (1, 2), (2, 4), plot:

x

y

0 1 2 3−1−2
−6

−4

−2

0

2

4

6

•
•

•
•

•

(b) (−2,−5), (−1, 3), (0, 1), (1,−3), (2, 4), plot:

x

y

0 1 2 3−1−2
−6

−4

−2

0

2

4

6

•

•
•

•

•
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(c) (−2, 6), (−1, 2), (0,−1), (1,−2), (2,−5), plot:

x

y

0 1 2 3−1−2
−6

−4

−2

0

2

4

6 •

•

•
•

•

(d) (−2, 4), (−1,−2), (0,−1), (1, 3), (2,−4), plot:

x

y

0 1 2 3−1−2
−6

−4

−2

0

2

4

6

•

•
•

•

•

Exercise 2.16. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):

(a) Suppose u,v, and w are non-zero vectors in R3. If u · v = 0 and v ·w = 0, then u ·w = 0.
(b) Suppose the correlation coefficient of the data set (x1, y1), . . . , (xn, yn) is r. The correlation

coefficient of the duplicated data set (x1, y1), , . . . , (xn, yn), (x1, y1), . . . , (xn, yn) is 2r. (This is
a common early-round interview question for data science and quant jobs: “What happens to
correlation coefficient when you duplicate data?”)
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3. Planes in R3

As a geometric application of vector algebra, we now use the viewpoint of vectors and dot products to
study geometric questions about planes in familiar 3-dimensional space.

By the end of this chapter, you should be able to:

• transition between different descriptions of a plane in R3 using vector algebra (e.g., given
three points on a plane not on a common line, you should be able to produce: an equation for
the plane, a normal vector to the plane, and a parametrization of the plane);

• use the equational form to determine if points lie on the same or different sides of a plane;
• interpret the parametric form in terms of displacement vectors from a point on the plane.

3.1. Line of sight in computer graphics. Suppose we are making a video game and need to figure
out if the roof of a house blocks the view of a tree in the backyard from someone standing at the bottom of
the driveway. How can we analyze this? A version of this type of problem arises all the time in computer
graphics: a computer rendering a scene must know when one object blocks another from view.

Imagine the relevant part of the roof is flat (so it lies in a single plane, perhaps tilted at some angle
relative to the ground). A simplified mathematical model of this question (ignoring more refined geometric
information concerning actual distances along the roof) is then this:

Question: Given points P and Q and a plane in R3, do P and Q lie on the same side of
the plane (in which case the plane doesn’t obstruct P ’s view of Q) or on opposite sides?

(See Figure 3.1.6 for an illustration of several points on either side of a plane, or imagine it in your head.)
An answer to this Question would determine if the viewer’s line of sight and points of the tree are on

the same side of the plane containing the relevant flat part of the roof. If everything is on the same side
of that plane, there is no obstruction. (Imagine the roof is very large, so edge effects can be ignored.) To
answer the Question, we now show how to describe a plane in R3 using an equation generalizing the one
we know describes a line in R2.

Let’s first review the equation to describe a line in R2. The collection of points (x, y) in R2 satisfying
5x− 7y = 3 is a line in R2 since the equation can be rewritten as y = (5/7)x− 3/7, which we recognize
as the line with slope 5/7 passing through (0,−3/7) on the y-axis. More generally, the solutions (x, y)
to an equation of the form ax + by = c, with at least one of the constants a or b nonzero, is a line in R2.
Indeed, if b ̸= 0 then we can divide both sides by b to rewrite it as y = −(a/b)x+c/b (which we recognize
as a “slope-intercept form”) and if b = 0 (so a ̸= 0) then we can divide by a to rewrite it as x = c/a (a
vertical line: infinite slope). A merit of writing the equation of a line in R2 in the form ax+ by = c is that
this treats x and y on equal footing.

The generalization to planes in R3 looks almost the same!

The collection of points (x, y, z) in R3 satisfying 3x − 4y + 2z = 10 is a plane, and more generally
the collection of points (x, y, z) in R3 satisfying an equation of the form

ax+ by + cz = d,

with at least one of the constants a, b, or c nonzero, is a plane in R3. In particular, although the
equation x = 0 on R2 defines a line (the y-axis, consisting of points (0, y)), the “same” equation
x = 0 on R3 defines a plane, namely the vertical yz-plane consisting of points (0, y, z).

One good way to visualize why an equation of this type really does describe a plane is given in Section
3.4. There are actually multiple completely equivalent ways to describe a plane. We first give 2 ways to
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describe the same plane in R3 (it may not be apparent to you yet that the methods do both describe the
same plane – we discuss this further in Section 3.2). Then we’ll give 2 additional methods.

(a) (equational form) The set of all points (x, y, z) in R3 which are solutions to x+2y+3z = 4; see
Figure 3.1.1. This is a special case of the preceding discussion.

z

y
x

FIGURE 3.1.1. (a) A plane given by the equation x+ 2y + 3z = 4

t′ = 0

t′ = −1

t′ = 1

t′ = 2

t′ = 3

t′ = 4

t = 0
t = 1

t = 2
t = 3

t = 4

t = −1
t = −2
t = −3

•

•

P

Q

P + e

P + e′

FIGURE 3.1.2. (b) A plane described by “parameters” t, t′ via points P + te+ t′e′.

(b) (parametric form) The set of all vectors of the form




1 + 2t
−t+ 3t′

1− 2t′


 =



1
0
1


+ t




2
−1
0


+ t′




0
3
−2


 =

P+te+t′e′, where t, t′ take all possible scalar values. This is called a parametric form. The word
“parametric” means that we have a formula which produces precisely the points on the plane and
no others: substituting different values of t and t′ – called “parameters” – gives different points
on the plane, and every point in the plane is obtained from some value for t and t′. (Contrast this
with (a), where we need to find a solution of this equation before we can obtain a point on the
plane.) This yields a grid as in Figure 3.1.2 with lines corresponding to fixing the value of t or t′
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(and e and e′ are displacement vectors), for a reason we’ll soon explain. The analogue for a line
using one parameter t arose in Example 1.3.9 and will be discussed in general in Section 3.3.

Once we accept that both preceding methods describe the same plane, here are two more ways
to characterize a plane that turn out in each case to yield the same plane as above.

(c) (point and normal vector form) The plane determined by the properties that it passes through the

point P =



1
0
1


 and is perpendicular to the direction n =



1
2
3


 (this vector n is called a “normal

vector” to the plane); see Figure 3.1.3.

•
P

n

FIGURE 3.1.3. (c) The same plane, described using a point P and a “normal” (perpendic-
ular) vector n

(d) (three points on a plane) The plane determined by the fact that it passes through the three points

4
0
0


,



0
2
0


, and



1
0
1


. It is important that these three points do not all lie on the same common

line in space; see Figure 3.1.4. (Later on we would like a systematic method – something that can
be given as instructions to a computer – to show that these 3 points do not lie on a common line
in space. We will address this in Section 3.2.)

•
• •
(1, 0, 1)

(4, 0, 0)

(0, 2, 0)

FIGURE 3.1.4. (d) The same plane, described as passing through 3 non-collinear points
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These four descriptions are useful for different things:

• If we want to figure out the plane of the roof, we might measure the height at three corners of the
house, and use description (d).

• To answer our Question at the start of this section – do points P and Q lie on the same side of the
plane or not? – we can use description (a) (see Example 3.1.2).

• We will see in Section 3.2 that (c) amounts to a useful geometric interpretation of (a).
• The (x, y)-coordinates that describe points in coordinate plane geometry using the x and y coor-

dinate axes amount to imposing a square grid and marking off distances from a pair of perpen-
dicular reference lines (the x-axis and the y-axis). The parametric form in (b) corresponds to a
way of imposing a (not necessarily square) grid on a plane which can be used in the same way to
describe the locations of all points in the plane relative to the axes of this grid. The “parameters”
t and t′ play a role similar to that of x and y in coordinate plane geometry; e.g., in Figure 3.1.2
the point Q in the plane corresponds to t = 3 and t′ = 2 due to the two grid lines that cross at Q,
and in vector language this says Q = P + 3e+ 2e′.

Be careful however, since the analogy with (x, y)-coordinates in plane geometry is not quite
perfect. As Figure 3.1.2 shows, the “t-axis” (t′ = 0) emanating from P in the direction of the
displacement e and the “t′-axis” (t = 0) emanating from P in the direction of the displacement e′

might not be perpendicular to each other! The usefulness of this non-perpendicularity is related
to visual experience in that if you look at a part of a plane from a very steep angle (rather than
‘head-on’) then your sense of geometry in that part of the plane may be distorted.

t′ = 0

t′ = −1

t′ = 1

t′ = 2

t′ = 3

t′ = 4

t = 0
t = 1

t = 2
t = 3

t = 4

t = −1
t = −2
t = −3

•
P

P + e

P + e′

FIGURE 3.1.5. Varying the parameters t, t′ continuously traces out a squiggle inside the plane

An advantage of the parametric form is that as we independently vary values of the parameters
t and t′, the vectors we get in the parametric form are guaranteed to lie exactly on the plane. For
instance, if we want to trace out some path in the plane, then by varying the values of t and t′

continuously we trace out a continuous curve exactly in the plane (see Figure 3.1.5).

Remark 3.1.1. The parametric description for planes and its analogues for more complicated surfaces
(such as a sphere, a cylinder, etc.) is quite useful in computer graphics to generate the image of a path of
motion lying exactly on a specific surface. For such applications a parametric form is far more useful than
an equational form; as we have said before, with the parametric form we do not have to solve for anything.
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Example 3.1.2. Coming back to the type of question at the start of this section with the roof of the house,
how do we decide whether or not the points (1, 1, 2) and (−2, 1, 3) lie on the same side of a plane for
which we have obtained an equation, such as x+ 2y + 3z = 4?

x

−3 −2 −1 0 1 2 3 y−3 −2 −1 0 1 2 3

z

−3

−2

−1

0

1

2

3
(1, 1, 2)

(−2, 1, 3)

(3, 1,−2)

x + 2y + 3z = 4

FIGURE 3.1.6. Points on either side of the same plane as in Figure 3.1.1, seen after apply-
ing an 80-degree horizontal rotation to the right and “zooming in” a bit.

One way to decide is: draw the solutions to the equation on a computer, as in Figure 3.1.6, and take a
look! But the method of “taking a look” is not satisfactory because:

(i) in examples with much bigger numbers or many points at once, it could be impractical to have to
create a picture and look at it;

(ii) we want a systematic method, without having to draw a picture in 3 dimensions (e.g., a computer
program can’t be told to “take a look”).

iii) there are analogues of these questions involving “(hyper)planes” in Rn with huge n > 3, and
their answers have applications in data science (e.g., the machine learning technique called “sup-
port vector machines”; see Example 19.4.4) and in economics (e.g., the separating hyperplane
theorem, used to study profit functions in producer theory and to prove the second fundamental
theorem in welfare economics). Developing intuition about the link between algebra of equa-
tions for planes and the geometry of how planes sit in R3 is very helpful for later work in Rn

with n > 3.

Here is a better way. A plane divides R3 into two regions: the portion on one side of the plane and
the portion on the other side. For the plane x + 2y + 3z = 4 as in Figure 3.1.6, one side is given by the
inequality x+2y+3z > 4 (which is very closely related to the equation for the plane itself) and the other
side of the plane is given by the opposite inequality x+ 2y + 3z < 4. To see why this is reasonable, think
about the analogue when we replace the equation x+2y+3z = 4 for Figure 3.1.6 with the much simpler
equation z = 0 that describes the horizontal xy-plane in space. The region above this horizontal plane is
where z > 0 and the region below it is where z < 0, as shown in Figure 3.1.7.
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x y

z

−3

−2

−1

0

1

2

3z > 0

z < 0

z = 0

FIGURE 3.1.7. The regions z > 0 and z < 0 as opposite sides of the plane z = 0

Returning one last time to our original question, we can plug the two points (1, 1, 2) and (−2, 1, 3)
into the expression x + 2y + 3z. Both satisfy the same direction of inequality: “x + 2y + 3z > 4”, so
these points lie on the same side of the plane. By contrast, the point (3, 1,−2) satisfies x + 2y + 3z < 4,
so it lies in the opposite side of the plane from those other two points (1, 1, 2) and (−2, 1, 3). These purely
algebraic calculations match exactly what we see visually in Figure 3.1.6! ■

We next explain how to use vectors to transfer between the various preceding ways of describing a
plane, by working through some examples in detail.

3.2. Worked examples. Suppose P is the plane in R3 going through the different points

(0, 1, 1), (0, 2, 3), (1, 3, 2)

that aren’t all on a common line in R3 (as we will explain how to verify in a systematic manner in a
moment). We seek: (i) a parametric form for P , (ii) a normal vector to P , and (iii) an equation for P .

To get started, let’s name each of the points, using vector notation:

P =



0
1
1


 , Q =



0
2
3


 , R =



1
3
2


 . (3.2.1)

Thus, the displacement vectors from P to Q, and from P to R (i.e., difference vectors), are:

−→
PQ = Q− P =



0
1
2


 , −→

PR = R− P =



1
2
1


 . (3.2.2)

Remark 3.2.1. We claim that the only way three different points can be on a common line in space is when
the difference vectors from one of them to the other two lie along the same or opposite directions. This
corresponds to those two difference vectors being scalar multiples of each other (a positive scalar when
pointing in the same direction, and a negative scalar when pointing in opposite directions). To explain this
visually, in Figure 3.2.1 we have drawn two possible pictures of three collinear points P ′, Q′, R′. In the
first picture

−−→
P ′Q′ and

−−→
P ′R′ are positive multiples of each other, while in the second picture

−−→
P ′Q′ and

−−→
P ′R′

are negative multiples of each other.
Clearly the difference vectors in (3.2.2) aren’t scalar multiples of each other. Thus, by Remark 3.2.1,

indeed P,Q,R in (3.2.1) are not on a common line. This conclusion can also be verified by making
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a careful 3-dimensional picture, but the purpose of the algebraic method of difference vectors as just
implemented is that it is more systematic and much easier to carry out in practice (and it is the method that
has to be used by a computer too).

P ′

Q′

R′

•

•

•

P ′

Q′

R′

•

•

•

FIGURE 3.2.1. Two configurations of three collinear points P ′, Q′, and R′

(i) (parametric form) By thinking visually, we can get to every point on the plane P by:
– starting at the point P ,
– walking, for some specific distance, in the direction of

−→
PQ,

– then walking, for some specific distance, in the direction of
−→
PR.

In mathematical symbols, this says that the plane consists of all vectors of the form

P + t
−→
PQ+ t′

−→
PR (3.2.3)

for scalars t, t′ (with each vector in the plane obtained for a uniquely determined pair of values
(t, t′)). Plugging in (3.2.1) and (3.2.2), P consists of all points of the form



0
1
1


+ t



0
1
2


+ t′



1
2
1


 =



0
1
1


+



0
t
2t


+



t′

2t′

t′


 =




t′

t+ 2t′ + 1
2t+ t′ + 1


 . (3.2.4)

This is a parametric form of the plane P: if we plug in various values for t, t′ (the “parame-
ters”) then we get various points on the plane, and we obtain all points of the plane in this way.
Visually, this parametric form corresponding to laying out a “grid” on the plane P as in Figure
3.2.2 with “origin” at P , t-axis pointing along e =

−→
PQ, and t′-axis pointing along e′ =

−→
PR.

x
−4 −2 0 2 4

y−4
−2

0
2

4

z

−4

−2

0

2

4

e′

e

FIGURE 3.2.2. A grid arising from a parametric form, with displacements in directions e and e′
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(ii) (normal vector) Next, let us find a normal vector: a nonzero vector n =



a
b
c


 that is perpendic-

ular to all directions along the plane (i.e., differences between points in the plane). Since vectors
are perpendicular exactly when their dot product is zero, we want n · −→PQ = 0 and n · −→PR = 0;
equivalently, n · e = 0,n · e′ = 0. (We do not solve this via the “cross product” in R3 because a
fundamental principle of this book is that we only use techniques that will adapt to Rn for every
n; see Remark 1.5.1.) Via the numbers in (3.2.2), our task says

n ·



0
1
2


 = 0, n ·



1
2
1


 = 0, (3.2.5)

which explicitly means
b+ 2c = 0, a+ 2b+ c = 0. (3.2.6)

We will study how to solve such systems of equations systematically in any number of vari-
ables later on (in Chapter 21). But this situation is “small” enough in complexity (2 equations
with 3 unknowns) that we can do it by hand as follows. From the first equation in (3.2.6), we
solve for b in terms of c to get b = −2c. Putting this into the second equation in (3.2.6), we get

a− 4c+ c = 0.

Therefore, a = 3c and b = −2c. It follows that vectors of the form n =




3c
−2c
c


 are precisely

those perpendicular to our plane (and n ̸= 0 when c ̸= 0). Since any nonzero value of c will do,

we may as well take c = 1. So




3
−2
1


 is a normal vector to the plane (as is any nonzero scalar

multiple of it); see Figure 3.2.3.

x
−3 −2 −1 0 1 2 3

y−3
−2
−1

0
1 2 3

z

−3

−2

−1

0

1

2

3

n =




3
−2
1




P = (0, 1, 1)

(x, y, z)

FIGURE 3.2.3. A normal vector to the plane
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Instead of solving for b and a in terms of c as we did above (by plugging one equation into the
other), we could have proceeded differently, such as solving in terms of a. For instead, the second
equation gives c = −2b−a in terms of a and b, and plugging this into c in the first equation gives

0 = b+ 2c = b+ 2(−2b− a) = b− 4b− 2a = −3b− 2a,

so b = −(2/3)a. Hence, c = −2b− a = −2(−(2/3)a)− a = (4/3)a− a = a/3, so we arrive at
a description of normal vectors as

n′ =




a
−(2/3)a
a/3


 = a




1
−2/3
1/3


 .

This is essentially the same as the description of possible n’s above except that we have multiplied


3
−2
1


 by 1/3.

(iii) (equational form) Finally, we want to find an equation for the plane. We can do this with the

normal vector: if



x
y
z


 is any point on the plane, then the vector from P =



0
1
1


 to



x
y
z


 (i.e., the

difference between these two vectors) must be perpendicular to n, simply because n is a normal
vector to the plane. That means



x− 0
y − 1
z − 1


 ·




3
−2
1


 = 0,

or equivalently
3x− 2(y − 1) + z − 1 = 0.

Hence, cleaning up the algebra a bit, an equation for the plane is

3x− 2y + z = −1.

To summarize:

(i) a parametric form of the plane is given by the vectors




t′

t+ 2t′ + 1
2t+ t′ + 1


 for varying scalars t, t′,

(ii) a normal vector to the plane is




3
−2
1


 (with the plane passing through the point P =



0
1
1


),

(iii) an equation of the plane is 3x− 2y + z = −1.

Keep in mind that we used the normal vector to find the equation, and we used dot products (against
difference vectors) to detect perpendicularity. These two principles are applicable for passing among
different descriptions of any plane in R3.

Example 3.2.2. Now let’s hone our new skills for passing between algebra and geometry by working out
another example, this time using only our brains and no pictures. Let’s describe the equation of a plane in

R3 that goes through the origin and is perpendicular to



2
1
8


. (If you feel that it is too special to consider a
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plane that goes through the origin, another example of this flavor not passing through the origin is worked
out in Example 3.2.5.)

If (x, y, z) is an arbitrary point on the plane, then the line segment connecting the origin to (x, y, z)

must be perpendicular to



2
1
8


. This says exactly that





x
y
z


−



0
0
0




 ·



2
1
8


 = 0.

In other words,
2x+ y + 8z = 0. (3.2.7)

This is the equation of the plane, and we read off from the coefficients that (2, 1, 8) is a normal vector
(unsurprising, given how the plane was originally defined). ■

Example 3.2.3. Next, we find a parametric form for the plane studied in Example 3.2.2, taking as our
input the equation (3.2.7) that we have determined for this plane. We apply the method used earlier in this
section to arrive at the parametric form (3.2.4) for the plane passing through the 3 points in (3.2.1). That
is, we compute an expression looking like (3.2.3) via difference vectors based on a choice of 3 different
points P,Q,R in the plane that aren’t on a common line.

How do we choose 3 such points? One way is to simply pick some solutions to the equation (3.2.7),
as we’ll soon do in a systematic way, and make sure we make choices “randomly” enough that we avoid
the 3 points all lying on the same line (as will essentially never happen unless we make unusually special
choices, and we will make sure we have avoided that outcome by considering difference vectors as before).

In the present case there is an especially convenient solution to (3.2.7): the origin

P = (0, 0, 0)

in R3. This works because the constant on the right side of (3.2.7) is 0. What do we do to pick Q and R?
An especially convenient method (which works rather generally) is to simply set one of the variables in
the plane’s equation to be 0, another to be 1, and to solve for the remaining variable.

For instance, if we set z = 0, y = 1 then solving for x in (3.2.7) gives the condition

0 = 2x+ 1 + 8(0) = 2x+ 1,

or x = −1/2. That is, we get the point
Q = (−1/2, 1, 0).

Similarly, if we set y = 0, x = 1 then solving for z in (3.2.7) gives the condition 2+8z = 0, or z = −1/4,
yielding the point

R = (1, 0,−1/4).

Since P is the origin, the difference vectors
−→
PQ and

−→
PR are nothing other than Q and R by another

(vector) name, and by inspection these differences aren’t scalar multiples of each other, so these 3 points
P,Q,R don’t lie on a common line! Hence, these 3 points will be appropriate for making a parametric
form.

Remark 3.2.4. Before we work out the parametric form from these difference vectors, we briefly digress to
address the choices we made to make the points Q and R above. We could have instead used x = 0, z = 1
to get y = −8, yielding yet another point S = (0,−8, 1) which works just as well in place of Q or R.
Similarly, we could have used x = 0, y = 1 to get z = −1/8 and hence the point T = (0, 1,−1/8) that
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can be used just as well. There are zillions of ways to pick a point on the plane once we have an equation,
by picking two of its coordinates at random and solving for the third using the equation.

The method of finding points in the plane by setting one of x, y, z to be 0, another to be 1 (or really
setting two of the variables to be whatever different random values we like), and solving for the third
variable (using an equation of the plane) requires some care: we should make sure that the coefficient
of that third variable solved at the end is not 0 (so the required division can be done). As long as the
equation of the plane involves all 3 variables (i.e., we avoid planes in R3 such as 2x−5z = 0 in which
some variable doesn’t appear), then this issue never arises.

Coming back to our task with the points P,Q,R, since P = 0 the parametric form as in (3.2.3) is

P + t
−→
PQ+ t′

−→
PR = tQ+ t′R = t



−1/2
1
0


+ t′




1
0

−1/4


 =



−t/2
t
0


+




t′

0
−t′/4


 =



−t/2 + t′

t
−t′/4


 .

Concretely, as we vary the values of t and t′ we sweep out precisely the points in the plane of interest.
If we made another choice of the 3 points in the plane, the resulting parametric form would look very

different! For example, if we replace R with the point S found in Remark 3.2.4, the triple P,Q, S (again
with P = 0) works just as well (i.e., P,Q, S are not all on a common line) and we obtain a parametric
form in vector notation

tQ+ t′S = t



−1/2
1
0


+ t′




0
−8
1


 =



−t/2
t− 8t′

t′


 .

■

Example 3.2.5. Let’s find the equation of the plane in R3 that goes through P = (1, 2, 3) and is perpen-

dicular to n =



3
4
5


. A picture of this is given in Figure 3.2.4.

n =




3
4
5




P = (1, 2, 3)

FIGURE 3.2.4. A plane through a given point, with a given normal vector
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The method by which we will find the equation is based on geometric reasoning (in terms of perpen-
dicularity to difference vectors), but we emphasize that the method does not require us to draw this picture
of the plane, nor does having the exact drawing (as we do) play any role in figuring out the equation.

If (x, y, z) is an arbitrary point on the plane, then the line segment connecting (1, 2, 3) to (x, y, z) must

be perpendicular to



3
4
5


. This says exactly that





x
y
z


−



1
2
3




 ·



3
4
5


 = 0.

In other words,
3(x− 1) + 4(y − 2) + 5(z − 3) = 0.

This is the equation of the plane. This equation can be simplified by multiplying out to get

3x− 3 + 4y − 8 + 5z − 15 = 0,

and then combining the constants to obtain the cleaner form

3x+ 4y + 5z = 26. (3.2.8)

From the coefficients we again read off that (3, 4, 5) is a normal vector to the plane (not to the individual
points in the plane, but rather to differences between such points). This is no surprise, in view of how the
plane was originally defined! ■

Example 3.2.6. Let’s now get a parametric equation of the plane in Example 3.2.5 whose equation we

found in (3.2.8). We know the plane goes through the vector P =



1
2
3


. Following the procedure we have

gone through a couple of times already based on (3.2.3), we need to find two additional vectors Q and R
in the plane different from P so that these 3 points in the plane aren’t on a common line, or equivalently
so that the difference vectors Q− P and R− P are not scalar multiples of each other.

In other words, we seek different solutions Q and R to the equation of the plane in (3.2.8) so that
Q − P and R − P are not scalar multiples of each other. Once we find such Q and R, a parametric form
of the plane is given by vectors of the form



1
2
3


+ t


Q−



1
2
3




+ t′


R−



1
2
3






where t, t′ are any real numbers.
From the equation 3x+ 4y + 5z = 26 let’s make candidates for Q and R by setting one variable to be

0, another to be 1, and solving for the third variable:
Setting y = 0 and z = 1 gives 3x+ 5 = 26, or x = 7, yielding Q = (7, 0, 1).
Setting z = 0 and x = 1 gives 3 + 4y = 26, or y = 23/4, yielding R = (1, 23/4, 0).

This Q and R “work” in the sense that the difference vectors

Q− P =



7
0
1


−



1
2
3


 =




6
−2
−2


 , R− P =




1
23/4
0


−



1
2
3


 =




0
15/4
−3



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are not scalar multiples of each other (why?). Thus, a parametric form of the plane is

P + t
−→
PQ+ t′

−→
PR =



1
2
3


+ t




6
−2
−2


+ t′




0
15/4
−3


 =




1 + 6t
2− 2t+ 15t′/4
3− 2t− 3t′




for any real numbers t, t′. ■

3.3. Parametric form and dimension. In all of the preceding examples for which we have found a
parametric form for a plane, there are always 2 parameters t and t′. This is an algebraic incarnation of
the familiar geometric idea that a plane is 2-dimensional: the two values t and t′ keep track of a point’s
position in the plane relative to a pair of reference lines through a common point P (i.e., the lines through−→
PQ and

−→
PR that meet at P ). In Chapter 4 we take up this idea of “dimension” in a wider context, where

it will become a powerful tool for applying our “visual intuition” to real-world situations with Rn for very
large n (far beyond the R3 of daily experience).

Since we have discussed how to describe a plane in R3 (such as a plane through 3 given points) in
terms of 2 parameters, let’s drop the dimension by 1 and explain how to describe a line in R3 using 1
parameter; this will work equally well for lines in R2, putting Example 1.3.9 into a wider context. There
are two ways to think about a line in R3:

(i) passing through a specified point p in the direction of a nonzero vector v (see Figure 3.3.1),
(ii) passing through 2 given different points p and q (see Figure 3.3.2).

We shall see how to describe the line in both situations.

x1 2 3 4 5
y

1
2

3
4

5

z

1

2

3

4

5

p

v

FIGURE 3.3.1. Method (i): line in space through a given point and with a given direction

First consider a line ℓ passing through p in the direction of a vector v, as in Figure 3.3.1. This means
that if we begin at p and move along the line ℓ to a point x on the line then we should have moved “in the
direction of v” (or −v). In algebraic terms, this says that the difference vector x − p should be a scalar
multiple of v. That is: x− p = tv for some scalar t, or equivalently

x = p+ tv. (3.3.1)

As we vary t, we sweep out the entirety of the line (with t > 0 corresponding to motion along ℓ away from
p in the direction of v, and t < 0 corresponding to motion along ℓ away from p in the direction of −v).
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Example 3.3.1. As a numerical example, if p =




1
−5
2


 and v =



−3
2
7


 then the line ℓ through p in the

direction of v consists of the points

p+ tv =




1
−5
2


+ t



−3
2
7


 =




1
−5
2


+



−3t
2t
7t


 =




1− 3t
−5 + 2t
2 + 7t




for varying scalars t. ■

x1 2 3 4 5
y

1
2

3
4

5

z

1

2

3

4

5

p

q

FIGURE 3.3.2. Method (ii): line in space through 2 different points

Next, suppose ℓ is described as the line passing through different points p and q as in Figure 3.3.2.
The (nonzero) difference vector v = q−p points along the direction of the line, as shown in Figure 3.3.3.
It follows that ℓ is the line through p in the direction of v. Hence, (3.3.1) gives us a parametric form:

x = p+ t(q− p) = (1− t)p+ tq (3.3.2)

with varying scalars t. For t = 0 this recovers p on the line, for t = 1 it recovers q on the line, and for
0 ≤ t ≤ 1 we get the points of the segment joining p and q, with t = 1/2 corresponding to the midpoint.

x1 2 3 4 5
y

1
2

3
4

5

z

1

2

3

4

5

p

v

q x

FIGURE 3.3.3. Difference vector along a line
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Example 3.3.2. As a numerical example, if p =




3
1
−1


 and q =



2
4
5


 then the line through p and q

consists of the points

(1− t)p+ tq =



3(1− t)
1− t
t− 1


+



2t
4t
5t


 =




3− t
1 + 3t
−1 + 6t




for varying scalars t. ■

3.4. Equation for a plane as a collection of equations for lines. In this optional section we use
a “slicing” technique to explain why equations of the form ax + by + cz = d (with at least one of
a, b, c ̸= 0) are planes, building on our experience with equations of lines in R2.

Let us first rearrange the variables if necessary so that c ̸= 0. Dividing through by c doesn’t affect
the solution set to the equation in R3 (just as the equations 2x + 3y = 7 and 4x + 6y = 14 and
(2/3)x+ y = 7/3 all describe the same line in R2), so dividing by c, we have brought the equation to
a form where the coefficient of the variable z equals 1. For example, if we began with 2x−3y+4z = 8
then we would arrive at the equation (1/2)x− (3/4)y + z = 2.

Now bring the terms involving x and y to the other side. Our task is now to explain why equations
of the form

z = a′x+ b′y + c′

(with some new constants a′, b′, c′) define planes in R3. Let us consider a specific example.

Example 3.4.1. We visualize what is going on by considering

z = −2x− y + 3. (3.4.1)

This is the blue plane on the left in Figure 3.4.1, and we would like to see how our knowledge about
2-variable equations that describe lines explains why this 3-variable equation really does describe a
plane. We want to relate the algebra of the equation (3.4.1) to the geometry of the solution set in R3

(which we’ll suppose we haven’t already drawn on a computer to make Figure 3.4.1, since we want
to understand why equations such as (3.4.1) always define a plane). The key idea is to consider what
happens for each specific value for x, slicing the solution set by vertical planes x = C.

−1
0

1
−2 −1 0

1
2

−2
0
2
4
6
8

x
y

z

−1
0

1
−2 −1 0

1
2

0

2

4

6

x
y

z

FIGURE 3.4.1. A plane and wavy surface each assembled from lines of slope −1
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Consider where the solution set to (3.4.1) intersects the (red) vertical plane x = 0. We can find
this intersection algebraically by setting x to equal 0 in the initial equation to arrive at the equation

z = −y + 3;

we recognize this as a line of slope −1 in the plane x = 0; this is precisely the set where the red
vertical plane x = 0 on the left in Figure 3.4.1 slices the blue solution set to (3.4.1). Likewise,
consider where the green vertical plane x = 1 slices the blue solution set to (3.4.1). As before, we can
find this algebraically by setting x to be 1 in the equation (3.4.1) to arrive at

z = −y + 1

in the plane x = 1. We recognize this as another line, still of slope −1, but shifted 2 units down from
the previous line (since 1 = 3 − 2). In general, for any specific number h, the vertical plane x = h
cuts the blue solution set in the part of that plane given by the equation

z = −y + (−2h+ 3),

and we recognize this as a line of slope −1 in the plane x = h. Assembling these lines together as h
varies reconstructs the entire solution set to (3.4.1).

We now face the question of what this assembly of lines with a common slope looks like. Does
one always get a plane (as on the left side in Figure 3.4.1) by assembling lines of common slope
in the collection of parallel vertical planes x = h as h varies? Actually, the answer is no! Perhaps
surprisingly, one can “disassemble” a wavy surface into a collection of slices which are lines all of the
same slope, as on the right in Figure 3.4.1. So we require some further property beyond just that the
slices are lines with the same slope.

Knowing that a region in R3 meets each plane x = h in a line with common slope (as for both
options in Figure 3.4.1) says that it is given by an equation of the form cz = by + f(h) for some
scalars b, c, where f(h) is the value of the “z-intercept”; i.e., where this line intersects the z-axis in
the plane x = h with its coordinates (y, z). The fact that these lines fit together to make a flat surface
corresponds to the fact that the “heights” of these lines change at a “uniform rate” as we vary the value
h. This “uniform rate” for the heights says that f ′(h) is constant, which says that f(h) = ah + d for
some constants a and d. Hopefully it is not too confusing now to remember that h is just any one of
the values that x can take, so let us just write x instead of h to get cz = by+ (ax+ d), or equivalently
ax+ by + (−c)z = −d. The wavy surface on the right in Figure 3.4.1 is what happens when f(x) is
the more complicated function 2− (1/2)x3 + (1/6)x2 + (7/6)x and z = −y + f(x). ■
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Chapter 3 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
P+tv+t′v′ for
varying t, t′

parametric description of plane in R3 through point P in directions
of v and v′

(3.2.3), (3.2.4)

p+ tv for vary-
ing t

parametric description of line in R3 (or R2) through point p in direc-
tion of v

(3.3.1)

tp+(1−t)q for
varying t

parametric description of line through distinct points p and q (vary-
ing scalar t)

(3.3.2)

Concept Meaning Location in text
equational form of a
plane in R3

equation ax+ by+ cz = d (with at least one of a, b, c
nonzero) whose solutions are the points of the plane

Section 3.1(a), Figure 3.1.1

parametric form of a
plane in R3

describes points in terms of moving away from a sin-
gle point in plane, along two “independent” direc-
tions in the plane

Section 3.1(b), Figure 3.1.2

point-normal form of
a plane in R3

description in terms of point in plane and (nonzero)
normal vector to plane

Section 3.1(c), Figure 3.1.3

normal vector to a
plane in R3

nonzero vector orthogonal to all differences between
points in the plane

Section 3.2(ii)

Result Meaning Location in text

relate normal vector to
equation for plane in R3

for equation ax+ by + cz = d, normal vector is
[
a
b
c

]
Examples 3.2.2, 3.2.5

parametric forms of a line
in R3 (or R2)

geometric interpretation and algebraic description of
two ways to describe a line in terms of some vector
data and a varying scalar t

Figure 3.3.1 and (3.3.1),
as well as Figure 3.3.2 and
(3.3.2)

relate number of parame-
ters and dimension

parametric forms of line in R3 use 1 parameter, para-
metric form of plane in R3 uses 2 parameters

Section 3.3

Skill Location in text

transition among the 4 different ways of describing a plane in R3

(including “three non-collinear points”)
Section 3.2

find nonzero 3-vector perpendicular to two given nonzero 3-vectors
by using 2 equations in 3 unknowns (right viewpoint for later in Rn)

Section 3.2(ii) (see (3.2.5), (3.2.6))

using equational form of plane in R3, determine if 2 points not in
plane are on same side or opposite sides

Example 3.1.2

interpret parametric form of plane in R3 in terms of grid (not ex-
pected to produce the picture, but know typical visualizations as in
Figures 3.1.2, 3.2.2)

Section 3.2(i)

describe line in R3 (or R2) in parametric form given either a point
on the line and a nonzero direction (or displacement) along the line,
or two distinct points on the line

Examples 3.3.1, 3.3.2
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3.5. Exercises. (links to exercises in previous and next chapters)

Exercise 3.1. Consider the three different points (3,−2, 5), (1/2, 0, 4), and (1,−2, 10) in R3.

(a) Use difference vectors to show these points are not on a common line, so there is exactly one
plane P containing all of them.

(b) Give a parametric form for the plane P from (a).

Exercise 3.2. Give an equation describing the plane P through the distinct points (3,−2, 5), (1/2, 0, 4),
and (1,−2, 10) in R3.

Exercise 3.3. Find a parametric form for the plane in R3 given by the equation 6x− 6y − z = 7.

Exercise 3.4. Find an equation for the plane parallel to 4x − 7y + 2z = 1 and passing through the point
(1, 2, 3).

Exercise 3.5. Let P,Q be different points in R3, and let P be the collection of 3-vectors v with the same
distance from P and from Q: ∥P − v∥ = ∥Q− v∥.

(a) By squaring both sides of the distance equality and using that ∥w∥2 = w·w, show that P consists
of exactly those 3-vectors v satisfying

v · (P −Q) = (1/2)(∥P∥2 − ∥Q∥2).
In particular, the plane P has (nonzero) normal direction P −Q. Draw a picture to illustrate why
it is reasonable that this is a plane with normal direction P −Q.

(b) For the case P =



3
4
3


 and Q =



−1
5
−2


, give an explicit equation for the plane P .

Exercise 3.6. Let P be the plane in R3 given by the equation πx+ y − z = 0.

(a) Find three non-collinear points on P . Justify that the points you give are non-collinear.
(b) Give a description of P in parametric form.

Exercise 3.7. Consider the following four points: P = (0, 0, 1), Q = (0, 1, 3), R = (1,−2, 4), and
S = (1, 0, 8).

(a) Using difference vectors, show that no three of these points are collinear.
(b) Show that the four points all lie in the same plane in R3 by finding the equation of such a plane.

(As a safety measure, you might want to check in private that the four points really lie on that
plane.)

Exercise 3.8. Consider the lines ℓ1 and ℓ2 in R3 given in parametric form as follows: ℓ1 consists of points

of the form




−4
2 + 2t1
7 + 3t1


 =



−4
2
7


+t1



0
2
3


 and ℓ2 consists of points of the form



1 + 5t2

0
5 + t2


 =



1
0
5


+t2



5
0
1


.

(a) Show that these lines have a point in common (by finding such a point).
(b) Using the common point in (a), give a parametric form for the plane containing these two lines.
(c) Give an equation of this plane.

Exercise 3.9. Consider the plane P consisting of points of the form



1 + 8t− 8t′

1 + 4t′

−2 + 9t− t′


. Is the point Q =

(−3, 2,−1) on the same side of P as the origin, or are they on different sides?
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Exercise 3.10. Up to parallel translation, a plane in R3 is specified by the perpendicular line to the plane.
Hence, we can define the “angle” between two non-parallel planes as the nonzero angle θ ≤ π/2 between
respective normal lines. If n and n′ are (nonzero) normal vectors to the planes then this is the angle
between those vectors (as defined in Section 2) or its supplement, whichever is ≤ π/2; see Figure 3.5.1.

n
n′

θ

FIGURE 3.5.1. The angle between two planes is defined to be the angle ≤ π/2 between
normal vectors.

To give this angle is the same as to give its cosine, for which the angle being ≤ π/2 corresponds to the
cosine being non-negative, so

cos θ =
|n · n′|
∥n∥∥n′∥ .

Let P be the plane given by the equation 2x − 2y − z = 3, and let Q be the plane containing the 3
non-collinear points (1, 0, 2), (3, 0,−1), (3, 1, 2).

(a) Find the cosine of the angle between the xy-plane and P .
(b) Find the cosine of the angle between the xy-plane and Q .
(c) Explain in terms of normal vectors why the two planes P and Q in R3 are not parallel. Non-

parallel planes overlap in a line; find a parametric form for that line L in this case.

Exercise 3.11. Consider the lines ℓ1, ℓ2 in R3 given parametrically as follows: ℓ1 consists of points of the
form 


5 + 2t
3 + 3t
−t


 =



5
3
0


+ t




2
3
−1




and ℓ2 consists of points of the form


−4 + t′

−5 + t′

4− t′


 =



−4
−5
4


+ t′




1
1
−1


 .

(a) Show that these lines do not have any point in common.
(b) Consider a pair of lines ℓ and ℓ′ respectively described in the parametric forms p + tv for ℓ and

p′ + tv′ for ℓ′. Assuming they have no point in common, show that they cannot lie in a common
plane except when the “direction vectors” v and v′ are scalar multiples of each other. (Hint: lines
in a plane which don’t touch one another must be parallel.) Such cases are called “skew” (i.e.,
non-parallel lines in R3 with no common point).

(c) Note that ℓ1 and ℓ2 are skew (since (a) says that we can apply (b) to these two lines, and by
inspection their direction vectors are not scalar multiples of each other). It is a fact that for skew
lines in R3 there is exactly one line perpendicular to each and touching both of them.

Verify that fact in this particular case by showing that there is only one choice of parameters
t1 and t2 whose corresponding points P1 on ℓ1 and P2 on ℓ2 have the line ℓ through P1 and P2
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perpendicular to both ℓj’s. Also give a parametric form for ℓ. (Hint: the difference vector P1−P2

must be perpendicular to the direction vectors of both ℓj’s. The t1 and t2 you find will be small
integers.)

Exercise 3.12. Consider the plane P defined by −x+5y+2z = 3; this is also described by the parametric
form 


−3
0
0


+ t




1
−1
3


+ t′



2
0
1




(you do not have to justify that these two descriptions correspond to the same plane, though you may
want to check for yourself in private as practice). Using whichever of the two descriptions you find more
convenient in each case, answer the following.

(a) Is the point (2, 1,−3) on the plane P?
(b) Do the points (1, 2, 3) and (−1, 2, 3) lie on the same side of the plane P?
(c) Give an example of a parametric form of some line contained in the plane P (this has many

possible answers), and as a safety check verify that all points on this parametric line satisfy the
equation for P .

Exercise 3.13. Consider a triangle T in R3 whose vertices are located at points a,b, c in R3. A median of
T is the line segment joining a vertex of T to the midpoint of the opposite side, so there are three medians
(one from each vertex).

a b

c

P

T

•

• ••

FIGURE 3.5.2. The three medians of a triangle in R3.

It is a surprising fact in Euclidean geometry, seen in Figure 3.5.2, that all three medians of T meet at a
common point. Here, we shall explain this result using algebra with vectors.

(a) Using a formula for the midpoint of the edge with vertices a and b, write a parametric form for
the median from c to that midpoint. Your parametric form should involve a parameter t. By using
a suitable value for t, explain why the point P = (1/3)(a+ b+ c) is on that median.

(b) Explain why the point P in (a) lies on all three medians of the triangle (so the medians meet each
other at P ).

Exercise 3.14. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):

(a) The line L with parametric form



1
2
3


+ t



1
1
1


 lies in the plane given by x− 2y + z = 0.

(b) The three planes P1 : x − 2y + z = 0, P2 : x + y + z = 0, and P3 : x − z = 0 are pairwise
perpendicular.
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4. Span, subspaces, and dimension

A theme of this book is taking geometric concepts (such as length or angle) and generalizing them
usefully to n-vectors for any n. In this chapter, we describe how to generalize the geometric concept of
plane in R3 to appropriate subsets of Rn for any n. We will see an application in Chapter 7 where we use
geometry in Rn to study the “least squares” method to fit a line to n data points in R2, the first of many
applications we will encounter for geometric intuition in the context of multivariable problems.

The theme of this chapter is linear subspaces of Rn. By the end of the chapter, you should be able to:

• define span, linear subspace, and dimension in Rn;
• recognize linear subspaces of R3 and their dimensions;
• relate orthogonality to 1 or 2 given vectors in Rn to a linear subspace.

The geometric intuition acquired via the concept of linear subspace is useful in engineering, econom-
ics, computer science, data science, physics, etc., as we will see throughout the rest of the book.

4.1. Span and linear subspaces. Consider a plane P in R3 passing through 0 = (0, 0, 0). We want
to express mathematically the idea that P is “flat” with “two degrees of freedom”. Choose two other
points in P , denoted v and w, that do not lie on a common line through 0. (This requirement is akin to the
condition that the nonzero difference vectors

−→
PQ and

−→
PR in Section 3.2 are not scalar multiples of each

other.)

w

v

(0, 0, 0)v− 2w

FIGURE 4.1.1. Reaching anywhere in a plane P by combining steps in two directions

As we saw in Section 3.2, we can get to any point on P by starting at 0 and walking first some specific
distance in the v-direction, then some specific distance in the w-direction. For instance, Figure 4.1.1
shows the overall effect of walking a distance of ∥v∥ in the direction of v and a distance of 2∥w∥ in the
direction of −w. Symbolically,

P = {all vectors of the form av + bw, for scalars a, b} (4.1.1)

(a < 0 and b < 0 correspond to walking “backwards” relative to the directions of v and w respectively).
This says that if we start with the distinct directions v and w emanating from 0, and move along those
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two directions forwards or backwards however much (or little) we wish, we sweep out exactly the plane
P . The description as vectors av + bw for varying scalars a and b is a way of encoding the flatness of P
with two degrees of freedom. Here are some more planes with such a description:

Example 4.1.1. Figures 4.1.2 and 4.1.3 show two other planes in R3 through 0 obtained in a similar way,

using v =



1
1
0


 and w =



1
0
0


, and using v′ =



−1
2
0


 and w′ =



0
1
2


.

x

1.5
1.0

0.5
0.0

0.5
1.0

1.5

y

1.5
1.0

0.5
0.0

0.5
1.0

1.5

z

1.5
1.0
0.5

0.0

0.5

1.0

1.5

w
v

(0, 0, 0)

FIGURE 4.1.2. linear combinations of v and w sweep out the xy-plane: z = 0

x
3210123y

2 1 0 1 2

z

3

2

1

0

1

2

3

w'
v'(0, 0, 0)

FIGURE 4.1.3. linear combinations of v′ and w′ sweep out a plane

■

Let’s revisit the right side of (4.1.1), for P as in Figure 4.1.1. In addition to forming av + bw, what if
we keep iterating the vector operations of addition and scalar multiplication? For example, in this way we
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can obtain 2v − 3w + 7v + 11w. However, note that we can group together the v’s and the w’s:

2v − 3w + 7v + 11w = (2 + 7)v + (−3 + 11)w = 9v + 8w.

In other words, any vector that we can obtain from v and w repeatedly using the vector operations (addition
and scalar multiplication) in any order is actually of the form av + bw for some scalars a, b.

Thus, the right side of (4.1.1) gives a parametric form of the plane through the 3 points 0,v,w and
describes all vectors created from v,w using vector operations. If we instead allow the nonzero 3-vectors
v,w to lie on a common line through 0, which is to say w is a scalar multiple of v, then the right side of
(4.1.1) describes a line through 0 rather than a plane. Here is an example:

Example 4.1.2. For v′′ =




1
1
−1


 and w′′ =




2
2
−2


 = 2v′′, the linear combinations of v′′ and w′′ constitute

a line through 0 as shown in Figure 4.1.4.

x
321012y

3 2 1 0 1 2

z

2

1

0

1

2

3

w"

v" (0, 0, 0)

FIGURE 4.1.4. linear combinations of v′′ and w′′ form a line (not a plane)

■

The preceding visual considerations are special cases of the following very important concept in Rn

for any n.

Definition 4.1.3. The span of vectors v1, . . . ,vk in Rn is the collection of all vectors in Rn that one
can obtain from v1, . . . ,vk by repeatedly using addition and scalar multiplication. In symbols,

span(v1, . . . ,vk) = {all n-vectors x of the form c1v1 + · · ·+ ckvk}
where c1, . . . , ck are arbitrary scalars.

In R3, for k = 2 and nonzero v1,v2 not multiples of each other, this recovers the parametric form
(3.2.3) of a plane through P = 0. In general, the span of a collection of finitely many n-vectors
is the collection of all the n-vectors one can reach from those given n-vectors by forming linear
combinations in every possible way.
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This is a very new kind of concept – considering such a collection of n-vectors all at the same
time. But it is ultimately no different than how we may visualize a plane in our head yet it consists of
a lot of different points. The span of two nonzero n-vectors that are not scalar multiples of each
other should be visualized as a “plane” through 0 in Rn; with practice you’ll get accustomed to
thinking about general spans as an extension of that visualization to larger collections of n-vectors.

Example 4.1.4. Consider the span of one nonzero vector in R2: if v =

[
1
2

]
then span(v) is the set of all

scalar multiples cv =

[
c
2c

]
as in Figure 4.1.5. This is the line through (0, 0) with equation y = 2x.

−1 0 1 2 3
−2

−1

0

1

2

3

4

•0

v

FIGURE 4.1.5. The span of a single nonzero vector is a line through the origin

■

Example 4.1.5. Figures 4.1.2, 4.1.3, and 4.1.4 respectively show: the span of v =



1
1
0


 and w =



1
0
0


,

the span of v′ =



−1
2
0


 and w′ =



0
1
2


, and the span of v′′ =




1
1
−1


 and w′′ =




2
2
−2


.

These illustrate that, in R3, the span of nonzero vectors v and w can be either a line or a plane through
0. Namely:

• if v and w point in exactly the same direction, or in exactly opposite directions, their span is a
line through 0;

• otherwise, their span is a plane through 0.

■

Example 4.1.6. Let’s show that the set U of 4-vectors




x
y
z
w


 that are perpendicular to v =




2
3
1
7


 is a span of

three 4-vectors. (The same type of calculation as what we are about to do shows that the set of vectors in
Rn perpendicular to any fixed nonzero vector in Rn is a span of n−1 nonzero n-vectors.) This is a “higher-
dimensional” analogue of our visual experience in R3 that the collection of vectors in R3 perpendicular to
a given nonzero vector is a plane through the origin (and hence is the span of two nonzero vectors in R3).

As a first step, we write out the condition of perpendicularity using the dot product:

2x+ 3y + z + 7w = 0.
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Now we solve for w (say) to get w = −(2/7)x− (3/7)y − z/7. Thus, points of U are precisely



x
y
z
w


 =




x
y
z

−(2/7)x− (3/7)y − z/7


 = x




1
0
0

−2/7




︸ ︷︷ ︸
a

+y




0
1
0

−3/7




︸ ︷︷ ︸
b

+z




0
0
1

−1/7




︸ ︷︷ ︸
c

with arbitrary scalars x, y, z. This shows that the vectors perpendicular to v are precisely those in the
span of the vectors a,b, c that appear on the right side. (As a safety check on our numerical work, you
can check directly that a,b, c really are perpendicular to v by showing their dot product with this vector
equals 0.) This shows that U is the span of a,b, c in R4.

There is nothing sacred about “solving for w” above. We could just as well have “solved for x” for
example, but then we would have obtained a different triple of vectors a′,b′, c′ (whose span is also equal
to U ). Indeed, the equation of the plane can be rewritten by isolating x on one side as:

x = −(3/2)y − z/2− (7/2)w.

Hence, we obtain a rather different-looking description of points in U as



x
y
z
w


 =




−(3/2)y − z/2− (7/2)w
y
z
w


 = y




−3/2
1
0
0




︸ ︷︷ ︸
a′

+z




−1/2
0
1
0




︸ ︷︷ ︸
b′

+w




−7/2
0
0
1




︸ ︷︷ ︸
c′

with arbitrary scalars y, z, w. As in the preceding calculation, each of a′,b′, c′ is itself also perpendicular
to v and these have span equal to U . ■

We have noted that a line in R2 or R3 passing through 0 and a plane in R3 passing through 0 each
arise as a span of one or two vectors. But lines and planes not passing through 0 are not a span of any
collection of vectors! The reason is that the span of any collection of n-vectors always contains 0, by
setting all coefficients c1, . . . , ck in Definition 4.1.3 to be 0, since 0v1 + 0v2 + · · ·+ 0vk = 0.

If V is the span of some finite collection of vectors in Rn then there are generally many different
collections of vectors v1, . . . ,vk in Rn with span equal to V . For example, given one parametric form
of a plane in R3 through 0 we get lots of others by rotating the resulting parallelogram grid around the
origin in that plane by any nonzero angle we like. To refer to a span while suppressing the mention of any
specific choice of vectors v1, . . . ,vk that create the span, some new terminology is convenient:

Definition 4.1.7. A linear subspace of Rn is a subset of Rn that is the span of a finite collection of
vectors in Rn. (This is also referred to as a subspace, dropping the word “linear”.) If V is a linear
subspace of Rn, a spanning set for V is a collection of n-vectors v1, . . . ,vk whose span equals V . (A
linear subspace has lots of spanning sets, akin to tiling a floor by parallelogram tiles in many ways.)

Planes and lines in R3 passing through 0 are the visual examples to keep in mind when you hear the
phrase “linear subspace”. You may wonder: what is the difference between a linear subspace and a
span? There is no difference, but saying “span” emphasizes the input – a specific finite list v1, . . . ,vk and
the dynamic process of forming their linear combinations – whereas saying “linear subspace” emphasizes
the output collection V of n-vectors without choosing a specific v1, . . . ,vk whose span is V . It is far more
important to know that V can be obtained as a span of some list v1, . . . ,vk rather than to pick a specific
such list. For instance, U in Example 4.1.6 was defined via an orthogonality condition (no mention of
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spans!) and was then seen to be the span of a couple of different triples of 4-vectors, with neither triple
any better than the other. A recurring theme later in this book will be that in many situations a collection
of vectors defined without mention of spans turns out to be a linear subspace (as in Example 4.1.6).

Remark 4.1.8. Many students are initially bothered by the fact that a line in R2 or R3 not through 0 and a
plane in R3 not through 0 are not linear subspaces according to Definition 4.1.7 (since we have seen that
they cannot be the span of a collection of vectors). There is a more general concept than “linear subspace”
(called “affine subspace”) that allows for situations such as lines and planes in R3 not passing through
0 (e.g., those we encountered in the discussion near the end of Section 3.2); see Definition 4.1.14. But
experience in very many situations throughout mathematics and its applications in economics, computer
science, natural sciences, and so on shows that the really key notion is that of linear subspace as defined
above. So don’t get worried about the fact that a line or plane in R3 not passing through 0 is not a linear
subspace of R3. If you remain skeptical, experience should change your mind by the end of the course.

Informally, the linear subspace U in R4 in Example 4.1.6 may seem to be “3-dimensional” since it
is presented as a span of three vectors (in R4). This may even feel geometrically reasonable since U is
defined by 1 equation on R4 and each equation should reduce the “dimension” by 1. Of course, this is just
an informal idea since we have given no real definition of what “dimension” means. In Section 4.2 we will
make the informal idea of dimension precise (and useful in a much wider context).

You should regard “linear subspace” as serving a role in the geometry of Rn akin to the fundamental
role of lines in Euclidean plane geometry. It was noted early in the Introduction that geometric reason-
ing in million-dimensional spaces has been an essential ingredient in important improvements in MRI
technology, and we next discuss a way that linear subspaces arise in economics and neuroscience.

Example 4.1.9. In modern portfolio theory (MPT), a blend of investments amongN specified assets is
designed to minimize financial risk subject to a desired overall expected rate of return. It turns out that
there is a unique solution to this problem (computed in terms of probabilistic data determined from
historical performance). The initial ideas in this direction were worked out by Harry Markowitz in the
early 1950’s while he was a graduate student and earned him the 1990 Nobel Prize in economics.

This unique solution is given by a formula usually obtained from N -variable optimization tech-
niques (such as Lagrange multipliers, the focus of Chapter 12; see [LX, (3.9)-(3.12)]). However, the
formula can be understood using just linear algebra in RN , based on the following features of linear
subspaces to be developed later in this book. For a plane P through the origin in R3, and a point w
not in the plane, visual experience shows that there is a single point in P closest to w. There is an
analogue for linear subspaces V of any Rn: if w is a point in Rn outside V then there is exactly one
point v in V (called the “projection” of w into V ) for which the distance ∥v − w∥ is minimal, as
will be discussed in detail in Chapters 6 and 19 (see Theorem 6.2.1). Moreover, just as the parametric
form of a plane in R3 expresses the 2-dimensionality of planes, for general linear subspaces V in any
Rn soon we will define a concept of “dimension” for V (see Definition 4.2.4) based on spanning sets.

Coming back to economics, the unique solution to the risk-minimizing task in MPT for N assets
can be interpreted via distance-minimization from a point in RN to a specific (N − 2)-dimensional
linear subspace in RN (see [RPGS], [KK, Sec. 8] for details). In particular, the uniqueness of the
solution in MPT is an instance of the uniqueness of the closest point to a linear subspace (in Theorem
6.2.1). We’ll come back to this at the end of Remark 19.3.9.

The same math (distance-minimization to linear subspaces) enables the brain to recognizes faces
by using R50 as a “face space” (see [CT], [Daj], [Q], [T]). According to [Daj], “. . . deep in the
brain’s visual system, the neurons are actually doing simple linear algebra. Each cell is literally taking
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a 50-dimensional vector space – face space – and projecting it onto a 1-dimensional subspace . . . this
completely overturns the long-standing idea that single face cells are coding specific facial identities.
Instead, what we’ve found is that these cells are beautifully simple linear projection machines.” We’ll
return to this in Example 6.2.2. (Linear projection models for sensory recognition in the brain appears
to be a universal theme, but nobody knows why. A causal understanding should be obtained some day
via optogenetics.) ■

Having given informal indications about two applications, we want to turn to some explicit examples
and non-examples of linear subspaces.

Example 4.1.10. Let v1 =




1
0
0
0


, v2 =




1
1
0
0


, so span(v1,v2) consists of all vectors of the form av1+bv2 =




a+ b
b
0
0


. We can make the second coordinate whatever we like and then (by choosing a suitably) we can

make the first coordinate whatever we like. But the third and fourth coordinates vanish.8 ■

For efficiency of language, from now on we shall write

v ∈ Rn

as shorthand for “v belongs to Rn.” (The symbol “∈” means “element of”.) In plain language it says
“v is an n-vector.” For instance, in Example 4.1.10 our calculation of the span there says this:

span(v1,v2) =








x1
x2
x3
x4


 ∈ R4 : x3 = x4 = 0




.

(See the short table of useful notation in Table 0.0.1 near the end of the Introduction.)

If x and y belong to a linear subspace V of Rn (say V is the span of some vectors v1, . . . ,vk ∈ Rn)
then so does 5x− 3y. Indeed, writing

x = c1v1 + · · ·+ ckvk, y = d1v1 + · · ·+ dkvk ∈ V

for some scalars c1, . . . , ck and d1, . . . , dk, we have

5x− 3y = 5c1v1 + · · ·+ 5ckvk − 3d1v1 − · · · − 3dkvk = (5c1 − 3d1)v1 + · · ·+ (5ck − 3dk)vk

and similarly for ax+ by for any scalars a and b in place of 5 and 3 respectively. There is nothing special
about using two vectors in a subspace. More generally, the same type of calculation yields:

Proposition 4.1.11. If V is a linear subspace in Rn then for any vectors x1, . . . ,xm ∈ V and scalars
a1, . . . , am the linear combination a1x1+ · · ·+amxm also lies in V . In words: all linear combinations
of n-vectors chosen from a linear subspace of Rn belong to that same subspace.

This result is important for two reasons: (i) it provides special algebraic properties of linear subspaces
in any Rn that somehow encode the idea of “flatness”, (ii) this good behavior under linear combinations
will turn out to exactly characterize linear subspaces among general collections of n-vectors (see Theorem

8In mathematics, the word “vanish” means “is equal to zero”: it applies to scalars (the number 0), functions (a function
with value 0 everywhere), n-vectors (0), etc.
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21.3.7). So Proposition 4.1.11 (alongside its deeper refinement in Theorem 21.3.7) is a bridge for thinking
about linear subspaces both geometrically and algebraically. Proposition 4.1.11 fails for any line or plane
in R3 that does not pass through 0 (which we have noted are not linear subspaces).

Example 4.1.12. Partly as an application of Proposition 4.1.11, for each of Figures 4.1.6–4.1.8 below let’s
discuss what parts are linear subspaces or not (and why). In Figure 4.1.6, the blue plane P2 goes through
0 and so is a linear subspace. The red plane P1 does not go through 0 and so is not a linear subspace.

y 1.51.00.50.0-0.5-1.0-1.5

x1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5

z

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

P1

P2

(0, 0, 0)

FIGURE 4.1.6. A pair of parallel planes; only the blue one goes through 0

y 1.51.00.50.0-0.5-1.0-1.5 x1.5 1.0 0.5 0.0-0.5-1.0-1.5

z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P3

P4

(0, 0, 0)

FIGURE 4.1.7. A green plane and an orange “paraboloid”, both passing through 0

In Figure 4.1.7, the green region P4 is a plane through 0, so it is a linear subspace. The orange
“paraboloid” P3 is not a linear subspace, because it violates the conclusion of Proposition 4.1.11 in many
ways. For instance, if we pick a nonzero point on this orange surface then the line joining it to the origin
is essentially never inside the surface. Also, if we pick two different points on that orange surface then the
segment joining them (consisting of convex linear combinations) is generally not contained in the surface.
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y 101234
x

0
1
2
3
4
5

z

0

1

2

3

4

P5

L1

(0, 0, 0)

FIGURE 4.1.8. A bent plane, folded along a line L1 passing through 0, is not a linear subspace

Finally, in Figure 4.1.8, pick a point v on the bent surface P5 that doesn’t lie along the fold L1. The
scalar multiples tv for t ≥ 0 lie in the bent surface, but if we consider t < 0 then tv lies “across the line”
L1 and so is outside the bent surface (due to the folding along L1). Hence, P5 is not a linear subspace
(once again, due to violating the conclusion of Proposition 4.1.11). ■

Example 4.1.13. Consider the set W of all vectors in R5 that are perpendicular to both




1
1
0
−1
2




and




0
2
3
1
−1




.

We will now find three explicit 5-vectors v1,v2,v3 so that W = span(v1,v2,v3), and in particular W is
a linear subspace of R5. (This phenomenon is not specific to W ; it works for perpendicularity against any
finite collection of vectors in any Rn. To understand this in a general setting involves relating the algebraic
and geometric aspects of linear algebra: showing that the solution set to any such system of conditions is
a span of a finite set of vectors. This will be addressed in Section 21.3; see Theorem 21.3.7.)

As we did in Example 4.1.6, write out the two perpendicularity requirements in terms of dot products.

Namely, a vector




x1
x2
x3
x4
x5




in R5 lies in W precisely when it satisfies the two “perpendicularity equations”

x1 + x2 − x4 + 2x5 = 0, 2x2 + 3x3 + x4 − x5 = 0.

We can rewrite these two equations as expressing two of the variables in terms of the others (with no
further constraints in these other variables), say x1 and x3 in terms of x2, x4, and x5: the pair of equations
equivalently says

x1 = −x2 + x4 − 2x5, x3 = −(2/3)x2 − (1/3)x4 + (1/3)x5.

Since there are no restrictions at all on x2, x4, and x5, W is the collection of vectors of the form


−x2 + x4 − 2x5
x2

−(2/3)x2 − (1/3)x4 + (1/3)x5
x4
x5



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for arbitrary scalars x2, x4, x5. This vector can be expressed in the form of a linear combination by sepa-
rating out the parts involving each of x2, x4, x5 separately:



−x2
x2

−(2/3)x2
0
0



+




x4
0

−(1/3)x4
x4
0



+




−2x5
0

(1/3)x5
0
x5



= x2




−1
1

−2/3
0
0



+ x4




1
0

−1/3
1
0



+ x5




−2
0
1/3
0
1



.

In other words, W is the span of the vectors v1 =




−1
1

−2/3
0
0




, v2 =




1
0

−1/3
1
0




, and v3 =




−2
0
1/3
0
1




. ■

There is nothing special about describing points of W in Example 4.1.13 in terms of the 3 indepen-
dently varying parameters x2, x4, x5: that is an artifact of our initial decision to solve the two “perpen-
dicularity” equation for x1 and x3 in terms of the other three variables among the 5 given variables. We
could have also decided, for example, to solve for x4 and x5 in terms of x1, x2, x3. This would yield the
description of W as the span of a rather different triple of vectors

v′
1 =




1
0
0
−1
−1



, v′

2 =




0
1
0
−5
−3



, v′

3 =




0
0
1
−8
−3




at the cost of some algebra that we don’t want to consider yet (see Chapter 22 for a systematic treatment).
If we had chosen to solve for two other variables in terms of the others in the given pair of equations

then we would have arrived at a rather different collection of three vectors in R5 that also span W . There
is nothing special about the spanning set of three vectors for W obtained at the end of Example 4.1.13,
much as a plane through the origin in R3 can be written as a span of zillions of different pairs of vectors.

The preceding descriptions ofW suggest that it should be “3-dimensional” (as a subspace of R5), to be
justified in Example 5.1.6. Note also thatW is defined in R5 by 2 equations (the orthogonality conditions)
and so should have “dimension” 5− 1− 1 = 3 since each equation should reduce the “dimension” by 1.

Lines and planes not passing through 0 are instances of a more general concept than linear subspace:

Definition 4.1.14 (optional). An affine subspace of Rn is the set of all vectors in Rn of the form a+v
where v belongs to a fixed linear subspace V of Rn and a ∈ Rn is a fixed vector.

a+ v1

a+ v2

v1

v2

•

•0

•a

FIGURE 4.1.9. An affine subspace (red) in R3 that does not pass through 0.
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Example 4.1.15. Consider the plane P given by the equation x − y + z = 2; this is the red plane in

Figure 4.1.9. The point a =



2
2
2


 lies on this plane. The two vectors v1 =




1
0
−1


 and v2 =



0
1
1


 span

a linear subspace V in R3 (this is the linear subspace shown in blue in Figure 4.1.9). One can check
that

P = {a+ v : v ∈ V = span(v1,v2)},
and hence P is an affine subspace of R3 (but P is not a linear subspace, since it does not pass through
the origin). ■

Similarly, any line in R2 is an affine subspace of R2 and any line or plane in R3 is an affine
subspace of R3, whether or not they pass through 0. From the point of view of geometry, affine
subspaces are very natural. There is even an analogue of Proposition 4.1.11 for affine subspaces,
requiring the condition a1+a2+· · ·+am = 1. For the remainder of this book (and in most applications
of linear algebra), it will usually be sufficient just to consider linear subspaces. In particular, whenever
we say “subspace” it is always understood to mean “linear subspace”, so it passes through 0.

4.2. Dimension. We would like to define the “dimension” of a linear subspace in a way that gen-
eralizes our familiar concept of dimension: a thread or a line is 1-dimensional, a sheet of paper is 2-
dimensional, the world around us is 3-dimensional. To motivate where we are going, let us first try to put
into more precise language the intuition that says a thread is 1-dimensional whereas a sheet of paper is
2-dimensional. If an ant crawls along a thread, we only need one measurement to tell us where it is: the
distance to the end of the thread. But if an ant crawls on a sheet of paper, we need two measurements:
how far it is from the left side of the paper and how far it is from the bottom side.

Example 4.2.1. In order to identify the occurrence of a physical event unambiguously, we need to
specify the location (x, y, z) in space where it occurs and a time t at which it occurs (relative to some
reference time, so t < 0 corresponds to occurring before the reference time). Putting these together,
we conclude that 4-vectors (x, y, z, t) are the complete information to specify where and when an
event occurs.

The collection of all such 4-vectors is R4, but when interpreted physically via the 3 coordinates in
space and 1 coordinate in time it is called spacetime. This is the framework implicitly used throughout
the discussion of many scientific phenomena in physics, and it is 4-dimensional in the sense that a
“point” of spacetime involves the specification of 4 independent numbers (3 for space, 1 for time).

If we consider the region in spacetime with a fixed value t0 of time, we get the collection of points
(x, y, z, t0) in which only x, y, z vary. This recovers the familiar fact that at a given time, to specify
an event involves a 3-dimensional range of possibilities (coordinates in space). One of Einstein’s key
discoveries in his Theory of Relativity is that when a particle moves through spacetime under the
influence of gravity, its 4 spacetime coordinates along its path of motion are linked in a rather subtle
manner (whose precise formulation lies beyond the level of this course).

Keep in mind that the preceding is just one application of R4. In our study of correlation, we
saw that measuring if 4 data points in R2 are “well-approximated” by a line is understood in terms of
vectors in R4! Thus, how to “interpret” Rn is really a matter of any particular application one has at
hand. There is no special all-powerful interpretation of R4 or any Rn that is more important than any
other; everything depends on the purpose one has for a given mathematical problem. ■

Example 4.2.2. As a “non-physical” example of higher dimensions that you have worked with a lot in
algebra (perhaps without realizing it), consider the collection P4 of all polynomials of degree at most 4.
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Such a polynomial has the form ax4+ bx3+ cx2+ dx+ e where a, b, c, d, e can be any real numbers. This
description involves 5 “independent” choices (namely, the choices of a, b, c, d, e). So in a sense that can
be made precise (but we don’t dwell on in this book), P4 is 5-dimensional. ■

In particular, we may informally say:

the “dimension” of an objectX tells us how many different numbers are needed to locate
a point in X .

To turn this into something unambiguous and useful, we now focus on the case of a linear subspace V
of Rn, where vector algebra will provide a way to make that informal idea precise. The “dimension” of
V will be, intuitively, the number of independent directions in V . In other words, it will tell us how many
numbers we need in order to specify a vector v in V .

More precisely, recall that by the definition of “linear subspace” (see Definition 4.1.7), V is the span
of some finite collection of vectors v1, . . . ,vk ∈ Rn. That is, for any v ∈ V we can write

v = c1v1 + · · ·+ ckvk

for some scalars c1, . . . , ck, so to determine v it is enough to tell us k numbers – the scalars c1, . . . , ck. But
V can have another spanning set consisting of a different number of vectors, as we now illustrate.

Example 4.2.3. The span V of two nonzero vectors in R3 could be a line (such as if the two vectors point
in the same or opposite directions), in which case V is also spanned by just one of those two vectors (e.g.,

the second vector is redundant). For instance, if v =




2
−2
0


 and w =



−3
3
0


 then w = −(3/2)v and so

span(v,w) = span(v) (since av + bw = av + b(−3/2)v = (a− 3b/2)v).
Similarly, the span of three nonzero vectors in R3 could be a plane in special circumstances (or even

a line in especially degenerate circumstances). For instance, if v =



1
0
1


, v′ =



0
1
3


, v′′ =




2
−1
−1


 then

v′′ = 2v − v′ by inspection, so span(v,v′,v′′) = span(v,v′) because

av + a′v′ + a′′v′′ = av + a′v′ + a′′(2v − v′) = (a+ 2a′′)v + (a′ − a′′)v′.

In both such cases, the initial spanning set has some redundancy. To define “dimension” for V , we
want to use ways of spanning V that (in a sense we need to make precise) don’t have redundancy. ■

Definition 4.2.4. Let V be a nonzero linear subspace of some Rn. The dimension of V , denoted as
dim(V ), is defined to be the smallest number of vectors needed to span V . We define dim({0}) = 0.

Theorem 4.2.5. For k ≥ 2, consider a collection v1, . . . ,vk of vectors spanning a linear subspace
V in Rn. We have dim(V ) = k precisely when “there is no redundancy”: each vi is not a linear
combination of the others, or in other words removing it from the list destroys the spanning property.

Equivalently, dim(V ) < k precisely when “there is redundancy”: some vi is a linear combination
of the others, or in other words removing some vi from the list does not affect the span.

(If some vi vanishes then it is a linear combination of the others and hence can be dropped from
the span, so dim(V ) < k. Thus, the essential case in this result is when all vi are nonzero. A more
general formulation is given in Chapter 19 as Theorem 19.2.3, which is proved in Section B.1.)
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Example 4.2.6. Consider the 3-vectors e1 =



1
0
0


 , e2 =



0
1
0


 , e3 =



0
0
1


. These span R3 because



a
b
c


 = a



1
0
0


+ b



0
1
0


+ c



0
0
1


 = ae1 + be2 + ce3

yet no two of the ei’s span R3 (e.g., anything in the span of e1 and e3 can’t have nonzero second entry).
Hence, by Theorem 4.2.5, dimR3 = 3. ■

As a further illustration of Theorem 4.2.5, if V is a nonzero linear subspace of R3 then we have the
following possibilities (illustrated in Figure 4.2.1).

x y

z(0, 0, 0)

V1

V3

V2

FIGURE 4.2.1. Linear subspaces Vi in R3 with dimVi = i (V3 = R3)

• dim(V1) = 1: this means V1 is a line passing through (0, 0, 0).
• dim(V2) = 2: this means V2 is a plane passing through (0, 0, 0).
• dim(V3) = 3: this is possible too. It means V3 = R3. (It is geometrically plausible that under the

preceding definition of dimension the only 3-dimensional subspace of R3 is itself, and that any
subspace of R3 has dimension at most 3. A systematic way to compute the dimension of spans
of at most three vectors will be given in Section 5.1. More general Rn-analogues based on the
preceding definition of dimension are provided in Chapter 19 for those who are interested.)

Remark 4.2.7 (online resource). In the video series “Essence of Linear Algebra” mentioned in Re-
mark 1.3.7, the second video provides visualizations for the concepts of linear combination, span, and
dimension, as well as the “redundancy” aspect of Theorem 4.2.5.

Please always remember the “Alert” in Remark 1.3.7 whenever consulting online resources that
you find on your own. This is also the reason that we shall refer you only to specific videos in the
series “Essence of Linear Algebra”.

Here is a geometrically plausible property of dimension (which is proved in Section B.1).
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Theorem 4.2.8. If V and W are linear subspaces of Rn with W contained in V (i.e., every vector in
W also belongs to V , much like a line inside a plane in R3) then dimW ≤ dimV , and equality holds
precisely when W = V .

How do we figure out if there is redundancy in a collection of nonzero vectors v1, . . . ,vk ∈ Rn

spanning a linear subspace V of Rn? In general, we cannot figure this out by just staring at the vi’s. For
instance:

Example 4.2.9. Is the span of 


3
−1
2


 ,




0
2
−1


 ,




2
−4
3




actually the entirety of R3? The answer is “no” – these vectors all belong to a common plane through the
origin in R3 – but this isn’t evident by inspection. We need to do some work to show that one of these
vectors (in fact, any one of them) belongs to the span of the other two. We will return to this in Example
5.1.7. ■

Example 4.2.10. Is the linear subspace W in R5 considered in Example 4.1.13 actually 3-dimensional?
There it was seen that W is the span of 3 explicit vectors in R5, but how do we know it can’t also be
written as a span of fewer vectors? We will come back to this in Example 5.1.6 (and revisit it by other
methods later on). ■
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Chapter 4 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
span(v1, . . . ,vk) the span of a collection of n-vectors v1, . . . ,vk Definition 4.1.3
∈ (e.g., “v ∈ Rn”) element of (or: belonging to) box below Example 4.1.10
dimV (or dim(V )) dimension of a linear subspace V in Rn Definition 4.2.4

Concept Meaning Location in text
span the collection of all linear combinations of given n-

vectors v1, . . . ,vk

Definition 4.1.3

linear subspace (of Rn) the span of a list of n-vectors v1, . . . ,vk Definition 4.1.7
dimension smallest number of vectors that span a given linear

subspace V in Rn (with dim({0}) = 0 by definition)
Definition 4.2.4

Result Meaning Location in text
linear subspaces are
preserved under linear
combinations, and al-
ways contain 0

for a linear subspace V of Rn and any v1, . . . ,vk ∈ V , we have
c1v1 + · · · + ckvk ∈ V for all scalars c1, . . . , ck (in particular,
0 ∈ V by choosing c1 = 0, . . . , ck = 0)

Proposition
4.1.11

dimension encodes re-
dundancy of a span

for n-vectors v1, . . . ,vk with k ≥ 2, dim span(v1, . . . ,vk) < k
precisely when some vj is a linear combination of the others (so
omitting vj yields the same span)

Theorem 4.2.5

a containment of linear
subspaces is an equal-
ity precisely when they
have same dimension

if W and V are linear subspaces of Rn with W contained in
V then W ̸= V precisely when dimW < dimV (so W = V
precisely when dimW = dimV )

Theorem 4.2.8

Skill Location in text
express orthogonality to one or two n-vectors as a span Examples 4.1.6 and 4.1.13
recognize when a picture of a collection of vectors in R3 (or R2) is a
linear subspace

Example 4.1.12

understand that a (nonzero) linear subspace of Rn can be described
as a span of many different collections of n-vectors

Examples 4.1.6 and 4.1.13

apply the definition of dimension (of linear subspace) to lines and
planes through 0 in R3, as well as to spans or one or two vectors in
R3

Example 4.2.3 and Figure 4.2.1 (and
the list of cases just below it)

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 82



4.3. Exercises. (links to exercises in previous and next chapters) Consult Table 0.0.1 for convenient
shorthand used in some exercises below and in further mathematics.

Exercise 4.1. For each of the following collections of vectors, show that either it is a span of finitely
many vectors (so it is a linear subspace) or that it violates the conclusion of Proposition 4.1.11 (i.e., fails
to contain a linear combination of some vectors in it) so it is not a linear subspace.

(a)
{[

x
y
z

]
∈ R3 : z = 2x− y

}

(b)
{[

x
y
z

]
∈ R3 : z = 1 + 2x− y

}

(c) {[ xy ] ∈ R2 : y = x2}
(d)

{[
x
y
z

]
∈ R3 : 3x− y + z = 0, x+ y − 4z = 0

}
(such notation with equations separated by com-

mas means that both equations are satisfied)

Exercise 4.2. For v =



2
0
1


 and w =



−1
1
3


, find scalars a, b, c so that

span(v,w) =
{[

x
y
z

]
∈ R3 : ax+ by + cz = 0

}
.

(Hint: first find a candidate triple (a, b, c) by solving for b, c in terms of a using that v,w must satisfy
ax+ by + cz = 0, and then setting a = 1, show the resulting triple really works.)

Exercise 4.3. For v =



1
1
1


 and w =



4
2
1


, find scalars a, b, c so that

span(v,w) =
{[

x
y
z

]
∈ R3 : ax+ by + cz = 0

}
.

(Hint: first find a candidate triple (a, b, c) by solving for b, c in terms of a using that v,w must satisfy
ax+ by + cz = 0, and then setting a = 1 show the resulting triple really works.)

Exercise 4.4. For the 4-vectors w =




−2
2
1
1


 and w′ =




3
4
0
1


, show that the collection of vectors

V =




x =




x1
x2
x3
x4


 ∈ R4 : x ·w = 0,x ·w′ = 0





is a linear subspace of R4 in each of the following ways:

(a) for x ∈ V , solve for each of x3 and x4 in terms of x1 and x2 to write V as a span of two vectors;
(b) for x ∈ V , solve for each of x1 and x4 in terms of x2 and x3 to write V as a span of two vectors.

Exercise 4.5. Find a nonzero 3-vector v so that

x ∈ R3 : x ·



3
2
1


 = 0,x ·



−2
−1
1


 = 0



 = span(v).

Then, using the geometric fact that any two different planes through the origin in R3 meet along a line
through the origin, interpret this algebraic outcome that the left side is the span of a single vector.
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Exercise 4.6. Find a pair of 3-vectors v,w so that
{[

x
y
z

]
∈ R3 : 2x− 3y + 2z = 0

}
= span(v,w).

Exercise 4.7. Define the 3-vectors

v =



1
0
1


 ,w =




1
1
−1


 ,v′ =



3
1
1


 ,w′ =



−2
−3
4




no two of which are scalar multiples of each other. Show in both of the following ways that the planes
span(v,w) and span(v′,w′) are the same:

(a) Write each of v′ and w′ as a linear combination of v and w (so span(v′,w′) is contained in
span(v,w), forcing equality since both spans are planes).

(b) Compute an equation for the plane span(v,w) and check v′,w′ each satisfy that equation (so
both lie in that plane, and hence likewise for span(v′,w′)).

Exercise 4.8. Use Theorem 4.2.5 to determine the dimension (1, 2, or 3) of each of the following linear
subspaces in R3. Show the work to justify your answer.

(a) span(v,w) for v =



−2
1
1


 ,w =



1
1
1


.

(b) span(v′,w′) for v′ =




3
6
−3


 ,w′ =



−2
−4
2


.

(c) span(v′′,w′′,u′′) for v′′ =




1
−2
3


 ,w′′ =



4
0
2


 ,u′′ =




3
−2
4


.

Exercise 4.9. Consider the three nonzero vectors

v1 =




1
−2
3


 , v2 =



2
0
1


 , v3 =




3
−2
1


 .

(a) Show that v1 does not belong to the span of v2 and v3. (Hint: if v1 = av2+ bv3 for some scalars
a and b, express this as a system of 3 equations on a and b and show that these equations have no
simultaneous solution.)

(b) Similarly show v2 does not belong to the span of v1 and v3, and that v3 does not belong to the
span of v1 and v2.

(c) Using (a) and (b), apply Theorem 4.2.5 to conclude that the linear subspace V = span(v1,v2,v3)
in R3 has dimension equal to 3 (so it coincides with R3, by Theorem 4.2.8).

Exercise 4.10. Let V be the span of the collection of three nonzero 3-vectors

v1 =




1
−2
3


 , v2 =



2
0
1


 , v3 =




3
−2
1


 .

Here is an approach based on orthogonality to show dimV = 3 (so V = R3, by Theorem 4.2.8).

(a) Explain either geometrically or algebraically why if the dimension were 1 or 2 then there would
be a nonzero 3-vector n orthogonal to the span (hint: show that for any linear subspace of R3

with dimension 1 or 2 there is a nonzero 3-vector orthogonal to it).
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(b) Check directly that the simultaneous conditions

n ·




1
−2
3


 = 0, n ·



2
0
1


 = 0, n ·




3
−2
1


 = 0

on the entries of n =



a
b
c


 have no solution (a, b, c) ̸= (0, 0, 0).

(c) Use the conclusion of (b) to rule out the possibilities of the dimension being 1 or 2 with the aid
of (a) (so the dimension must be 3).

Exercise 4.11. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):

(a) If a collection V of 3-vectors contains 0 then V is a linear subspace.

(b) span





1
2
3


 ,



1
1
1




 is 2-dimensional.

(c) Let V = span(v1, . . . ,vk) and W = span(w1, . . . ,wk) inside Rn. If dim(V ) = dim(W ) > 1
then V = W .
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5. Basis and orthogonality

In the previous chapter we encountered the new concepts of linear subspace of Rn and dimension
thereof (extending the concepts of line and plane through the origin in R3). We also recognized that
despite the geometric appeal of the definition of dimension (as the minimal number of vectors whose span
is a given linear subspace), it isn’t immediately apparent how to actually compute the dimension of a given
linear subspace (say, when it is given as a span of an explicit finite collection of n-vectors). We shall now
introduce the important notion of “basis” for a linear subspace that will help us to organize our discussion
for how to compute dimensions in some situations. A special case of this, called an “orthogonal basis”,
will be especially useful in our subsequent development of ideas in linear algebra.

By the end of this chapter, you should be able to:

• determine a basis, and dimension, for a linear subspace of R2 and R3 (Chapter 19 treats
general Rn);

• verify whether a collection of vectors in Rn is orthogonal or orthonormal.

5.1. Basis and dimension computations.

Definition 5.1.1. A basis for a nonzero linear subspace V in Rn is a spanning set for V consisting of
exactly dim(V ) vectors.

Example 5.1.2. If dim(V ) = 2 then a basis for V consists of any v,w for which span(v,w) = V . ■

Example 5.1.3. By Example 4.2.6, one basis of R3 is given by e1 =



1
0
0


 , e2 =



0
1
0


 , e3 =



0
0
1


; this

is called the standard basis of R3. But many other triples of vectors are also a basis of R3 (an explicit
additional triple will be given later in (5.3.2)). Something all bases have in common is that they yield
a “tiling” of space by a grid of parallelotopes, as shown in Figure 5.1.1.

u1

u2

u3

FIGURE 5.1.1. A typical basis of R3 and resulting “parallelotope grid” for space

A basis of a plane through 0 in R3 (resp. a basis of R3) yields a “grid” in the plane (resp. in space)
telling us where any point is (uniquely) located relative to the grid. The non-orthogonal uj’s in
Figure 5.1.1 (and not the “standard basis”) are the best mental image for a “typical” basis of
R3. ■

Example 5.1.4. For each pair of nonzero vectors in Figure 5.1.2, let’s discuss if it is a basis for R2 or not.
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v1

v2
(0, 0)

w1

w2

(0, 0)

FIGURE 5.1.2. Two pairs of vectors in R2, one a basis and one not

The vectors w1,w2 as shown lie on the same line through the origin, so their span (or even the span of
just one of them) is that line. Hence, they do not span R2 and so are not a basis.

On the other hand, we claim that v1,v2 do span R2. To explain this geometrically, the key observation
is that these vectors generate a “parallelogram grid” tiling the plane as shown in Figure 5.1.3. The corners
of the small blue parallelograms are nv1 +mv2 for integers n and m (possibly negative): beginning at 0
we move backwards or forwards some number of times along the v1-direction and v2-direction to reach
each corner; Figure 5.1.3 shows that 2v1 − v2 is 2 steps forward along v1 and 1 step backwards along v2.

v1

v2
(0, 0)

2v1 − v2

FIGURE 5.1.3. Parallelogram grid made from v1,v2, with corners nv1 +mv2 for integers n,m

Every point x ∈ R2 lies inside some small blue parallelogram P , say the one with corners

nv1 +mv2, (n+ 1)v1 +mv2, nv1 + (m+ 1)v2, (n+ 1)v1 + (m+ 1)v2.

Some portion of the distance along each side-direction of P from the lower-left corner nv1 + mv2 pins
down where x is located inside P : Figure 5.1.4 shows an x whose location relative to the lower-left corner
v1 + 2v2 is 2/3 of the distance along the v1-direction and 4/7 of the distance along the v2-direction.
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v1

v2
(0, 0)

x

v1 + 2v2

2v1 + 3v2

FIGURE 5.1.4. Point x inside a parallelogram some portion of the distance along each side
direction from the corner v1 + 2v2: it is 2/3 further along v1, 4/7 further along v2

In such a case, we can write

x = (v1 + 2v2) + ((2/3)v1 + (4/7)v2) = (5/3)v1 + (18/7)v2.

We have a similar geometric interpretation for any av1 + bv2 by writing each of the scalars a and b as an
“integer part” plus a “decimal part” (between 0 and 1). This explains the spanning property.

The smallest size of a spanning set for R2 is 2 since a single vector v certainly cannot span R2: such
a span is a line (or a point if v = 0). Hence, {v1,v2} is a basis for R2. ■

In the cases k = 1, 2, 3 there is a reasonable way to figure out if the span of k nonzero vectors in Rn

has dimension k (rather than < k). For k = 1 there is nothing to say (i.e., the span of a single nonzero
vector is always 1-dimensional: there’s nothing smaller the dimension could be), and for k = 2, 3 we use
the following:

Dimension Criterion. For two nonzero vectors v,w ∈ Rn we have dim(span(v,w)) = 2 except for
precisely when the vectors are scalar multiples of each other, in which case the dimension is 1.

For three nonzero vectors v1,v2,v3 ∈ Rn with span V , we have dim(V ) = 3 except for precisely
the following cases:

(i) all three vectors are scalar multiples of each other, in which case dim(V ) = 1;
(ii) exactly two of the vectors are scalar multiples of each other, in which case dim(V ) = 2;

(iii) no vi is a scalar multiple of another vj but some vi is a linear combination of the other two,
in which case dim(V ) = 2 and every vi is a linear combination of the other two.

Here are some examples to illustrate the preceding criterion (and a proof of the Dimension Criterion
is given in Remark 5.1.9 for those who are interested).
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Example 5.1.5. Consider the following pairs of nonzero vectors:

v =

[
3/2
−2

]
,w =

[
−2
8/3

]
; v′ =




2
−4
5


 ,w′ =




3
−6
15


 ; v′′ =




3
6

−15


 ,w′′ =




2
4

−10


 .

To determine if the span of each pair (in R2 for the first pair, and in R3 for the second and third pairs) has
dimension 1 or 2, we have to check in each case if the first vector is a scalar multiple of the second (or the
other way around, whichever we prefer; the two options are equivalent since the vectors are all nonzero).

Does v = aw for some scalar a? Let’s write out what this means in terms of vector entries and try to
figure out what a could be. The condition is

[
3/2
−2

]
= a

[
−2
8/3

]
=

[
−2a
8a/3

]
,

or in other words the simultaneous conditions

3/2 = −2a, −2 = 8a/3.

The first equation says a = −3/4, and that satisfies the second one (8(−3/4)/3 = −8/4 = −2), so
span(v,w) is 1-dimensional.

For the next pair, the condition v′ = aw′ for some unknown scalar a says



2
−4
5


 =




3a
−6a
15a


 ,

which amounts to three simultaneous conditions on a:

2 = 3a, −4 = −6a, 5 = 15a,

so we solve for a using one of these and check if it works for the others. The first equation says a = 2/3,
and that satisfies the second equation (−6(2/3) = −4) but it fails the third equation: 15(2/3) = 10 ̸= 5.
Hence, v′ is not a scalar multiple of w′, so span(v′,w′) has dimension 2.

Finally, to check if v′′ = aw′′ for some scalar a we again write out the vector equation and equate
corresponding entries, getting three simultaneous equations in a (one for each vector entry):

3 = 2a, 6 = 4a, −15 = −10a.

The first of these says a = 3/2, and this is readily checked to satisfy the other two equations (so v′′ =
(3/2)w′′). Hence, span(v′′,w′′) is 1-dimensional. ■

Example 5.1.6. Consider the triple of nonzero 5-vectors

v1 =




−1
1

−2/3
0
0



, v2 =




1
0

−1/3
1
0



, v3 =




−2
0
1/3
0
1




from Example 4.1.13 that span W as defined there, so dimW ≤ 3. We shall now show that dimW = 3.
By the method of Example 5.1.5 one checks that no vi is a scalar multiple of any vj (it is easier than usual
in this case because there are so many entries equal to 0; e.g., we can’t have v1 = av2 or v1 = bv3 due to
comparing second entries, nor can we have v2 = cv3 due to comparing fourth entries).
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Hence, we aren’t in cases (i) or (ii) of the Dimension Criterion, so (by case (iii)) dim(W ) < 3 precisely
when some vi is a linear combination of the other two and then necessarily every vi is a linear combination
of the other two. Thus, to rule out this possibility there is no harm in ruling out just one of the possibilities:

v2
?
= av1 + bv3

for some scalars a and b. We have to show there are no such scalars.
Equating corresponding entries in the vectors on both sides of such a hypothetical relationship gives

five equations (one per vector entry) in 2 unknowns (a and b). We want to show that this system of many
equations in few unknowns has no simultaneous solution. This is a variant on experience with 2 equations
in 2 unknowns, as we shall see. The point is that we have a system of equations in only 2 unknowns, and
this is something you learned how to manage in your prior study of algebra: solve for one variable in terms
of the other using one of the equations, and plug that into the rest to see if they admit a common solution
for that remaining variable.

Putting in the numbers, the vector equation of interest is



1
0

−1/3
1
0



= a




−1
1

−2/3
0
0



+ b




−2
0
1/3
0
1



=




−a− 2b
a

−2a/3 + b/3
0
b



,

so comparing corresponding entries turns this into the system of simultaneous equations

1 = −a− 2b, 0 = a, −1/3 = −2a/3 + b/3, 1 = 0, 0 = b.

There are many ways to see that this system has no solution. For instance, the fourth equation “1 = 0”
is already impossible. Or alternatively the second and fifth equations tell us the values of a and b directly,
but those don’t work in the first or third equations (though it is enough to reach just one inconsistency, let
alone multiple such, to conclude that there is no solution).

Since there is no solution, so v2 is not in the span of v1 and v3, we conclude that dim(W ) = 3.
(If we had instead tried to write v1 = av2 + bv3 for some scalars a, b then we would have arrived at a
different system of 5 equations in 2 unknowns, but again we would have found that it has no simultaneous
solution.) ■

Example 5.1.7. Consider the triple of nonzero 3-vectors

v1 =




3
−1
2


 ,v2 =




0
2
−1


 ,v3 =




2
−4
3




from Example 4.2.9. Does its span V have dimension equal to 3, or is dim(V ) < 3?
As in the preceding example, one first checks by inspection that no vi is a scalar multiple of the others

(please check this for yourself, arguing as in Example 5.1.5). Hence, again using the Dimension Criterion
as in Example 5.1.6, we seek to determine if one of the vi’s is in the span of the other two. It doesn’t
matter which vi we try, so we’ll go with v1: is v1 = av2 + bv3 for some scalars a and b? This says




3
−1
2


 = a




0
2
−1


+ b




2
−4
3


 =




2b
2a− 4b
−a+ 3b


 ,

which is a system of 3 equations (one per vector entry) in 2 unknowns (a and b):

3 = 2b, −1 = 2a− 4b, 2 = −a+ 3b. (5.1.1)
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To handle this, we solve for b in terms of a (or a in terms of b) using one of the equations and plug that
into the other two, seeing if we get a consistent solution. If so then v1 ∈ span(v2,v3) and dim(V ) = 2 by
case (iii) of the Dimension Criterion. If not then dim(V ) = 3.

There are now several ways to proceed. The first equation in (5.1.1) says b = 3/2, and plugging this
into the other two equations gives

−1 = 2a− 4(3/2) = 2a− 6, 2 = −a+ 3(3/2) = −a+ 9/2,

each of which has the same solution: a = 5/2. Hence, v1 = (5/2)v2 + (3/2)v3 (and dim(V ) = 2).
Alternatively, one could use the third equation in (5.1.1) to get b = (1/3)(2 + a) and plug this into

the other two to get two equations in a, which are each found to have the same common solution a = 5/2
(please check for yourself), and then we substitute that into b = (1/3)(2 + a) to get b = 3/2 once again.
Or we could have used the second equation in (5.1.1) rather than the third to get started, or we could have
solved for a in terms of b instead, and so on. There are only two unknowns, so the algebra isn’t bad no
matter what we try to do. ■

In Chapter 19 we will give a way to remove redundancy from a spanning set for a linear subspace V
of Rn. Although we have a way to figure out the dimension of the span of 2 or 3 nonzero vectors, we have
to confront the reality that for the span of 4 or more nonzero vectors in Rn it becomes rather cumbersome
to figure out the dimension via algebra alone; we need another way. There is a particularly useful type of
spanning set for any linear subspace V that is always guaranteed to be a basis of V , as we explain in the
next section, and this will underlie a geometric method (in Chapter 19) to determine the dimension of the
span of any number of vectors.

Remark 5.1.8 (online resource). The second video in “Essence of Linear Algebra” includes visual-
izations for the concept of “basis”. (The end of that video introduces an additional concept called
“linear (in)dependence” that we will discuss much later, in Chapter 19, so feel free to ignore that for
now; it concerns the “redundancy” in spanning sets alluded to above.)

Remark 5.1.9 (optional). To prove the Dimension Criterion for the span of 2 or 3 nonzero vectors,
first note that by definition the span V of k nonzero vectors v1, . . . ,vk in Rn certainly has dimension
at most k (as the dimension is the smallest size of a spanning set for V ). By Theorem 4.2.5, we have
dim(V ) < k precisely when one of the vi’s can be dropped without affecting the span.

When k = 2, dropping some vi without affecting the span means that V is the span of the re-
maining nonzero vector (so dim(V ) = 1): this means V is the span of either v1 or v2. But both vi’s
belong to V , so if V = span(v1) then v2 = av1 for some scalar a, and likewise if V = span(v2) then
v1 = bv2 for some scalar b. In either case, the scalar is nonzero (since v1,v2 ̸= 0), so that scalar can
be moved to the other side as its reciprocal: (1/a)v2 = v1 or (1/b)v1 = v2 respectively.

Suppose k = 3. Since the vi’s are nonzero, if any is a scalar multiple of another then the scalar
multiplier must be nonzero and so it can be moved to the other side as its reciprocal. Hence, in case
(i) we have v2 = av1 and v3 = bv1 for some scalars a, b. Then any linear combination of the vi’s can
be written as c1v1 + c2v2 + c3v3 = c1v1 + c2(av1)+ c3(bv1) = (c1 + ac2 + bc3)v1, so V = span(v1)
is 1-dimensional.

If we are in case (ii) then by relabeling we can assume it is v2 and v3 that are scalar multiples of
each other, but not v1. Writing v3 = av2, we have

c1v1 + c2v2 + c3v3 = c1v1 + c2v2 + c3(av2) = c1v1 + (c2 + ac3)v2,

so V = span(v1,v2). But v2 is not a multiple of v1, so dim(V ) = 2 by the settled case k = 2.
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Now suppose we aren’t in cases (i) or (ii). By Theorem 4.2.5, we have dim(V ) < 3 precisely
when some vi can be dropped without affecting the span, yet all three vectors belong to the span by
design, so this says that some vi is in the span of the other two:

vi = avi′ + bvi′′

for some scalars a, b and the other two indices i′, i′′. But those scalars a and b must both be nonzero,
as otherwise vi would be a multiple of one of the others (e.g., if a = 0 then vi = bvi′′) and that can’t
happen since we’re now away from cases (i) and (ii). Hence, by putting vi′ (resp.vi′′) on one side of
the equation, putting everything else on the other side, and then dividing by the nonzero coefficient of
vi′ (resp.vi′′), we see that each of v1,v2,v3 is in the span of the other two. This puts us in case (iii).

5.2. Orthogonal bases.

Definition 5.2.1. A collection of vectors v1, . . . ,vk in Rn is called orthogonal if

vi · vj = 0 whenever i ̸= j.

In words, the vectors are all perpendicular to one another.

Theorem 5.2.2. If v1, . . . ,vk is an orthogonal collection of nonzero vectors in Rn then it is a basis
for span(v1, . . . ,vk). In particular, span(v1, . . . ,vk) then has dimension k and we call v1, . . . ,vk an
orthogonal basis for its span. (A single nonzero vector is always an orthogonal basis for its span!)

The span of a collection of k vectors in Rn has dimension at most k (e.g., three vectors in R3 lying
in a common plane through 0 have span with dimension less than 3). By Theorem 5.2.2, orthogonality
is a useful way to guarantee that k given nonzero n-vectors have a k-dimensional span.

Theorem 5.2.2 is proved in Section B.1, for those who are interested.

Example 5.2.3. Consider the span V of the following three vectors in R5:

v1 =




1
0
3
2
1



, v2 =




1
1
2
0
3



, v3 =




0
3
0
2
1




(5.2.1)

This collection of three vectors is not orthogonal, since, for example, v1 ·v2 = 1+0+6+0+3 = 10. The
method based on the Dimension Criterion affirms that dim(V ) = 3, so the triple {v1,v2,v3} is a basis of
V , but we would like to give an orthogonal basis of V .

Consider the following three nonzero vectors in V (which admittedly we are now pulling out of thin
air; the way they are found systematically will be addressed in Example 19.3.8):

w1 = v1 =




1
0
3
2
1



, w2 = −2v1 + 3v2 =




1
3
0
−4
7



, w3 = −9v1 − 24v2 + 75v3 =




−33
201
−75
132
−6



. (5.2.2)

By direct computation all dot products wi ·wj can be checked to vanish for i ̸= j, so the nonzero vectors
w1,w2,w3 form an orthogonal basis for their span.

Without already knowing that dim(V ) = 3, it can be directly checked that the span of the wj’s
coincides with that of the vi’s as follows. Each wj is a linear combination of the vi’s by design, and

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 92



one can go in reverse to express the vi’s as linear combinations of the wj’s by systematically unraveling
how the wj’s are defined in terms of the vi’s to arrive at:

v1 = w1, v2 =
1

3
w2 +

2

3
w1, v3 =

1

75
(w3 + 8w2 + 25w1).

(Don’t worry about where these expressions came from: what matters is that one can really also express
the vi’s as linear combinations of the wj’s, and we have handed you such expressions on a silver platter
out of thin air for illustration purposes only. You won’t be asked to reproduce such calculations, and we
will revisit this matter in a systematic way in Section 19.3.)

The upshot is that the linear subspace V = span(v1,v2,v3) has {w1,w2,w3} as an orthogonal span-
ning set, and by Theorem 5.2.2 an orthogonal set of nonzero vectors in Rn is always a basis of its span.
Hence, the wj’s constitute a basis for V , giving another verification that dim(V ) = 3. The merit of this
approach over the one based on the Dimension Criterion is that it will work well when the number of
vi’s is much larger than 3, whereas the Dimension Criterion is only applicable to spans of at most three
vectors. ■

There is a systematic process for finding an orthogonal basis for the span of k vectors in Rn called the
“Gram9 –Schmidt10 process”. (When applied to {v1,v2,v3} in Example 5.2.3 it produces {w1,w2,w3}
in (5.2.2) up to nonzero scaling factors on each wj .) We will discuss this process in Chapter 19.

Example 5.2.4. Let’s revisit the span V of the vectors

v1 =




3
−1
2


 , v2 =




0
2
−1


 , v3 =




2
−4
3




considered in Example 4.2.9, where we essentially asked if dim(V ) = 3 or perhaps dim(V ) < 3. In
Example 5.1.7 we used the Dimension Criterion to determine that dim(V ) = 2, finding along the way an
explicit description of some vi as a linear combination of the other two. Let’s exhibit an orthogonal basis
for V , giving another way to see that dim(V ) = 2 (the point being that this method will adapt to spans of
any number of vectors, whereas the Dimension Criterion only applies to spans of at most three vectors).

We’ll try to make an orthogonal basis of V consisting of vectors

w1 = v1 =




3
−1
2


 , w2 = v2 + cv1

for some scalar c. (This will be done systematically in Section 7.1, but here we just treat this specific
example directly.) The orthogonality condition says 0 = w1 ·w2 = v1 · (v2 + cv1) = v1 ·v2 + c(v1 ·v1).
From the definitions of v1 and v2 we get v1 · v1 = 14 and v1 · v2 = −4, so 0 = −4 + c(14), which says
c = 2/7. Hence,

w2 = v2 +
2

7
v1 =




0
2
−1


+

2

7




3
−1
2


 =




6/7
12/7
−3/7


 .

Since w1,w2 belong to V , everything in the plane P = span(w1,w2) belongs to V . Let’s exhibit
explictly why this span exhausts V (we know it must since dimV = 2, but we want to explain the
exhaustion in more direct terms just for the sake of being explicit – in Chapter 19 we will make systematic

9Jorgen Gram (1850-1916) was a Danish mathematician who worked in applied math, probability, and number theory. He
earned no degree past a Masters and held no university position; he did mathematical research as an educated amateur in his
spare time!

10Erhard Schmidt (1876-1959) was a German mathematician who worked on differential equations and related topics.
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what we are about to do in a specific case). This amounts to showing that each of the vj’s belongs to P ,
since then every linear combination of the vj’s would belong to P , which is to say everything in V would
belong to P as desired. By design we have v1 = w1, and by definition w2 = v2+(2/7)v1 = v2+(2/7)w1,
so v2 = w2 − (2/7)w1. But for what scalars a1, a2 do we have v3 = a1w1 + a2w2?

Here is a neat idea, which we will turn into a general method in Theorem 5.3.6: to exploit the orthog-
onality of w1 and w2 let’s form the dot product of v3 = a1w1 + a2w2 against w1 and against w2:

v3 ·w1 = (a1w1 + a2w2) ·w1 = a1(w1 ·w1) + a2(w2 ·w1) = a1(w1 ·w1) + a2(0) = a1(w1 ·w1),

so a2 has disappeared. Plugging in the values v3 · w1 = 16 and w1 · w1 = 14 gives 16 = 14a1, so
a1 = 16/14 = 8/7. Similar dot product work yields v3 · w2 = a2(w2 · w2) with v3 · w2 = −45/7
and w2 · w2 = 189/49 = 27/7. Thus, −45/7 = a2(27/7), so a2 = −45/27 = −5/3. In other words,
v3 = (8/7)w1 − (5/3)w2.

The fact that the span V = span(v1,v2,v3) is not 3-dimensional can be expressed in a couple of other
ways:

(i) First of all, you can verify the equality

v3 = (2/3)v1 − (5/3)v2

(which can be discovered by the method in Example 5.1.7, but that doesn’t matter when you have
been given the equality to be checked). We can use this expression for v3 in terms of v1 and v2

to re-express any linear combination of the vi’s in terms of v1 and v2, as follows:

av1 + bv2 + cv3 = av1 + bv2 + c((2/3)v1 − (5/3)v2) = (a+ 2c/3)v1 + (b− 5c/3)v2, (5.2.3)

which is a span of just two vectors (namely, v1 and v2), so dim(V ) ≤ 2. This expresses that the
triple {v1,v2,v3} as a spanning set for V is “inefficient” or “redundant” in the sense that if we
drop v3 then the span of what remains is unaffected (it is still V ).

(ii) Alternatively, one can verify directly that all of the vi’s belong to the plane through 0 given by

−x+ y + 2z = 0.

(Don’t worry about how one would find that equation, but with the equation in hand please check
that the vi’s indeed lie in that plane.) Hence, any linear combination of the vi’s belongs to the
same plane (by visualizing addition in terms of the parallelogram law), so V lies inside that plane.

■

The ubiquity of orthogonal bases is encoded in the following general fact:

Theorem 5.2.5. Every nonzero linear subspace of Rn has an orthogonal basis.
There is an especially convenient type of orthogonal basis for a nonzero linear subspace of Rn:

Definition 5.2.6. A collection of vectors v1, . . . ,vk in Rn is called orthonormal if they are orthogonal
to each other and in addition they are all unit vectors; that is, vi · vi = 1 for all i (ensuring ∥vi∥ =√
vi · vi =

√
1 = 1 for all i).

Any orthonormal collection of vectors is a basis of its span, by Theorem 5.2.2.

We will construct orthogonal (and orthonormal) bases from spanning sets, thereby establishing Theo-
rem 5.2.5, in Chapter 19 (this is the Gram–Schmidt process to which we have alluded several times).
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5.3. Examples of orthogonal bases. Here are examples illustrating the notion of orthonormal basis.

Example 5.3.1. The collection




1
0
0
0


 ,




0
2
0
0


 ,




0
0
3
0


 ,




0
0
0
4


 is an orthogonal set of 4 vectors in R4, and it spans

the entirety of R4 since we can write



a
b
c
d


 = a




1
0
0
0


+

b

2




0
2
0
0


+

c

3




0
0
3
0


+

d

4




0
0
0
4




for any a, b, c, d ∈ R (combine terms on the right side to see that indeed this always holds). Hence, R4

has dimension 4 (as we expect).
This orthogonal basis of R4 is not orthonormal because the vectors in it don’t all have length 1. To

obtain an orthonormal basis, we can divide each of these vectors by its length to arrive at an orthogonal
basis of unit vectors:

e1 =




1
0
0
0


 , e2 =




0
1
0
0


 , e3 =




0
0
1
0


 , e4 =




0
0
0
1


 . (5.3.1)

■

Example 5.3.2. For any n the analogous orthonormal collection of n vectors e1, . . . , en in Rn can be
written down (i.e., ei has its ith entry equal to 1 and all other entries are 0), and this spans Rn much as
for the case n = 4 above; it is called the standard basis of Rn, and shows dimRn = n (as we expect). In
particular, by Theorem 4.2.8 (with V = Rn), every linear subspace of Rn has dimension at most n and
the only n-dimensional one is Rn itself (as geometric intuition may suggest).

In the special case n = 3, the vectors e1, e2, e3 ∈ R3 are often respectively denoted as i, j,k in physics
and engineering contexts. ■

There are lots of orthogonal bases for Rn other than the basis {e1, . . . , en} introduced in Example
5.3.2. Here are examples for some values of n.

Example 5.3.3. The triple



1
2
4


 ,



−6
1
1


 ,



−2
−25
13


 is an orthogonal basis for R3. How can one “see” this?

One doesn’t check by hand that its span coincides with R3 (that would get bogged down in a messy system
of 3 equations in 3 unknowns.). Rather, one can check by hand that it is an orthogonal collection of vectors
(please check), so this collection of 3 nonzero vectors must be a basis of its span by Theorem 5.2.2, and
hence its span has dimension 3. But we have noted in Example 5.3.2 that for any n the only n-dimensional
subspace of Rn is itself, so the 3-dimensional span inside R3 is indeed R3. Observe the power of vector
algebra!

This triple is not orthonormal because the vectors don’t have length 1. We get an orthonormal basis by
scaling them to be unit vectors (dividing each by its length):

1√
21



1
2
4


 , 1√

38



−6
1
1


 , 1√

798



−2
−25
13


 . (5.3.2)
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The procedure of dividing by the length to get unit vectors typically leads to messy expressions with
square roots. That is one reason that whenever possible we prefer to work with orthogonal bases rather
than further demanding orthonormality (i.e., the unit length condition). ■

Example 5.3.4. The quadruple of nonzero vectors


−1
1
1
−1


 ,




0
0
1
1


 ,




1
1
0
0


 ,




1
−1
1
−1




is an orthogonal basis for R4: one can check orthogonality by computing the dot products, and then argue
just as in Example 5.3.3. This basis is not orthonormal because the vectors don’t have length 1. We get an
orthonormal basis by scaling them to be unit vectors:

1

2




−1
1
1
−1


 ,

1√
2




0
0
1
1


 ,

1√
2




1
1
0
0


 ,

1

2




1
−1
1
−1


 .

■

Example 5.3.5. If v1, . . . ,vk are nonzero vectors in Rn, by definition any vector v ∈ span(v1, . . . ,vk)
can be written as a linear combination

v =
k∑

i=1

civi (5.3.3)

for some scalars c1, . . . , ck. If the collection of vi’s is orthogonal, we can actually solve for the ci’s in
terms of v by the following slick technique that has useful generalizations throughout mathematics (with
Fourier series, special function theory, and so on). The method is to form the dot product of both sides of
equation (5.3.3) against each vi separately.

For instance, if we form the dot product against v1 then we obtain

v · v1 = c1(v1 · v1) + c2 (v2 · v1)︸ ︷︷ ︸
=0

+c3 (v3 · v1)︸ ︷︷ ︸
=0

+ · · · = c1(v1 · v1),

where the tremendous cancellation at the final equality is precisely due to the orthogonality of the collec-
tion of vi’s. Since v1 is nonzero, so v1 · v1 = ∥v1∥2 is nonzero, we can now divide by it at both ends of
our string of equalities above to obtain

v · v1

v1 · v1

= c1.

In this way we have solved for c1!
The same procedure works likewise to solve for each ci via forming dot products against vi, yielding

the general formula
ci =

v · vi

vi · vi

(5.3.4)

for each i. Substituting back into the right side of (5.3.3), we obtain the following result.

Theorem 5.3.6 (Fourier11 formula). For any orthogonal collection of nonzero vectors v1, . . . ,vk in
Rn and vector v in their span,

v =
k∑

i=1

(
v · vi

vi · vi

)
vi. (5.3.5)

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 96



In particular, if the vi’s are all unit vectors (so vi · vi = 1 for all i) then v =
∑k

i=1(v · vi)vi.
WARNING: Make sure you understand the notation in (5.3.5), since it is mixing scalars – the

ratio of dot products – and vectors. Example 5.3.8 gives an interesting numerical illustration.

■

Let’s illustrate the Fourier formula (5.3.5) in some examples.

Example 5.3.7. For the orthonormal basis e1, e2, e3, e4 of R4 as in (5.3.1) and any v =

[
a1
a2
a3
a4

]
∈ R4, the

coefficients v · ei in (5.3.5) work out as follows:

v · e1 =




a1
a2
a3
a4


 ·




1
0
0
0


 = a1

and similarly v · ei = ai for each i = 1, 2, 3, 4. Thus (since ei · ei = 1), v =
∑4

i=1(v · ei)ei =
∑4

i=1 aiei.

Unpacking the summation notation, this is just asserting



a1
a2
a3
a4


 = a1




1
0
0
0


+ a2




0
1
0
0


+ a3




0
0
1
0


+ a4




0
0
0
1


 ,

which can be directly verified by hand since the right side is exactly



a1
0
0
0


+




0
a2
0
0


+




0
0
a3
0


+




0
0
0
a4


 .

In other words, the Fourier formula (5.3.5) in the special case that {v1, . . . ,vk} is the orthonormal basis
{e1, . . . , en} of Rn is precisely the familiar fact that any vector in Rn can be decomposed as the sum of its
“components” along the various coordinate directions. This is neither surprising nor perhaps particularly
interesting, so we next give a more “typical” example. ■

Example 5.3.8. Consider the explicit orthogonal basis {w1,w2,w3} given in (5.2.2) for the linear sub-
space V = span(v1,v2,v3) in R5 with explicit vi’s as defined at the start of Example 5.2.3. Applying the
Fourier formula in (5.3.5) for the orthogonal basis {w1,w2,w3} of V , for each v ∈ V we have

v =
3∑

i=1

(
v ·wi

wi ·wi

)
wi =

v ·w1

15
w1 +

v ·w2

75
w2 +

v ·w3

64575
w3 (5.3.6)

since the denominators in the final expression are just the dot product evaluations

w1 ·w1 = 15, w2 ·w2 = 75, w3 ·w3 = 64575.

11Joseph Fourier (1768-1830) was a French mathematical physicist who worked on differential equations, function theory,
and the theory of heat. His bold claim that every periodic function is an infinite series in sines and cosines (a “Fourier series”)
revolutionized math and physics; the ratio of dot products in (5.3.5) is deeply related to a formula for coefficients of Fourier
series. In 1802 he showed a copy of the Rosetta Stone to an 11-year-old J-F. Champollion, who deciphered it 20 years later.
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To illustrate the usefulness of (5.3.6), consider the vector

v = 2v1 − v2 + v3 =




2
0
6
4
2



−




1
1
2
0
3



+




0
3
0
2
1



=




1
2
4
6
0




in V . Since {w1,w2,w3} is a basis of V , we know that there is some expression of the form

v = c1w1 + c2w2 + c3w3

for unknown scalars c1, c2, c3. What are these scalars? A brute-force approach would be to write everything
out as explicit vectors to obtain




1
2
4
6
0



= v = c1w1 + c2w2 + c3w3 = c1




1
0
3
2
1



+ c2




1
3
0
−4
7



+ c3




−33
201
−75
132
−6



=




c1 + c2 − 33c3
3c2 + 201c3
3c1 − 75c3

2c1 − 4c2 + 132c3
c1 + 7c2 − 6c3



,

and then equate corresponding vector entries on the left and right sides to get a huge system of 5 equations
in 3 unknowns. We can entirely bypass that by computing dot products as in (5.3.6) for our specific v!

To carry this out, we use the explicit descriptions of v and the wi’s to compute

v ·w1 = 25, v ·w2 = −17, v ·w3 = 861,

so (5.3.6) says for this particular v that

v =
25

15
w1 −

17

75
w2 +

861

64575
w3 =

5

3
w1 −

17

75
w2 +

1

75
w3. (5.3.7)

That’s it! This is the expression for v as a linear combination of the orthogonal basis {w1,w2,w3} of V .
(Don’t worry: we won’t ask you to carry out a calculation involving such big numbers and complicated
fractions by hand, and in particular nothing like this on an exam.)

As a safety check, or to impress ourselves with the consistency of mathematics, the equality (5.3.7)
can be verified by direct numerical calculation of the right side using the definition of the wj’s in (5.2.2):

5

3
w1 −

17

75
w2 +

1

75
w3 =

5

3
w1 +

1

75
(−17w2 +w3) =

5

3
w1 +

1

75



−17




1
3
0
−4
7



+




−33
201
−75
132
−6







=
5

3
w1 +

1

75




−50
150
−75
200
−125



.
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All entries in the column vector are divisible by 25, which is also a factor of 75, so cancelling 25’s turns
this into

5

3
w1 +

1

3




−2
6
−3
8
−5



=

1

3



5w1 +




−2
6
−3
8
−5







=
1

3



5




1
0
3
2
1



+




−2
6
−3
8
−5







=




1
2
4
6
0



,

which is exactly v as claimed. ■
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Chapter 5 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
ej as an n-vector the n-vector with entries all 0 except for 1 in jth entry (5.3.1), Example 5.3.2

Concept Meaning Location in text
basis for a nonzero linear
subspace V of Rn

a spanning set of least possible size for V Definition 5.1.1

standard basis of Rn the collection of n-vectors e1, . . . , en Definition 5.3.2
orthogonal collection of
n-vectors

a collection of n-vectors that are each orthogonal to
the rest

Definition 5.2.1

orthogonal basis (for a
nonzero linear subspace V
of Rn)

a basis of V consisting of pairwise orthogonal n-
vectors

Theorem 5.2.2

orthonormal collection of
n-vectors

unit n-vectors that are pairwise orthogonal to each
other

Definition 5.2.6

Result Meaning Location in text
Dimension Criterion characterizes possibilities for the dimension of the span of two

or three nonzero n-vectors
box just above Ex-
ample 5.1.5

any orthogonal col-
lection of nonzero
n-vectors is basis of
its span

if v1, . . . ,vk ∈ Rn are nonzero and pairwise orthogonal then
span(v1, . . . ,vk) has dimension k

Theorem 5.2.2

orthogonal basis al-
ways exists

every nonzero linear subspace V in Rn has a basis consisting of
pairwise orthogonal vectors

Theorem 5.2.5

dimRn = n the least size of a spanning set for Rn is n (and the only n-
dimensional linear subspace of Rn is itself!)

Example 5.3.2

Fourier formula for an orthogonal collection v1, . . . ,vk of nonzero n-vectors
and any v in their span, explicit formula for scalars c1, . . . , ck
so that v = c1v1 + · · ·+ ckvk

Theorem 5.3.6

Skill Location in text
visualize basis of R2 or R3 as a gridline description Figure 5.1.1 (for R3), Example 5.1.4 (for R2)
use algebra to apply Dimension Criterion Examples 5.1.5–5.1.7
verify if n given n-vectors constitute an orthogonal (or or-
thonormal) basis of Rn

Examples 5.3.1–5.3.4
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5.4. Exercises. (links to exercises in previous and next chapters) Consult Table 0.0.1 for efficient
notation used in some exercises below and in further mathematics.

Exercise 5.1. For each of the following collections of nonzero vectors in some Rn, decide whether it
gives an orthogonal basis for Rn. If the collection does give an orthogonal basis, divide by lengths to turn
it into an orthonormal basis.

(a)
{[

1
7

]
,

[
7
−1

]}

(b)







1
1
1


 ,




1
1
−2


 ,



2
0
1







(c)







3
2
1


 ,



−1
5
−7







(d)








1
1
0
1


 ,




1
2
3
−3


 ,




3
−3
1
0


 ,




1
1
−3
−2








Exercise 5.2. For each of the following orthogonal bases B = {b1, . . . ,bn} of some Rn and n-vector
v, write v as a linear combination

∑n
i=1 cibi using the formula in Theorem 5.3.6 (you need to compute

the scalars c1, . . . , cn) and then double-check your work by evaluating the linear combination you have
obtained to make sure that it is equal to v.

(a) B =

{[
1
5

]
,

[
5
−1

]}
and v =

[
1
3

]
.

(b) B =

{
1√
26

[
1
5

]
,

1√
26

[
5
−1

]}
and v =

[
1
2

]
.

(c) B =







1
1
1


 ,




1
0
−1


 ,




1
−2
1





 and v =



1
2
3


 .

Exercise 5.3.

(a) Find an orthonormal basis for R2 containing a unit vector that is a scalar multiple of
[
3
4

]
. (It

suffices to find an orthogonal basis containing
[
3
4

]
, and then to divide everything by its length.)

(b) Find an orthonormal basis for R3 containing a unit vector that is a scalar multiple of



2
2
1


 . (Use a

method similar to (a); this will involve picking solutions to some systems of equations, and there
are many ways to do this, so there are many possible answers.)

(c) Is there an orthogonal basis of R3 containing the 3-vectors



1
1
1


 and




1
−1
1


? Justify your answer.

Exercise 5.4. Find an orthogonal basis for the plane in R3 defined by the equation x + 2y + 3z = 0.
(There are many possible answers.)

Exercise 5.5. Consider nonzero 3-vectors v,w,u that span different lines through the origin (so the span
of any two of them is a plane through the origin in R3). Explain why if u lies in the span of v and w then
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each of v and w is in the span of the other two vectors (hint: if u = av + bw then rule out the possibility
that a = 0 or b = 0).

Exercise 5.6. Find an orthogonal basis v1,v2,v3 for R3 for which the entries in each vi are all nonzero.
(Many answers are possible; we are asking for just one such triple.)

Exercise 5.7.

(a) For the orthogonal vectors v1 =



2
0
4


 and v2 =



−2
1
1


, find a third nonzero 3-vector v3 orthogo-

nal to v1 and v2, so {v1,v2,v3} is an orthogonal basis of R3. (The answer for v3 is determined
up to a scaling factor, so there are multiple answers possible.)

(b) Using v3 that you found in (a), express the vector



−1
2
3


 as a linear combination of v1,v2,v3

(i.e., write it as c1v1 + c2v2 + c3v3 for scalars c1, c2, c3 that you can compute by the Fourier
formula).

Exercise 5.8. This exercise illustrates the important general fact (to be discussed in detail in Section 19.2)
that every nonzero subspace of Rn has an orthogonal basis, in fact many such). Consider the collection

W of vectors in R4 orthogonal to v =




1
1
1
1


; that is,

W = {x ∈ R4 : x1 + x2 + x3 + x4 = 0}.
(a) Show that W is a linear subspace by expressing it as the span of three vectors (Hint: use the

method of Example 4.1.6).
(b) Find a collection of nonzero pairwise orthogonal vectors {w1,w2,w3} in W by building on the

algebraic method for Exercise 5.4 (to make life easier, choose w1 with some entries equal to 0;
also for safety double-check the orthogonality among vectors in your answer).

There are many possible answers to each part of this exercise.

Exercise 5.9. This exercise illustrates the important general fact (to be discussed in detail in Section 19.2)
that every nonzero subspace of Rn has an orthogonal basis, in fact many such). Consider the collection

W of vectors in R4 orthogonal to v =




1
1
0
0


 and v′ =




1
0
1
1


; that is,

W = {x ∈ R4 : x1 + x2 = 0, x1 + x3 + x4 = 0}.
(a) Show that W is a linear subspace of R4 by expressing it as the span of two vectors (Hint: use the

method of Example 4.1.13).
(b) Find an orthogonal pair of nonzero vectors {w1,w2} in W . (Hint: Take w1 to be one of the

vectors that you found in (a), and then w2 must be orthogonal to that and satisfy the two equations
defining W . For safety, double-check the orthogonality among vectors in your answer.)

There are many possible answers to each part of this exercise.
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Exercise 5.10. Let P be the plane in R3 spanned by the orthogonal vectors b1 =



1
5
2


 and b2 =




2
0
−1


,

and let v =



10
4
0


.

(a) Motivated by the formula in Theorem 5.3.6, calculate v′ =
b1 · v
b1 · b1

b1 +
b2 · v
b2 · b2

b2.

(b) Check that v′ ̸= v, and then explain why Theorem 5.3.6 implies v does not lie in the plane P .
(The vector v′ built in terms of v and an orthogonal basis of P is a special case of a general
concept called projection to a linear subspace, which we’ll analyze thoroughly in Chapter 6.)

Exercise 5.11. The nonzero 3-vectors

v1 =



1
0
2


 , v2 =



−2
5
1


 , v3 =



−2
−1
1




are pairwise orthogonal (as you may check for yourself if you wish) and so constitute an orthogonal
basis of R3. For each of the following vectors v, use the Fourier formula to find scalars c1, c2, c3 so that
v = c1v1 + c2v2 + c3v3, and then compute this linear combination explicitly to verify that you recover v
(i.e., this is a check that your answer is correct).

(In each case the ci’s are integers, so if you get a non-integer ci then you have made a mistake.)

(a)




1
−7
7




(b)



5
14
0




(c)



8
3
1




Exercise 5.12. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):

(a) If {v1,v2,v3} is a basis for V then {v1 + v2,v2 + v3} is also a basis for V .
(b) If {v1,v2} is a basis for V then {v1 + v2,v1 − v2} is also a basis for V .

(c) Let V = span(v1,v2) for v1 =



1
1
1


 and v2 =



1
0
2


. The vector x = 5v1 − 2v2 =



3
5
1


 ∈ V can

be expressed as
x · v1

v1 · v1

v1 +
x · v2

v2 · v2

v2.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 103



6. Projections

In this chapter we study questions of the following type: for a point Q and plane P in R3, what point
on P is closest to Q? (This general problem can be reduced to the case when P passes through 0.)

P

Q

z

x y

For many applications in engineering, physics, and data-related problems in all scientific fields (genet-
ics, economics, neuroscience, computer science, etc.) it is essential to go far beyond R3 and solve similar
problems involving distance minimization to subspaces in Rn for any n:

If V is a linear subspace in Rn and x ∈ Rn is some point, then what point in V is closest
to x? (This closest point will be called the projection of x into V .)

We saw instances of the utility of the answer to this in economics and neuroscience in Example 4.1.9
(the application to facial recognition with n = 50 given in [CT] is discussed further in Example 6.2.2).
In Chapter 7 we will use it to find the line that best fits n data points in R2 (solving a practical problem
in R2 using geometric ideas in Rn!), building on work in this chapter using distance minimization to
make orthogonal bases in special cases. The pervasive data-analysis technique called principal component
analysis (PCA) to be discussed in Section 27.3 is another important real-world application of the methods
developed in this chapter.

By the end of this chapter, you should be able to:

• compute the point on a line in Rn through 0 that is closest to a given point in Rn;
• compute projection into a subspace V of Rn when given an orthogonal basis for the subspace.

6.1. The closest point to a line. The way we will solve the general problem of distance minimization
from a point in Rn to a linear subspace V involves “assembling” a collection of solutions to distance min-
imization to certain 1-dimensional linear subspaces of V , or in other words, solving distance minimization
problems to a collection of lines through 0 in Rn.

Since minimizing distance to lines will be the foundation for the general case, we begin by focusing
on this special case. Consider a line L in Rn through 0, so L = span(w) = {cw : c ∈ R} where w ∈ Rn

is some nonzero vector. For any point x ∈ Rn, we want to show that there is a unique point in L closest
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to x, and to actually give a formula for how to compute this nearest point to x in L. How can we get an
idea about what to do? That is:

(i) Why should we believe that in Rn for general n there is a (unique) point on L closest to x?
(ii) How can we determine what that point is? (It will be denoted ProjL(x) or Projw(x), and called

the projection of x into L or into w.)

Here is the fundamental idea: although our task (necessary for many applications!) takes place in Rn

with completely general (and possibly huge) n, we look at a low-dimensional instance of the problem
in the hope that the low-dimensional case will suggest some feature that has a chance to adapt to
the general situation. This balancing of insight from pictures in low-dimensional cases alongside
algebraic work and geometric language developed for Rn with general n is an important part of linear
algebra, giving visual insight into Rn for big n. (This doesn’t justify results in Rn for general n, but
it inspires what we should expect and/or try to prove is true.)

To this end, let’s look at the case n = 2 shown in Figure 6.1.1 below.

−1 0 1 2 3 4
−2

−1

0

1

2

3

4

•0

w

θ
x

Projwx

FIGURE 6.1.1. Projection of the vector x onto the line L spanned by w

The key insight suggested by Figure 6.1.1 is that the point on the line L that is closest to x has another
characterization (that in turn will allow us to compute it): it is the one point on L for which the displace-
ment vector to x (the dotted line segment joining it to x as in Figure 6.1.1) is perpendicular to L, or
equivalently is perpendicular to w. Visually, the perpendicular direction to L from x is the “most direct”
route. Or put another way, you may convince yourself by drawing some pictures that any deviation from
perpendicularity entails a longer path from x to the line L.

To summarize, Figure 6.1.1 suggests a workable idea: the point cw ∈ L for which ∥x−cw∥ is minimal
should also have the property that x−cw is orthogonal to everything in L. Although this idea is suggested
by the picture in R2, as written it makes equally good sense in Rn for any n whatsoever. But is it true?
(Certainly a picture in R2, no matter how convincing, does not justify that this is still valid in Rn for
general n.) And even once we know it is true, how can we exploit this property of the nearest point to x
on L to actually compute this nearest point?

The informal reasoning above may have already convinced you that the distance is minimized precisely
when the displacement vector is orthogonal to L. We now explain two ways to use that characterization
to obtain a clean and explicit formula for the nearest point. The results of these are then summarized in
Proposition 6.1.1, and we follow with some worked examples.
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Method I (algebraic). In accordance with the idea inspired by Figure 6.1.1 in the case n = 2, for general
n we look for a scalar c for which x− cw is orthogonal to every vector in L. The points of L = span(w)
are those of the form aw for scalars a, so we seek c making (x− cw) · (aw) = 0 for every scalar a. The
dot product has the property that (x− cw) · (aw) = a((x− cw) ·w), so actually it suffices to make sure
that (x− cw) ·w = 0. We can use the further properties of the dot product to rewrite this as

0 = (x− cw) ·w = x ·w − (cw) ·w.
We can rearrange this expression to write it as c(w ·w) = x ·w. But w ·w = ∥w∥2 > 0 (since w ̸= 0),
so it makes sense to divide both sides by w · w to obtain that c =

x ·w
w ·w . This is the coefficient we had

previously regarded as unknown! To summarize, we have shown through algebra and the properties of dot
products that there is exactly one point in the line L = span(w) through 0 in Rn whose difference from x

is orthogonal to everything in L: it is
( x ·w
w ·w

)
w.

We have not yet actually shown that this scalar multiple of w on L is closer to x than every other vector
in L, but if we believe the orthogonality insight inspired by the 2-dimensional picture in Figure 6.1.1 then
this must be that closest point. As a bonus, we have obtained an explicit formula for it!

Method II (geometric). We next use some plane geometry via Figure 6.1.1 to obtain the same formula
for the closest point. Strictly speaking, this argument only applies when n = 2, but you might find that it
gives the formula some visual meaning that is somehow lacking in the purely algebraic work in Method I.
There is nothing to be done if x ·w = 0 (in that case x is perpendicular to L and we are thereby convinced
that 0 is the closest point, as is also given by the desired formula). Hence, we can suppose x ̸= 0 and the
angle θ between x and w satisfies either 0° < θ < 90° or 90° < θ < 180°.

The case of acute θ is shown in Figure 6.1.1, whereas if θ is obtuse then the point we seek would be
in the direction of −w (rather than in the direction of w). If θ is acute, as in Figure 6.1.1, then by basic
trigonometry, the leg along L for the right triangle as shown has length ∥x∥ cos(θ) and it points in the
direction of the unit vector w/∥w∥. This says that the endpoint on L of the dotted segment is the vector

(∥x∥ cos(θ)) w

∥w∥ . (6.1.1)

But cos(θ) = (x · w)/(∥x∥∥w∥), so plugging this into (6.1.1) yields the desired formula since ∥w∥2 =
w ·w. The case when 90° < θ < 180° goes very similarly, except now cos(θ) < 0 (so the endpoint on L of
the dotted segment is in the direction of the opposite unit vector −w/∥w∥) and we have to work with the
length ∥x∥ | cos(θ)| = −∥x∥ cos(θ). Putting these together, the two signs cancel and we get the desired
formula again.

The following result records the conclusion of our preceding algebraic and geometric considerations,
inspired by Figure 6.1.1. For those who wish to think about this more carefully, we provide at the end of
this section a logically complete proof that works directly in every Rn (and shows in particular that the
insight about orthogonality we have been using is always correct).

Proposition 6.1.1. Let L = span(w) = {cw : c ∈ R} be a 1-dimensional linear subspace of Rn (so
w ̸= 0), a “line”. Choose any point x ∈ Rn. There is exactly one point in L closest to x, and it is
given by the scalar multiple ( x ·w

w ·w
)
w (6.1.2)

of w. This is called “the projection of x into span(w)”; we denote it by the symbol Projw x.
WARNING: Make sure you understand the notation in the formula for this closest point, since it

is mixing scalars – the ratio of dot products – and vectors.
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Example 6.1.2. For the line L in R2 through the origin given by y = 2x, let us compute the projection of

x =

[
5
1

]
onto L. The line L is spanned by any nonzero vector in L, such as w =

[
1
2

]
(by setting x = 1 in

the equation for L), so (6.1.2) gives that the projection of x onto L is

Projw x =
( x ·w
w ·w

)
w =

7

5
w =

[
7/5
14/5

]
=

[
1.4
2.8

]

as illustrated in Figure 6.1.2.

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6
L

x

w

Projwx

x

y

•

FIGURE 6.1.2. Projection of the vector (5, 1) onto the line y = 2x

It is a good idea to check that, as in the general picture in Figure 6.1.1, the difference vector

x−Projw x =

[
5
1

]
−
[
7/5
14/5

]
=

[
18/5
−9/5

]

(this is the dotted segment in Figure 6.1.2 up to a choice of direction) is indeed perpendicular to the line L,
or equivalently is perpendicular to the nonzero w that spans L. The dot product of this difference vector
with w is 1 · (18/5) + 2(−9/5) = 0. ■

Example 6.1.3. In many engineering problems involving a balance of forces (such as to determine the
tension in a system of cables used to lift a heavy beam into the air, or a myriad of systems involving
the support of objects by a linked system of springs, chains, cords, etc.), a key part of the analysis is to
determine the projection of a force vector along various directions relevant to the geometry of the situation.

For example, on a hill that makes an angle of 25° relative to the ground, suppose a heavy sled is being
pulled by a rope with a force of 200 Newtons. Depending on the height of the person, the taut rope will
make some further angle relative to the slope of the hill; say it is 50°. Focusing only on the force applied
by the person dragging the sled up the hill, the force vector F thereby points in the direction of that 50°
incline relative to the hill, as shown in Figure 6.1.3.
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ProjvF

50◦

25◦

F

v

FIGURE 6.1.3. Pulling a heavy object up a hill

The projection of F along the direction of the hill is the part of the force that contributes to actual
motion (sometimes called the “effective force”) and the projection in the direction perpendicular to the
hill is “wasted effort” (say ignoring friction).

If v is a vector pointing up the direction of the hill then to find the “effective force” we want to compute
the magnitude of Projv(F). This projection is

(
v · F
v · v

)
v =

(∥v∥∥F∥ cos θ
∥v∥2

)
v =

(∥F∥ cos θ
∥v∥

)
v

where ∥F∥ = 200 is the magnitude (in Newtons) of the applied force and the angle θ between F and v is
50°. Hence, the projection Projv(F) is 200 cos(50°)(v/∥v∥). The vector v/∥v∥ has length 1 since it is
a vector divided by its length. Hence, when we compute the magnitude of this projection what remains is
the multiplier 200 cos(50°) ≈ 128.56 Newtons. Note that the angle of the hill has nothing to do with this
calculation (though it impacts the roles of friction and gravity in more thorough calculations).

Similarly, for any magnitude F of applied force to pull the sled up the hill with the taut rope making
an angle of θ relative to the hill, the “effective force” applied is F cos θ (if we ignore friction). ■

Example 6.1.4. Let us now find the closest point to x =



1
2
4


 on the line span(w) for w =




3
−1
1


,

illustrated in Figure 6.1.4.
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0

1

2

3

4

5
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•

•

w

•
(5/11)w

x

FIGURE 6.1.4. The orthogonal projection of x onto the span of w is (5/11)w

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 108



Since w·w = 9+1+1 = 11 and x·w = 3−2+4 = 5 we compute Projw(x) = ((x·w)/(w·w))w =

(5/11)w =



15/11
−5/11
5/11


 as in Figure 6.1.4. Thus, the nearest point on the line to



1
2
4


 is



15/11
−5/11
5/11


. ■

There is a very useful algebraic property of projections onto lines L through 0 that is difficult to “see”
directly in purely geometric terms but is quite convenient when one needs to compute ProjL(v) for many
different points v. This is a nice synthesis of algebraic and geometric aspects of linear algebra. The upshot
is going to be that if we do the work of computing the vectors ProjL(ei) for all i = 1, . . . , n and store
those in a computer, then that data can be used to very rapidly compute ProjL(v) for any vector v ∈ Rn

whatsoever.

We illustrate this with a specific example. Consider v =



1
3
4


. The numbers 1, 3, 4 represent the

amount of v that points along the x, y, z-axes respectively. More precisely,



1
0
0


 = e1 is the component

of v along the x-axis line,



0
3
0


 = 3e2 is the component of v along the y-axis line, and



0
0
4


 = 4e3 is

the component of v along the z-axis line. (These are the closest points to v on the x-, y- and z-axes,
respectively.)

In terms of this data, we want to compute the projection of v on some line pointing with some other
direction: if w is a (nonzero) vector along this new direction, we want to compute Projw(v). The key
point is that the formula (6.1.2) for Projw(x) behaves well for any linear combination of any n-vectors
x1,x2, . . . ,xk: the projection of a linear combination of the xi’s is equal to the corresponding linear
combination of the projections.

For example, with k = 2 it says Projw(5x1 − 7x2) = 5Projw(x1)− 7Projw(x2) and likewise with
5 and −7 replaced by any two scalars. The reason this works is an algebraic calculation:

Projw(c1x1 + · · ·+ ckxk) =

(
(c1x1 + · · ·+ ckxk) ·w

w ·w

)
w

=

(
c1(x1 ·w) + · · ·+ ck(xk ·w)

w ·w

)
w

= c1

(x1 ·w
w ·w

)
w + · · ·+ ck

(xk ·w
w ·w

)
w

= c1Projw(x1) + · · ·+ ck Projw(xk). (6.1.3)

The fact that Projw(·) behaves so nicely with respect to linear combinations will be very useful but is
not at all apparent in terms of the “nearest point” definition of Projw(·). It dropped out from the formula
for Projw(·) in terms of dot products in (6.1.2), demonstrating the power of combining algebraic and
geometric ideas in linear algebra. Applying (6.1.3) to the expression v = e1 + 3e2 + 4e3 yields

Projw(v) = Projw(e1) + 3Projw(e2) + 4Projw(e3). (6.1.4)

A visualization of (6.1.4) is given in Figure 6.1.5: the projections e1, 3e2, 4e3 of v into the coordinate
axes are indicated with green, the projections of those three into the blue line L = span(w) are indicated
with purple, and the sum of those latter three projections in L is equal to Projw(v). The picture looks
complicated, so the equality (6.1.4) may be surprising (or confusing) when thinking about it in purely
geometric terms via distance minimization, but via vector algebra as above it was a direct calculation.
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FIGURE 6.1.5. The projection Projw(v) in the blue line of the red vector v is the sum of
the 3 purple projections in the blue line of the 3 green projections of v into the coordinate
axes. This illustrates how surprising (6.1.4) is as a geometric fact (without algebra).

The lesson is that we can compute the projection of v into an arbitrary line L = span(w) through 0 in
terms of the components 1, 3, 4 of v along the coordinate axes, namely as the “same” linear combination
of the projections of e1, e2, e3 into the same line L. Let’s see this in action, to appreciate its usefulness.

Example 6.1.5. Let v =



1
3
4


 be as above. Consider the following line in R3 through the origin:

L =







t
0
t


 : t ∈ R



 .

We shall compute in two ways the point on L that is closest to v. Begin by picking a nonzero vector w

on L, say w =



1
0
1


. Whatever the choice of w we make, since L is a line we have L = span(w) and

ProjL(v) = Projw(v). Our task is to calculate Projw(v).

Method I. By Proposition 6.1.1 we have

ProjL(v) = Projw(v) =
( v ·w
w ·w

)
w. (6.1.5)

To compute this, we first work out some dot products: v ·w =



1
3
4


 ·



1
0
1


 = 5 and w ·w =



1
0
1


 ·



1
0
1


 = 2.

Hence, by (6.1.5), ProjL(v) =
5

2



1
0
1


 =



5/2
0
5/2


 .
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Method II. Based on (6.1.4), we first compute the projections Projw(ei). Using the formula from
Proposition 6.1.1, we have

Projw(ei) =
(ei ·w
w ·w

)
w =

(ei ·w
2

)


1
0
1




with ei ·w equal to the ith entry in w. In other words:

Projw(e1) =
1

2



1
0
1


 =



1/2
0
1/2


 , Projw(e2) =

0

2



1
0
1


 =



0
0
0


 , Projw(e3) =

1

2



1
0
1


 =



1/2
0
1/2


 ,

so (6.1.4) yields

Projw(v) =



1/2
0
1/2


+ 3



0
0
0


+ 4



1/2
0
1/2


 =



5/2
0
5/2




once again.
You might think that Method II is silly, since it involves applying Proposition 6.1.1 three times (once

for each Projw(ei)) rather than once as in Method I. The merit of Method II is seen if we have to compute
Projw(x) for lots of different vectors x. Namely, the procedure yielding (6.1.4) carries over to give a

completely general formula for Projw(x) in terms of the entries of x: if x =



a
b
c


 then

Projw(x) = aProjw(e1) + bProjw(e2) + cProjw(e3),

so once we have done the work to compute the three vectors Projw(ei) (as we did above) then this yields
a general formula for all x:

Projw(x) = a



1/2
0
1/2


+ b



0
0
0


+ c



1/2
0
1/2


 =



(a+ c)/2

0
(a+ c)/2


 .

For any nonzero w ∈ Rn, Method II adapts to any Rn to give a general formula for Projw(x) in terms
of the entries of a general x ∈ Rn once we have computed the Projw(ei)’s (say by applying Proposition
6.1.1 for each i = 1, . . . , n). ■

Example 6.1.6. In Example 6.1.3, we saw that projection to a line arises in the analysis of forces.
Projection to lines also arises, for entirely different reasons, at the heart of quantum mechanics. In
that physical theory, which underlies all modern electronics, the possible states of a (microscopic)
system correspond to unit vectors x in a typically large-dimensional “state space”.

For each “observable” quantity of interest, there is an orthonormal basis v1,v2, . . . of the state
space so that the vj’s correspond to the possible outcomes of a measurement on x of the observable
quantity. An important discovery of Max Born is that ∥Projvj

(x)∥2 is the probability that a measure-
ment of the observable for a system in state x has outcome corresponding to vj . The Fourier formula
(5.3.5) applied to x says x =

∑
j Projvj

(x); this is a sum of pairwise orthogonal vectors, and a
generalization of the Pythagorean Theorem to sums of pairwise orthogonal vectors (the case of a sum
of two such vectors is Theorem 2.3.1) then gives ∥x∥2 =

∑
j ∥Projvj

(x)∥2. But ∥x∥ = 1 since x
is a unit vector, so this says the sum of the probabilities of all possible outcomes is 1, as it ought to
be. ■
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PROOF OF PROPOSITION 6.1.1.
We are seeking a point of the form tw with minimal distance to x: the difference vector x − tw

has minimal length. Our aim is to show that x − tw has minimal length precisely when x − tw is
perpendicular to w, and that in this case t = (x ·w)/(w ·w) as in (6.1.2). Finding the “closest point”
to the line might seem like a calculus problem: set up a distance function in terms of t and minimize
it. This can be done via calculus, but it is much easier (and more illuminating) to solve this with a bit
of linear algebra, as we shall now see. First, we check that the only value of t for which x − tw is
perpendicular to w is the coefficient in (6.1.2). We compute (x − tw) · w = (x · w) − (tw) · w =
(x ·w)− t(w ·w), so this vanishes precisely when t(w ·w) = x ·w. Dividing by w ·w = ∥w∥2 > 0,
this is the same as saying t = (x ·w)/(w ·w), as desired.

It remains to show that the distance ∥x−tw∥ ≥ 0 is minimized exactly when t = (x·w)/(w·w). It
is the same to show ∥x−tw∥2 is minimized exactly when t has that value. Similarly to what we saw in
Section 2.3, ∥x−tw∥2 = (x−tw)·(x−tw) = x·x−2t(x·w)+t2(w·w) = (w·w)t2−2(x·w)t+x·x.
This is a quadratic polynomial in t with leading coefficient w · w = ∥w∥2 that is positive. But any
quadratic polynomial at2 + bt+ c with a > 0 has parabolic graph with minimum exactly at the vertex
t = −b/(2a). In our case a = w ·w and b = −2(x ·w), so −b/(2a) = (x ·w)/(w ·w).

6.2. Projection onto a general subspace. We have now acquired a lot of experience with projection
to lines through 0 in Rn. Let us harness that skill to compute the point in a linear subspace V of Rn

nearest to a chosen x ∈ Rn, which we denote as ProjV (x) ∈ V . This nearest point to x will be computed
as a sum of projections of x into lines through 0 in V arising from an orthogonal basis of V (when V is
nonzero).

The first issue is to adapt to general V the orthogonality insight we obtained in Figure 6.1.1 with
lines; we used that to obtain a formula for the nearest point to x on a line through the origin in Rn. As
motivation in general, let’s look at the case of a plane V through the origin in R3 equipped with a choice
of orthogonal basis {v1,v2} of this plane. In Figure 6.2.1 we draw the typical situation, indicating with
the notation ProjV (x) the point in V closest to x. The first geometric insight, similar to our experience
with lines, is that since this nearest point should have displacement vector to x that is the “most direct”
route to V from x, the displacement should involve “no tilting” relative to any direction within V .

V

x

ProjV(x)

Projv1
(x) Projv2

(x)

(0, 0, 0)

FIGURE 6.2.1. The case n = 3 with V a plane: ProjV (x) = Projv1
(x) +Projv2

(x).

In Figure 6.2.1, although the displacement x−Projvi
(x) to the line span(vi) is perpendicular to that

line, it is generally not perpendicular to much else in V . This is indicated by the tilt relative to V of the
triangle with vertices (0, 0, 0), x, and Projv2

(x) in Figure 6.2.1. The triangle with vertices (0, 0, 0), x, and

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 112



Projv1
(x) is also tilted (perhaps harder to notice, due to perspective), whereas the triangle with vertices

(0, 0, 0), x, and ProjV (x) has no tilt relative to V . This contrast of tilting and non-tilting triangles relative
to V expresses that the displacement x−ProjV (x) is perpendicular to everything in V .

If you think about it, hopefully it seems plausible that if v ∈ V makes the displacement x − v per-
pendicular to everything in V then v should be the point in V for which the direction of the displacement
x− v is the “most direct” route from x to V , making v the point in V nearest to x. The picture in Figure
6.2.1 suggests that the rectangle having as two of its edges the segments joining (0, 0, 0) to Projv1

(x) and
Projv2

(x) has as its corner opposite (0, 0, 0) the point ProjV (x). By the parallelogram law for vector
addition, this would say ProjV (x) = Projv1

(x) +Projv2
(x).

Here is the general result encompassing our observations in the special case n = 3 with V a plane:

Theorem 6.2.1 (Orthogonal Projection Theorem, version I). For any x ∈ Rn and linear subspace V
of Rn, there is a unique v in V closest to x. (In symbols, ∥x − v∥ < ∥x − v′∥ for all v′ in V with
v′ ̸= v.) This v is called the projection of x onto V , and is denoted ProjV (x); see Figure 6.2.1. The
projection ProjV (x) is also the only vector v ∈ V with the property that the displacement x − v is
perpendicular to V (i.e., x− v is perpendicular to every vector in V ).

If V is nonzero then for any orthogonal basis v1,v2, . . . ,vk of V we have

ProjV (x) = Projv1
(x) +Projv2

(x) + · · ·+Projvk
(x), (6.2.1)

where Projvi
(x) = ((x ·vi)/(vi ·vi))vi as in Proposition 6.1.1. (For x ∈ V we have ProjV (x) = x

– the point in V closest to x is itself! – so (6.2.1) for x ∈ V recovers (5.3.5)!)

When dimV = 1, the link between perpendicularity and distance minimization was discussed in
Section 6.1. In Section 6.1 we saw that the orthogonality characterization of the nearest point to x on a
line through 0 was the key to actually computing that point, and the same goes for the general case in
Theorem 6.2.1. A proof of Theorem 6.2.1 for general V is given in Section 6.3.

Although (6.2.1) in the special case x ∈ V is exactly (5.3.5), it may still seem a bit unintuitive why
we should expect (6.2.1) to be true in general. We give some motivation for this in Remark 6.2.5. That
motivation gives some insight into why it is necessary to assume that the basis {v1, . . . ,vk} of V is
orthogonal in order for the formula (6.2.1) to hold. A way to see that one cannot expect (6.2.1) to hold
for a general basis of V is to revisit the picture in Figure 6.2.1 but with v2 taken to be extremely close to
v1: in that case Projv2

(x) would be extremely close to Projv1
(x) and so their sum would be extremely

close to 2Projv1
(x), which has nothing at all to do with the point ProjV (x) in V closest to x!

Example 6.2.2. According to [CT] and the related press release [Daj], also described for the general
public in [T, pp. 27-28] (see the sections “Cracking the Code” and “A Win-Win Bet”), facial recogni-
tion in the brain amounts to computing a “face vector” x ∈ R50 by using (6.2.1) for V = Rn = R50!

Techniques from Principal Component Analysis (see Section 27.3) provide a special orthonormal
basis v1, . . . ,v50 of R50 (not the standard basis) so that Projvj

(x) is computed by specific neurons
depending on j; the brain sums these to compute ProjR50(x) = x. In [T], the role of projections in
this breakthrough is described by the lead scientist, Doris Y. Tsao, as follows:

“Remembering my . . . linear algebra, I realized . . . that we should be able to con-
struct a large “null space” of faces for each face cell . . . It would demolish the
vague intuition that everyone shared about face cells – that they should be tuned to
specific faces . . . face cells are not encoding the identities of specific individuals in
the IT cortex. Instead, they are performing an axis projection, a much more abstract
computation.” ■
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Example 6.2.3. Let U be the subspace of R4 spanned by u1 =




1
−1
0
0


 and u2 =




1
1
1
2


. Let v =




1
2
3
4


. We

seek the point u in U that is closest to v.

To solve this problem, we want to use Theorem 6.2.1 to find the projection ProjU(v). Since

u1 · u2 =




1
−1
0
0


 ·




1
1
1
2


 = 0,

the nonzero u1 and u2 form an orthogonal basis for U (so U is a “plane”; i.e., dim(U) = 2). Thus,
Theorem 6.2.1 tells us that u = ProjU(v) = Proju1

(v) +Proju2
(v).

These projections are given by Proju1
(v) = c1u1 and Proju2

(v) = c2u2 for the coefficients

c1 =
v · u1

u1 · u1

, c2 =
v · u2

u2 · u2

.

To evaluate these, we need to compute some dot products. By inspection v · u1 =




1
2
3
4


 ·




1
−1
0
0


 = −1

and u1 · u1 = 12 + (−1)2 = 2, so c1 = −1/2. Likewise, v · u2 =




1
2
3
4


 ·




1
1
1
2


 = 14 and u2 · u2 =

12 + 12 + 12 + 22 = 7, so c2 = 14/7 = 2. Thus,

u = ProjU(v) = Proju1
(v) +Proju2

(v) = (−1/2)u1 + 2u2 =
−1

2




1
−1
0
0


+ 2




1
1
1
2


 =




3/2
5/2
2
4


 .

We also verify numerically that the difference v′ = v−ProjU(v) = v−u is orthogonal to everything
inU , or in other words is orthogonal to u1 and u2, as it must be if we have not made a mistake. We compute

v′ = v − u =




1
2
3
4


−




3/2
5/2
2
4


 =




−1/2
−1/2
1
0


 ,

so v′ · u1 = −1/2− (−1/2) = 0 and v′ · u2 = −1/2− 1/2 + 1 + 0 = 0 as expected. ■

Here is a reformulation of Theorem 6.2.1, expressing the insight of an orthogonality characterization
of displacement from the nearest point.

Theorem 6.2.4 (Orthogonal Projection Theorem, version II). If V is a linear subspace of Rn then
every vector x ∈ Rn can be uniquely expressed as a sum

x = v + v′

with v ∈ V and v′ orthogonal to everything in V . Explicitly, v = ProjV (x) and v′ = x−ProjV (x).
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The preceding reformulation is an immediate consequence of the assertion in Theorem 6.2.1 that
ProjV (x) is the only vector in V whose difference from x is perpendicular to everything in V .

Remark 6.2.5. If you are convinced by the discussion of Figure 6.2.1 that the point v ∈ V nearest to
x ∈ Rn should make x − v perpendicular to everything in V , so in effect you find Theorem 6.2.4 to be
plausible, let’s now see that the formula (6.2.1) then is quite reasonable.

Since the vi’s span V , the point v ∈ V closest to x can be written in the form v =
∑k

i=1 civi for some
unknown coefficients ci. We are going to see that the perpendicularity of x− v to everything in V forces
ci = (x · vi)/(vi · vi) for every i. But then civi is exactly the formula for Projvi

(x) in Proposition 6.1.1,
so we would obtain v =

∑k
i=1 civi =

∑k
i=1Projvi

(x) as asserted in (6.2.1).
How can we show that the coefficients ci are really given by the ratios (x · vi)/(vi · vi)? For this we

have to do some algebra (rather than geometry): since x − v is perpendicular to everything in V , it is in
particular perpendicular to every vj , so

0 = (x− v) · vj = x · vj − v · vj

for every j. This says x · vj = v · vj for every j. But v =
∑k

i=1 civi with some unknown ci’s, so

v · vj =
k∑

i=1

(civi) · vj =
k∑

i=1

ci(vi · vj),

and the terms for i ̸= j all vanish since vi ·vj = 0 whenever i ̸= j (as {v1, . . . ,vk} is an orthogonal basis
of V !). In other words, v · vj = cj(vj · vj) for every j. But we have seen that x · vj = v · vj , so

x · vj = cj(vj · vj)

for every j. We can divide by vj · vj since this is nonzero (it is equal to ∥vj∥2 > 0, as vj ̸= 0), so we
thereby obtain the formula cj = (x · vj)/(vj · vj) for every j, as desired.

Remark 6.2.6. In this section, we have solved the problem of computing the point in a linear subspace of
Rn closest to a chosen point x ∈ Rn by using an orthogonal basis for the subspace. The task of actually
finding an orthogonal basis for a linear subspace of Rn has not yet been addressed. We’ll take up a special
case in Section 7.1 and will solve it general in Chapter 19 using a geometric technique called the Gram–
Schmidt process. An alternative algebraic method (using techniques in “matrix algebra”) will be given in
Chapter 20 (see Theorem 20.6.3).

6.3. Determination of closest point. In this section, we give a proof of Theorem 6.2.1, partly
motivated by Figure 6.2.1 that illustrates it (as a guide for expecting certain dot products to be equal
to 0, which we shall verify by calculation). The case V = {0} is easy by unraveling definitions, so
we may and do assume V is nonzero.

Choose an orthogonal basis {v1, . . . ,vk} of V and define the notation ProjV (x) by the formula
(6.2.1) in terms of that chosen orthogonal basis. We proceed in several steps to show that this point
satisfies all of the desired properties. (Strictly speaking, this proof is assuming the existence of an
orthogonal basis of V . We will establish the existence of such bases for nonzero linear subspaces in
general in Chapter 19, not relying on the present considerations. So at that time our proof of Theorem
6.2.1 will be complete.)

Step 1. Show x−ProjV (x) is perpendicular to every vi.
We will show each dot product (x − ProjV (x)) · vi vanishes. The dot product vi · vj vanishes

for j ̸= i because the vi’s are orthogonal to each other by assumption. Since Projvj
(x) is a scalar
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multiple of vj , it follows that Projvj
(x) · vi = 0 for each j ̸= i as well. Therefore

(x−ProjV (x)) · vi = (x−Projvi
x) · vi + other terms which vanish.

To check that (x−Projvi
x) · vi = 0 too, we use the formula Projvi

x =

(
x · vi

vi · vi

)
vi to get

(x−Projvi
x) · vi = x · vi − (Projvi

x) · vi = x · vi −
((

x · vi

vi · vi

)
vi

)
· vi. (6.3.1)

But (cvi) · vi = c(vi · vi) for any scalar c (see Theorem 2.2.1(iii)), so the term being subtracted on

the right side of (6.3.1) equals
(
x · vi

vi · vi

)
vi · vi = x · vi by cancellation of the denominator. Hence,

the difference at the end of (6.3.1) vanishes.
Step 2. x−ProjV (x) is perpendicular to every vector in V .
We must show the dot product of x − ProjV (x) with every vector in V is zero. Every vector

v ∈ V is a linear combination v =
∑k

i=1 civi of the vectors v1, . . . ,vk (since the vi’s span V , being
a basis of V ), and we can move dot products through linear combinations (see Theorem 2.2.1). Thus,

(x−ProjV (x)) · v = (x−ProjV (x)) ·
k∑

i=1

civi =
k∑

i=1

ci ((x−ProjV (x)) · vi) =
k∑

i=1

ci(0) = 0,

using Step 1 at the end.
Step 3. ProjV (x) is the closest point on V to x, and the only point attaining the minimal distance.
Any vector v ∈ V can be written as v = ProjV (x) + y where y = v − ProjV (x) ∈ V . Let’s

see how far v is from x in terms of y:

∥x− v∥ = ∥x− (ProjV (x) + y)∥ = ∥(x−ProjV (x))− y∥ =
√
∥x−ProjV (x)∥2 + ∥ − y∥2,

where the last equality is the Pythagorean Theorem (Theorem 2.3.1), applicable because x−ProjV (x)
is perpendicular to −y ∈ V by Step 2! If y is nonzero (which is to say v ̸= ProjV (x)), so ∥−y∥2 > 0,
then the right side is larger than ∥x − ProjV (x)∥. Hence, the point in V minimizing the distance to
x is v = ProjV (x) and it is the only point attaining that minimal distance.

Step 4. The only point v ∈ V for which x− v is perpendicular to everything in V is ProjV (x).
We have seen that x−ProjV (x) is perpendicular to everything in V , and must show that if v ∈ V

makes x − v orthogonal to everything in V then v = ProjV (x). The assumption for a point v ∈ V
that x−v is perpendicular to everything in V is exactly what was used in Remark 6.2.5 to deduce that
v =

∑k
i=1Projvi

(x), and this sum is what we defined the notation ProjV (x) to mean in this proof.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 116



Chapter 6 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
Projw(x) for nonzero w ∈ Rn and any x ∈ Rn, the unique point in

span(w) closest to x
Figure 6.1.1, Propo-
sition 6.1.1

ProjV (x) for a linear subspace V in Rn and any x ∈ Rn, the unique point
in V closest to x

Theorem 6.2.1

Concept Meaning Location in text
projection onto a nonzero
n-vector w

for any x ∈ Rn, the unique point in span(w) closest
to x

Figure 6.1.1, Proposition
6.1.1

projection onto a linear
subspace V in Rn

for any x ∈ Rn, the unique point in V closest to x Theorem 6.2.1

Result Meaning Location in text

Projw formula for any x ∈ Rn, Projw(x) =
( x ·w
w ·w

)
w (6.1.2)

Projw interacts well
with linear combina-
tions

applying Projw to a linear combination yields the correspond-
ing linear combination of Projw’s: for any n-vectors x1,x2 and
scalars c1, c2, we have Projw(c1x1 + c2x2) = c1Projw(x1) +
c2Projw(x2)

(6.1.3)

Orthogonal Projec-
tion Theorem

for x ∈ Rn and a linear subspace V in Rn, the unique v ∈ V
making ∥x − v∥ minimal also makes x − v orthogonal to ev-
erything in V ; we denote this v as ProjV (x), and explicitly
if v1, . . . ,vk is an orthogonal basis of V then ProjV (x) =
Projv1

(x) + · · ·+Projvk
(x)

Theorem 6.2.1, Fig-
ure 6.2.1

every n-vector x is
uniquely sum of a
vector in V and a
vector orthogonal to
everything in V

for every linear subspace V in Rn and x ∈ Rn, we can write in
exactly one way x = v + v′ with v ∈ V and v′ orthogonal to
everything in V (and in fact v = ProjV (x))

Theorem 6.2.4

Skill Location in text
compute Projw(x) for x ∈ Rn and nonzero w ∈ Rn Examples 6.1.2 and 6.1.4
compute Projw(x) as linear combination of Projw(e1), . . . ,Projw(en) (6.1.4), Figure 6.1.5
compute ProjV (x) using an orthogonal basis of V (6.2.1), Example 6.2.3
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6.4. Exercises. (links to exercises in previous and next chapters)

Exercise 6.1. Let V be the linear subspace of R4 spanned by the vectors v1 =




0
2
3
−1


, v2 =




1
−2
1
−1


, and

v3 =




2
0
1
3


.

(a) Verify that v1,v2,v3 form an orthogonal basis for V .

(b) Find the closest point v on V to the vector x =




−1
−3
2
1


. (Your answer should be a 4-vector whose

entries are fractions with denominator 7.)

Exercise 6.2. Let P be the plane in R3 through 0 spanned by v =



4
0
3


, and w =



−1
−1
−7


.

(a) Verify that an orthogonal basis for P is given by {v,w′} for w′ = w + v ∈ P (explicitly

w′ =




3
−1
−4


). In other words, confirm v · w′ = 0 and show span(v,w′) = P by writing every

av + bw as a linear combination of v and w′.
(b) Using {v,w′} to compute projections ProjP into P , compute the shortest distance from the

point x =



−10
−24
5


 to P . Express your answer as

√
A for an integer A.

Exercise 6.3. The plane P in R3 through 0 defined by x− 2y − 3z = 0 has v =



2
1
0


 and w =



3
0
1


 as a

basis.

(a) Find 3-vectors v2,w2 so that {v1,v2} and {w1,w2} are orthogonal bases for P with v1 = v and
w1 = w (there are many possible answers).

(b) For u =




1
−1
−1


, compute ProjP(u) in terms of the basis {v1,v2} you built in (a). Then do

likewise in terms of the basis {w1,w2} you built in (a); i.e. find scalars a, b and c, d for which
ProjP(u) = av1 + bv2 and ProjP(u) = cw1 + dw2. Check by direct computation that your
answers are correct.

(c) Express v2 and w2 as linear combinations of v and w (using how v2 and w2 are built in your
solution to (a)), and then use each answer in (b) to compute scalars e and f for which ProjP(u) =
ev + fw (you must get the same e and f each way; the reason will be discussed from a wider
perspective in Exercise 19.8(c)).
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Exercise 6.4. Let {v1,v2} be an orthogonal basis for a plane P in Rn (so v1 and v2 are nonzero and not
scalar multiples of each other), with ∥v1∥ = 1 and ∥v2∥ = 2. Let w be an n-vector lying outside P for
which ProjP(w) = 7v1 − 2v2.

(a) Explain why the span of the nonzero vectors v1 and w is a plane P ′, and that this plane cannot
contain v2 (so it is different from the plane P that does contain v2); the visualization is that the
planes P and P ′ meet along the line span(v1) (you don’t need to verify this).

(b) For any linear subspace V of Rn and vector v ∈ V , show that x · v = ProjV (x) · v for every
n-vector x. (Hint: analyze the difference between the two sides, using that x − ProjV (x) is
always perpendicular to V .)

(c) Show that w · v1 = 7 and w · v2 = −8, and use this to compute Projv1
(w) and Projv2

(w) as
explicit scalar multiples of v1 and v2 respectively. (Hint: apply (b) to V = P and v = v1 and
v = v2.)

(d) Assume ∥w∥ = 10. For the plane P ′ in (a), the projection ProjP ′(v2) can be written as a linear
combination av1 + bw, where a, b ∈ R. Find such a and b. (Hint: first use the basis {v1,w} of
P ′ to make an orthogonal basis, then compute ProjP ′(v2) in terms of that orthogonal basis, and
finally turn it back into an expression in v1 and w.)

Exercise 6.5. Let V be the linear subspace of R4 consisting of points (w, x, y, z) satisfying the equation
2w − 4x+ y + 2z = 0. Suppose we are given an orthogonal basis {v1,v2,v3} for V . (In Chapter 19 you
will learn how to build such bases.)

(a) Letting v4 =




2
−4
1
2


, verify that the nonzero vectors v1,v2,v3,v4 constitute an orthogonal basis

for R4. Use this to show that

ProjV (u) = u−Projv4
(u)

for any 4-vector u. (Hint: for any u ∈ R4, ProjR4(u) = u; try to use Theorem 6.2.1 for both of
the subspaces V and R4).

(b) For a general 4-vector u =




w
x
y
z


, use (a) to give a formula for the projection ProjV







w
x
y
z





 in

the form 


w
x
y
z


− aw + bx+ cy + dz

e




2
−4
1
2




for some scalars a, b, c, d, e.

(c) Using (b), compute ProjV







1
−2
2
4





. (Your answer should be a 4-vector whose entries are

fractions with denominator 5.)

Exercise 6.6. Let v1,v2 be nonzero n-vectors for which neither is a multiple of the other (i.e., they aren’t
on the same line through 0), so V = span(v1,v2) is 2-dimensional by the Dimension Criterion in Section
5.1. For a vector w = c1v1 + c2v2 ∈ V , we seek formulas for c1 and c2 in terms of dot products among
w,v1,v2.
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(a) By computing v1 ·w and v2 ·w using properties of dot products, show that (c1, c2) is a simulta-
neous solution to the pair of equations

∥v1∥2x+ (v1 · v2)y = v1 ·w
(v1 · v2)x+ ∥v2∥2y = v2 ·w

(b) Consider a general pair of equations of the form

Ax+By = d1

Bx+ Cy = d2

with A,C,AC − B2 ̸= 0. Use algebraic manipulation with these equations to solve for x and y,
obtaining the formulas

x =
Cd1 −Bd2
AC −B2

, y =
−Bd1 + Ad2
AC −B2

.

(c) Since we assume v1 and v2 aren’t on the same line through 0, the angle θ between v1 and v2

cannot be 0◦ or 180◦ (see Example 2.2.3). Explain why it follows that (cos θ)2 < 1. Use this to
conclude that the cross-difference ∥v1∥2∥v2∥2 − (v1 · v2)

2 is nonzero (so we can apply (b) to (a)
to express c1 and c2 in terms of dot products among v1,v2,w; you don’t need to write out the
expressions; Exercise 6.7 addresses that).

Exercise 6.7. Let v1,v2 be nonzero n-vectors for which neither is a multiple of the other. Consider
w = c1v1 + c2v2 ∈ span(w1,w2) for some scalars c1, c2.

(a) Use the conclusion of parts (a) and (b) in Exercise 6.6 to obtain the general formulas:

c1 =
(v2 · v2)(v1 ·w)− (v1 · v2)(v2 ·w)

(v1 · v1)(v2 · v2)− (v1 · v2)2
, c2 =

(v1 · v1)(v2 ·w)− (v1 · v2)(v1 ·w)

(v1 · v1)(v2 · v2)− (v1 · v2)2
.

(b) Consider vectors v1,v2 which satisfy v1 ·v1 = 7, v2 ·v2 = 3, and v1 ·v2 = −4. (Geometrically,
v1 has length

√
7, v2 has length

√
3, and the angle θ between these vectors satisfies cos θ =

−4/(
√
7
√
3) ≈ −0.873, which says θ ≈ 150.81◦. Such angle information is not needed in what

follows.)
Suppose we know Projv1

(w) = (34/7)v1 and Projv2
(w) = −(23/3)v2 (in many scientific

experiments one measures such projection coefficients, akin to measuring a “shadow” in a specific
direction). Solve for c1 and c2 using the general formulas in (a) (hint: compute v1 ·w and v2 ·w).

(c) It is often not any more difficult to disregard the general formulas in (a) and work directly! For
instance, using the values of v1 ·w and v2 ·w that you found in (b), write out explicitly what the
equations from Exercise 6.6(a) for (c1, c2) say in this case, and solve those directly. You should
get the same answer as in (b), and the arithmetic involved should be essentially the same.

Exercise 6.8. Let v1,v2 be two nonzero n-vectors for which neither is a scalar multiple of the other, so
the linear subspace V = span(v1,v2) of Rn is 2-dimensional (by the Dimension Criterion in Section 5.1).

(a) Explain why the only way we can have c1v1 + c2v2 = 0 is when c1 and c2 both vanish. (Hint:
to rule out the possibility c1 ̸= 0, show if c1 ̸= 0 then v1 is a scalar multiple of v2 yet we have
assumed neither vi is a scalar multiple of the other. What if instead c2 ̸= 0?)

(b) Using (a), explain why if a1v1+a2v2 = b1v1+b2v2 for some scalars a1, a2, b1, b2 then necessarily
a1 = b1 and a2 = b2. (Hint: subtract the right side from the left side to arrive at the situation in
(a)).

The preceding exercise illustrates a special case of a general result in Theorem 19.2.3 (along with Theorem
19.1.5) relating bases of subspaces to a later general concept called “linear independence”.
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Exercise 6.9. Let w1,w2,w3 be three nonzero n-vectors for which W = span(w1,w2,w3) in Rn is
3-dimensional.

(a) Explain why the only way we can have c1w1+c2w2+c3w3 = 0 is when c1, c2, c3 all vanish. (Hint:
If c1 ̸= 0, express w1 as a linear combination of the others to conclude that W = span(w2,w3),
so dimW ≤ 2, contrary to our assumption that dimW = 3. The same applies if instead c2 ̸= 0
or c3 ̸= 0.)

(b) Using (a), explain why the only way we can have a1w1 + a2w2 + a3w3 = b1w1 + b2w2 + b3w3

for scalars ai and bj is that a1 = b1, a2 = b2, a3 = b3. (Hint: if such a vector equality holds,
subtract the left side from the right side to arrive at the situation in (a)).

The preceding exercise illustrates a special case of a general result in Theorem 19.2.3 (along with Theorem
19.1.5) relating bases of subspaces to a later general concept called “linear independence”.

Exercise 6.10. This exercise explores what “goes wrong” with the conclusion in Exercise 6.8(b) when
dimV < 2 (i.e., v1 and v2 are scalar multiples of each other) and in Exercise 6.9(b) when dimW < 3
(i.e., some wi is a linear combination of the others).

(a) Consider nonzero n-vectors v1,v2 for which v1 = (5/3)v2. For any scalars a and b, show that

av1 + bv2 = (a+ 3t)v1 + (b− 5t)v2

for any t. So as t varies, the coefficients on the right side vary but the linear combination vector
remains unchanged (since it is equal to the left side, which does not involve t).

(b) Consider nonzero n-vectors w1,w2,w3 for which w3 = (3/4)w1 − 2w2. For any scalars a, b, c,
show that

aw1 + bw2 + cw3 = (a− 3t)w1 + (b+ 8t)w2 + (c+ 4t)w3

for any t. So as t varies, the coefficients on the right side vary but the linear combination vector
remains unchanged (since it is equal to the left side, which does not involve t).

Exercise 6.11. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):

(a) For v =



1
2
3


, V = {x ∈ R3 : Projv x = 0} is a linear subspace.

(b) For v =



1
2
3


, W = {x ∈ R3 : Projv x = v} is a linear subspace.

(c) For v =



1
2
3


 and x ∈ R3, the vectors v and x−Projv x are perpendicular.
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7. Applications of projections in Rn: orthogonal bases of planes and linear regression

Linear regression refers to the problem of finding a function f(x) = mx+bwhich best fits a collection
of given data points (xi, yi) (as well as variants of this problem, sometimes using curves other than a line).
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The extent to which this line fits the given data is measured by a number called the correlation coeffi-
cient, which was introduced in Section 2.4. One of the themes of this chapter is using linear algebra in Rn

for big n to optimally fit a line to n data points in R2. The technique we employ will involve computing
projection to a 2-dimensional linear subspace of Rn, so as a preliminary step we will develop a technique
for computing orthogonal bases of such subspaces (since we need an orthogonal basis of a linear subspace
in order to compute projection to that subspace via the formula in Theorem 6.2.1).

We will return to lines of best fit in Section 20.6 to understand them in another way via matrix algebra
that is also applicable to approximating data in R2 with a curve y = f(x) for higher-degree polynomials
f(x).

By the end of this chapter, you should be able to do the following:

• find an orthogonal basis for a 2-dimensional subspace V (a “plane”) in Rn;
• set up the problem of a “best fit line” to n data points in R2 using the language of linear

algebra and 2-dimensional subspaces of Rn;
• compute that line, using projections and orthogonal bases of planes in Rn.

The techniques of this chapter are just the tip of the iceberg on applying ideas of high-dimensional
linear algebra to the study of data. For example, at the end of the book (in Chapter 27) we will dis-
cuss how more advanced results in high-dimensional linear algebra underlie principal component analysis
(PCA) that approximates data in Rn for gigantic n using a “low-dimensional” linear subspace (with di-
mension bigger than 1, so going beyond lines as in this chapter); this is the most important algorithm in
contemporary data science, pervading all modern quantitative fields.

7.1. Finding an orthogonal basis: special case. Our formula for projection to a linear subspace of
Rn in Theorem 6.2.1 uses an orthogonal basis of the linear subspace. But we can also go the other way:
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use projections to find an orthogonal basis for a linear subspace! This might sound circular, but it is not:
the method is to interweave the processes of computing projections and finding orthogonal bases by using
lower-dimensional subspaces (so we build up to the desired calculation in a step-by-step manner through
“smaller” situations). This will be carried out in general in Chapter 19, and now we explain how to do this
for a 2-dimensional subspace of Rn by using projection onto lines via dot products (Proposition 6.1.1).

Theorem 7.1.1. Suppose x,y ∈ Rn are nonzero, and not scalar multiples of each other. The vectors

y and x′ = x−Projy x (7.1.1)

constitute an orthogonal basis of span(x,y). (In particular, span(x,y) is 2-dimensional.)

−1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

•0

y

x

Projyx

x−Projyx

The setup is symmetric in x and y, so {x,y′ = y−Projx y} is also an orthogonal basis of span(x,y).

A proof of Theorem 7.1.1 is given at the start of Section 7.5 for those who are interested. It must be
emphasized that although the picture in Theorem 7.1.1 is in R2 to help us to remember what it says, the
result as stated really is building an orthogonal basis from a given basis of any 2-dimensional subspace of
Rn for any n. The applicability in Rn for any n will be essential for computing the line of best fit for n
data points in R2 in Section 7.3.

An important application of Theorem 7.1.1, also relevant to lines of best fit later on, is to compute
projections to 2-dimensional linear subspaces. The following example illustrates how this can arise.

Example 7.1.2. Consider the plane V in R3 through 0 spanned by the vectors

v =



2
1
0


 , w =



0
3
4


 .

Imagine that this plane is a metal sheet on which an electric charge is uniformly distributed. An iron

particle placed at the point p =



1
1
1


 would then be attracted to the metal sheet, and by the symmetry of

the situation this particle would move straight towards the point on the plane closest to the initial position
of the particle. What is that point?

In other words, we seek to compute the projection ProjV (p). To compute this, we first seek an
orthogonal basis for the plane V . By Theorem 7.1.1, such an orthogonal basis is given by w and v′ =
v −Projw(v). We first compute Projw(v). This is given by

Projw(v) =
( v ·w
w ·w

)
w =

3

25



0
3
4


 =




0
9/25
12/25


 .
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Thus v′ = v −




0
9/25
12/25


 =




2
16/25
−12/25


 . (As a safety check, w and v′ are indeed orthogonal.)

The vector v′ is a bit ugly due to the fractions, and for the purposes of having an orthogonal basis it is
harmless to replace it with a nonzero scalar multiple, such as

v′′ = 25v′ =




50
16
−12


 .

Since {w,v′′} is an orthogonal basis of the plane V , we have

ProjV (p) = ProjV



1
1
1


 = Projw



1
1
1


+Projv′′



1
1
1


 = Projw(p) +Projv′′(p).

To compute these projections, we first work out some relevant dot products:

w ·w = 25, v′′ · v′′ = 2900, p ·w = 7, p · v′′ = 54.

Hence

Projw



1
1
1


 = Projw(p) =

( p ·w
w ·w

)
w =

7

25



0
3
4


 =




0
21/25
28/25


 ,

Projv′′



1
1
1


 = Projv′′(p) =

(
p · v′′

v′′ · v′′

)
v′′ =

54

2900




50
16
−12


 =




27/29
216/725
−162/725


 .

(we will never ask you to work directly with such complicated fractions; examples in the homework and
exams will always involve just integers or fractions with small denominators).

Thus, the place on the metal sheet that the particle ends up at is

ProjV



1
1
1


 = Projw



1
1
1


+Projv′′



1
1
1


 =




0
21/25
28/25


+




27/29
216/725
−162/725


 =



27/29
33/29
26/29


 ≈



0.931
1.138
0.897


 .

■

7.2. Some motivating examples of linear regression. We now turn our attention to the topic of
linear regression, which will be understood via Theorem 7.1.1. First, here are some examples illustrating
the ubiquity of linear regression.

Example 7.2.1. (The original example) On January 1, 1801, astronomers found what they thought was a
new planet (it was later decided it was an asteroid, Ceres). They “lost” it in February of the same year,
because its orbit was rendered invisible by the position of the sun. (This was a big deal, because Ceres was
thought to be a new planet; it only got downgraded later.) The 24-year old mathematician C.F. Gauss12

used a version of what came to be called the “method of least squares” to predict the orbit of Ceres, and
it was re-located in December 1801 according to Gauss’ computations (thereby making him famous far
beyond the community of mathematicians). ■

12Carl Friedrich Gauss (1777-1855) was the greatest mathematician of the 19th century, in terms of creativity and influence.
He taught himself arithmetic before he knew how to speak, memorized an entire table of logarithms to speed up his mental
calculations, proved spectacular new theorems during his teenage years (solving problems that had stumped the ancient Greeks
and Euler), made revolutionary discoveries in numerous fields such as number theory, differential geometry, algebra, probability,
and physics, and spoke at least 7 languages fluently. He also invested wisely, leaving an estate worth 200 times his annual salary.
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Example 7.2.2. Linear regression is used to estimate how a change in one variable is related to a change in
another (when data supports that the variables are related in an approximately “linear” way). For instance:

• “A one percentile increase in end-of-kindergarten test scores is associated with a $132 increase
in wage earnings at age 27.” [CFHSSY, Sec. I]

• “An extra $100,000 in campaign spending garners a challenger [an extra] 0.3% of the vote.” [Le,
p. 780]

• “An extra inch [of height] is worth almost $800 a year in elevated earnings.” [Pi]
■

Example 7.2.3. My fancy watch tells me how many calories I’ve burned in a given day. It doesn’t
measure this; rather it (presumably) uses one of several formulas to estimate this from height, weight,
age and other variables. These formulas are based on experimental studies that use linear regression.

For example, the first such formula was the Harris–Benedict equation (which estimated the basal
metabolic rate (in kcal/day) to be 655+9.56M +1.85H−4.68A for women and 66.47+13.75M +
5.0H − 6.755A for men, where M is mass (in kg), H is height (in cm), and A is age (in years)). This
was based on a 1918 study [HB] of 103 women, 136 men, and 94 newborn infants. It was subsequently
revised in 1984 to account for lifestyle changes since 1918. (Section 3.1 of the Wikipedia page on
“basal metabolic rate” gives several such formulas.) ■

Beware that correlation (or good approximation by a best-fit line) does not imply causation! Fail-
ure to keep this in mind is a common fallacy when using linear regression. There is no reason that
effects related to one of the two variables in a linear regression are “caused” by the other variable. For
a truly hilarious collection of spurious correlations, read the book [Vig].

7.3. Fitting a function to data. The plain vanilla version of our problem is as follows:

find the function f(x) = mx+ b that “best fits” n data points (x1, y1), . . . , (xn, yn).

What does “best fit” mean? Informally, we want f(xi) to be as close as possible to yi for all i. The error

errori = yi − (mxi + b)

measures in absolute value how close the line y = mx+ b is vertically to (xi, yi); see Figure 7.3.1.
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Suppose the line is given by the equation y = mx+ b.

Suppose the ith data point is denoted (xi, yi).

The ith error is given by errori = ei = yi − (mxi + b).

These errors are shown as blue line segments in the figure.

FIGURE 7.3.1. Errors are measured vertically, not the actual distance from data points to
the line! The way we use the best-fit line explains why vertical distance is the right notion
of “error”.
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To be a “good fit” means to choose (m, b) so that the errors are collectively small. There are many
ways to specify what “collectively small” means. The meaning in the least squares method is this:

choose (m, b) to minimize the sum of the squares of the errors; i.e., choose (m, b) to
minimize

n∑

i=1

(yi − (mxi + b))2.

Remark 7.3.1. Why use the sum of squares of the errors? The errors themselves might be positive and
might be negative; we want to penalize a large negative error as well as a large positive error, so squaring
errors removes the sign. Ultimately we define whatever measure of best fit we will use (one cannot “derive”
or “prove” a definition); the real test of a definition is its utility in applications. From that perspective “sum
of squares of errors” is a good definition: experience shows that the sum-of-squares idea works really well
across a broad range of applications, and it has an array of convenient mathematical properties (e.g.,
below we’ll give it a nice geometric meaning in terms of distance minimization in Rn, and it relates well
to correlation coefficients as recorded in (7.3.5)).

But sometimes other ways to define the “total error” are indeed more appropriate, such as summing
the absolute values of the errors (used in computational statistics, geophysics, and the important signal
processing algorithm called “compressed sensing”). The absolute value function is inconvenient for our
purposes; e.g., from a calculus viewpoint, |x| has the defect relative to x2 that it is not differentiable at
x = 0. Always remember that we choose how to define “total error” for any particular application, and
experience determines the appropriateness of that choice; mathematics is a creation of the human mind.

In the rather special case that all n data points (xi, yi) lie on the same vertical line, which is to say all
xi’s share the same value, that vertical line obviously does the job. Thus, we assume the data are not on a
single vertical line. We can write our task more succinctly using vector language, as follows.

Put the data of all x-values into a single n-vector, and the data of all y-values into a single n-vector:

X =




x1
x2
...
xn


 , Y =




y1
y2
...
yn


 .

Also, define 1 =

[
1
1
...
1

]
∈ Rn to be the vector with all entries equal to 1 (analogous to 0 =

[
0
0
...
0

]
∈ Rn), so

mX+ b1 =




mx1
mx2

...
mxn


+




b
b
...
b


 =




mx1 + b
mx2 + b

...
mxn + b




and hence

Y − (mX+ b1) =




y1 − (mx1 + b)
y2 − (mx2 + b)

...
yn − (mxn + b)


 = “vector of errors”.

Thus, since
∑n

i=1 v
2
i = ∥v∥2 for any v ∈ Rn (by definition of ∥v∥!), the sum of the squares of the errors

is
n∑

i=1

(yi − (mxi + b))2 = ∥Y − (mX+ b1)∥2;
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this is the squared length of Y − (mX+ b1) due to how “length” for n-vectors is defined. So we seek m
and b that minimize the squared length of Y − (mX + b1), which is the same as minimizing the length
of that difference. We are now going to use the language of linear algebra to interpret this task in a visual
way which opens the door to applying earlier geometric results (with projections).

The length ∥Y − (mX + b1)∥ is the distance from Y to mX + b1 since “distance” between any n-
vectors v and w is ∥v −w∥ by definition. As m and b vary, the vectors of the form mX+ b1 are exactly
the vectors in span(X,1), due to the definition of “span”. Hence, the least-squares minimization problem
for n data points is equivalent to the following geometric problem:

find the vector in span(X,1) that is closest to the vector Y ∈ Rn. (7.3.1)

Our task is now an instance of finding the point of a linear subspace of Rn closest to a given n-vector,
which we discussed in Chapter 6. Theorem 6.2.1 gives a formula for the answer if we know an orthogonal
basis for span(X,1). We have also seen, in Theorem 7.1.1, how to find an orthogonal basis for a span of
two vectors that are not scalar multiples of each other. The vectors X and 1 are not scalar multiples of
each other because the hypothesis that the n data points do not lie in a common vertical line (i.e., the xi’s
are not all equal to each other) says that X is not a scalar multiple of the nonzero vector 1.

By Theorem 7.1.1, an orthogonal basis of span(X,1) is given by 1 and X̂ = X−Proj1X with

Proj1(X) =
X · 1
1 · 1 1 =

∑n
i=1 xi · 1∑n
i=1 1 · 1

1 =

∑n
i=1 xi
n

1 = x1 =




x
x
...
x




equal to the n-vector each of whose entries is equal to the average x of the xi’s. Hence,

X̂ = X−Proj1(X) =




x1 − x
x2 − x

...
xn − x


 (7.3.2)

is obtained from X by subtracting the average x from all entries. By applying to this span the formula in
(6.2.1) for the nearest point on a linear subspace in terms of an orthogonal basis, we obtain that

closest vector to Y in span(X,1) is

(
Y · X̂
X̂ · X̂

)
X̂︸︷︷︸

X−Proj1 X

+
Y · 1
1 · 1 1 =

(
Y · X̂
X̂ · X̂

)
X̂+ y 1 (7.3.3)

where y = (1/n)
∑n

i=1 yi is the average of the yi’s. The geometry has done its work. In the expression
aX̂+ y1 on the right side of (7.3.3), we can expand X̂ in terms of X and 1 using the definition of Proj1
and collect terms to rewrite (7.3.3) as a linear combination mX + b1 of X and 1. Those coefficients m
and b are exactly the desired “m” and “b” for the best-fit line! Some examples below carry this out with
explicit data to illustrate how it computes m and b systematically; don’t memorize (7.3.3)!

Our earlier analysis of closest points to planes in Rn has now exactly solved the least-squares problem
for n data points in R2 (i.e., finding m and b explicitly) in terms of computable dot products. More-
over, the process by which we compute m and b has geometric meaning in terms of linear algebra.
If formulas for m and b were instead presented as algebra out of thin air then it would have been a
mystery where they come from.
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Example 7.3.2. For the 5 data points (−5,−5), (−4, 3), (−3, 1), (−2,−3), (−1, 4), let’s find the line that
best fits it (see Figure 7.3.2). We assemble this information into two 5-vectors:

X =




−5
−4
−3
−2
−1



,Y =




−5
3
1
−3
4



.

Next, we find an orthogonal basis for W = span(X,1). To do this, we first compute the dot products
X · 1 = −15 and 1 · 1 = 5, so x = −15/5 = −3 and hence

X̂ = X−Proj1(X) = X− −15

5
1 = X+ (3)1 =




−2
−1
0
1
2



.

Now we can project Y into W = span(X,1) using the orthogonal basis {X̂,1} for W : using the addi-
tional dot products

Y · X̂ = 12, X̂ · X̂ = 10, Y · 1 = 0, 1 · 1 = 5,

we compute

ProjW Y = ProjX̂ Y +Proj1Y =
12

10
X̂+ (0)1 =

6

5
X̂.

Finally, we substitute the expression X̂ = X+ (3)1 (as found above) in terms of X and 1 to get

ProjW Y =
6

5
(X+ (3)1) =

6

5
X+

18

5
1,

so the best fit line is y = (6/5)x + (18/5), as shown in Figure 7.3.2. (In Example 7.3.3 we will give a
worked example with y ̸= 0, so Proj1Y really contributes unlike above where it vanished.)

x

y

−5−4−3−2−1 0 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

•

•

•

•

•

FIGURE 7.3.2. Plot of data and best fit line for Example 7.3.2.
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The picture in Figure 7.3.2 indicates a very important issue: we ought to first remove “outlier” points
(akin to flawed data). To do this requires methods from statistics beyond the level of this course. ■

Here is the general method. Suppose we are given n data points (xi, yi) that do not lie on a common
vertical line. To find the best fit line y = mx+ b, do the following.

(i) Assemble the given data into two n-vectors

X =




x1
x2
...
xn


 and Y =




y1
y2
...
yn


 .

Also let 1 be the n-vector all of whose entries are equal to 1 (analogous to 0).
(ii) For W = span(X,1), we will compute ProjW Y as a linear combination mX + b1 of X

and 1; those coefficients are exactly the coefficients of the best fit line

y = mx+ b.

(iii) To compute ProjW Y, use the orthogonal basis 1 and X̂ = X−Proj1 X for W . Explicitly

X̂ =




x1 − x
x2 − x

...
xn − x


 and so ProjW (Y) =

(
Y · X̂
X̂ · X̂

)
X̂+ y 1 =

(
Y · X̂
X̂ · X̂

)
(X− x1) + y 1,

where x = 1
n

∑n
i=1 xi and y = 1

n

∑n
i=1 yi are the averages of the entries of X and Y.

Whenever x = 0 we have X̂ = X. This simplifies things a lot, so we record it here:

if x = 0 then ProjW (Y) =

(
Y ·X
X ·X

)
X+y 1, so m =

Y ·X
X ·X and b = y whenever x = 0. (7.3.4)

WARNING: These formulas for m and b require assuming x = 0; if x ̸= 0 then they are usually false.

Example 7.3.3. Given 4 data points (−1, 5), (0, 1), (2,−3), (7,−4), we’ll now use linear algebra in R4 to
find the line of best fit to these points (see Figure 7.3.3 below). We assemble the data into two 4-vectors

X =




−1
0
2
7


 and Y =




5
1
−3
−4




(consisting of the respective x-coordinates and y-coordinates of the points). As above, we also let 1

denote the vector




1
1
1
1


. Note that X and 1 are not scalar multiples of each other (precisely because the

x-coordinates are not all the same; i.e., the data points don’t all lie on the same vertical line).
We let W = span(X,1), and our goal is to compute the projection ProjW Y of Y into the subspace

W , since then upon writing ProjW Y = mX+ b1 the line of best fit is y = mx+ b.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 129



To compute ProjW Y, we use the orthogonal basis {X̂,1} of W , where

X̂ =




x1 − x
x2 − x
x3 − x
x4 − x


 for x =

1

4

4∑

i=1

xi =
1

4
(−1 + 0 + 2 + 7) = 2.

Thus, X̂ =




−3
−2
0
5


. Since {X̂,1} is an orthogonal basis for W , we have

ProjW Y = ProjX̂ Y +Proj1Y

=

(
Y · X̂
X̂ · X̂

)
X̂+

(
Y · 1
1 · 1

)
1.

We now compute these dot products: Y · X̂ = −37, X̂ · X̂ = 38, Y · 1 = −1, 1 · 1 = 4. Plugging in:

ProjW Y =

(−37

38

)
X̂+

(−1

4

)
1 = −37

38
(X− x1)− 1

4
1

= −37

38
(X− (2)1)− 1

4
1

= −37

38
X+

(
74

38
− 1

4

)
1

= −37

38
X+

129

76
1.

Thus the line of best fit is y = −(37/38)x+ 129/76 ≈ −0.9737x+ 1.6974.

x

y

−1 0 1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

6

•

•

•
•

y = −37

38
x+

129

76

FIGURE 7.3.3. Plot of data and best fit line for Example 7.3.3

■
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Example 7.3.4. For each of the following 5 pairs of data points (seen earlier in Example 2.4.8), the above
method can be used to determine the equation y = mx+ b of the best-fit line (in the least-squares sense).

(1) (−2,−4), (−1,−2), (0, 0), (1, 2), (2, 4).
(2) (−2,−5), (−1, 3), (0, 1), (1,−3), (2, 4).
(3) (−2, 6), (−1, 2), (0,−1), (1,−2), (2,−5).
(4) (−2, 4), (−1,−2), (0,−1), (1, 3), (2,−4).

Before carrying out the calculations, we make some observations. As we noted in Example 2.4.8, the
data points in each case have already been adjusted to make x and y vanish, so (7.3.4) computes m and
also that b = 0. That is, the best-fit line in each case has the form y = mx for m that we compute from
the dot products Y ·X and X ·X. In all of these cases we have the same X, namely

X =




−2
−1
0
1
2



,

so always X ·X = (−2)2 + (−1)2 + 02 + 12 + 22 = 4 + 1 + 0 + 1 + 4 = 10. Hence, in each case the
best-fit line is y = ((Y ·X)/10)x.

Let’s now compute the slope explicitly in each of the four cases. Writing Yi to denote the vector of
y-values in case (i), we have

Y1 =




−4
−2
0
2
4



, Y2 =




−5
3
1
−3
4



, Y3 =




6
2
−1
−2
−5



, Y4 =




4
−2
−1
3
−4



,

leading to the respective dot products Y1 ·X = 20, Y2 ·X = 12, Y3 ·X = −26, Y4 ·X = −11, so the
best-fit lines are given by the respective equations

y = 2x, y = (6/5)x, y = −(13/5)x, y = −(11/10)x.

-2 -1 0 1 2 3

-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

•

•

•

•

•

y = 2x
r = 1

-2 -1 0 1 2 3

-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

•

•

•

•

•

y = (6/5)x
r ≈ .490

-2 -1 0 1 2 3

-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

•

•

•
•

•

y = −(13/5)x
r ≈ −.983

-2 -1 0 1 2 3

-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

•

•
•

•

•

y = −(11/10)x
r ≈ −.513

FIGURE 7.3.4. The best-fit lines for Example 7.3.4.
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The correlation coefficient r (found in Example 2.4.8) is close to 1 or −1 in the first and third cases,
and not so close to those options in the other two cases. This matches Figure 7.3.4: in the first and third
cases the best fit line is a good fit with the data, but in the second and fourth cases it is a poor fit.

This should not come as a surprise: we already mentioned in Theorem 2.4.5 that the closeness of r to
±1 (or equivalently the closeness of r2 to 1) tells us how well the best fit line matches the data. This can
be made more mathematically precise as follows. Let the best-fit line be y = mx + b, and let r be the
correlation coefficient for the recentered data (xi − x, yi − y) (whose coordinates average to 0 by Remark
2.4.4) with associated n-vectors X̂ and Ŷ. Then the role of nearness of r2 to 1 (or equivalently of nearness
of 1 − r2 to 0) as a measure of quality of fit is expressed by the following identity (which you shouldn’t
memorize):

∥Y − (mX+ b1)∥2 = ∥Ŷ∥2 (1− r2), (7.3.5)

where Ŷ is the “recentered” version of Y (subtracting y from all yi’s).
To explain the meaning of (7.3.5), expand out the left side (and use that t2 = |t|2 for any t) to get

|y1 − (mx1 + b)|2 + |y2 − (mx2 + b)|2 + · · ·+ |yn − (mxn + b)|2.
The number |yi − (mxi + b)| is the vertical distance between the data point (xi, yi) and the best fit line
y = mx + b. When r2 ≈ 1, (7.3.5) therefore says that these vertical distances are “collectively small”:
the sum of their squares is tiny since 1 − r2 on the right side of (7.3.5) is small, so the data points are all
close to the best fit line. When r2 ≈ 0 then (at least informally) the opposite happens since the right side
is approximately ∥Ŷ∥2, which is typically quite far from 0 (even though the average of the entries in Ŷ is
0 by design). For those who are interested, a proof of (7.3.5) is given in Section 7.5 below. ■

7.4. Distance between two lines. We next discuss a problem that can be answered via multi-
variable optimization techniques to be discussed later but has an elegant solution using insights from
linear algebra via Theorem 7.1.1: how do we find the closest distance between two lines in R3 (that do
not have to pass through the origin) or in Rn? The version in R3 is important for collision detection
algorithms which ensure distances stay above a given threshold (e.g., so objects with known diameters
moving along straight lines in various directions won’t collide).

Example 7.4.1. Let ℓ1 be the line in R3 that is parallel to v =



2
3
4


 and goes through a =



1
0
0


, and

let ℓ2 be the line in R3 that is parallel to w =



4
3
2


 and goes through b =



0
1
0


. These are shown in

Figure 7.4.1. What is the closest distance between ℓ1 and ℓ2?
The idea is to rewrite this problem involving lines in R3 as a question of finding a closest point

to a plane, as we now explain. The parametric form of lines in space (see Example 3.3.1) gives that
ℓ1 consists of the points of the form a + tv for an arbitrary scalar t, and ℓ2 consists of the points of
the form b + t′w for an arbitrary scalar t′. The distance between any two such points is given by
∥ (a+ tv)− (b+ t′w) ∥, and we seek t, t′ that minimize it. This is a geometry problem that one may
initially think about in terms of the picture in Figure 7.4.1.
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x

−3−2−1
0

1
2

3y

−3 −2 −1 0 1 2 3

z

−3

−2

−1

0

1

2

3

a b

v

`1

w

`2

(0, 0, 0)

FIGURE 7.4.1. Lines ℓ1 through a in the direction v and ℓ2 through b in the direction w

Now comes the key step: since (a+ tv)− (b+ t′w) = (a− b)− (t′w − tv), the length we are
trying to minimize (as t and t′ vary) can also be interpreted as the distance between the vector a − b
and the vector t′w − tv. The points a− b and t′w − tv are shown in Figure 7.4.2.

As we vary over all values of the scalars t and t′, by definition of “span” the vectors t′w−tv sweep
out the entire plane span(v,w) (this is a plane since v and w are nonzero and not scalar multiples of
each other). Hence, as illustrated in Figure 7.4.3, our problem now may be restated in an alternative
manner: what is the shortest distance between the point a− b ∈ R3 and the plane V = span(v,w)?

x

−3−2−1
0

1
2

3y

−3 −2 −1 0 1 2 3

z

−3

−2

−1

0

1

2

3

v

w

(0, 0, 0)
a-b a

V= span(v,w)

b

t′w− tv

FIGURE 7.4.2. The point a− b and a point t′w − tv in the plane V = span(v,w)
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x

−3−2−1
0
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2

3y

−3 −2 −1 0 1 2 3

z

−3

−2

−1

0

1

2

3

v

w

a-b

V

ProjV (a-b)

FIGURE 7.4.3. Reformulating distance between lines as distance from point to plane!

We have used vector algebra to transform the original geometric problem involving the closest
distance between two lines into the rather different-looking geometric problem of the distance from
a point to a plane! It is rather amazing how a bit of algebra can transform one type of geometry
problem into a very different-looking geometry problem. This illustrates why the synthesis of algebra
and geometry in linear algebra is so powerful.

The advantage of this reformulation is that we know how to solve it: the point of V closest to
a− b is the projection of a− b into V (at the end of the dotted segment in Figure 7.4.3), so we shall
compute this projection and then find its distance to a− b to get our desired answer.

Let’s formulate the general solution method, and then carry it out in the specific situation given
above. Although the multi-step method may look like a mouthful, in the worked illustration of it
below for the preceding situation you’ll see that it is very clean and systematic, and so doesn’t require
any memorization of new formulas. (As written, the method works for a pair of parametric lines in
Rn for any n.)

Step 1 Use Theorem 7.1.1 to compute an orthogonal basis {w,v′} of V = span(v,w) from the
given spanning set {v,w} (we can also replace v′ with any convenient nonzero scalar mul-
tiple, or use the orthogonal basis {v,w′} instead, and adjust what follows accordingly).

Step 2 Compute the projection

ProjV (a− b) =
(a− b) ·w

w ·w w +
(a− b) · v′

v′ · v′ v′ = cw + c′v′

with the coefficients c and c′ given by the indicated ratios of dot products. Don’t compute
cw + c′v′ as an explicit vector yet; leave it in the form of a “symbolic” linear combination
of w and v′ with explicit coefficients. Keeping v′ and w in symbolic form (rather than as
explicit numerical vectors) will make the subsequent algebra cleaner.

Step 3 Rewrite cw+ c′v′ in terms of the original v and w by substituting in place of v′ its definition
v − Projw(v) = v − v ·w

w ·w w in terms of v and w. Combine all v-terms and all w-terms
to arrive at an expression rv + sw for cw + c′v′ with some explicit scalars r and s. That is,
we have computed ProjV (a− b) = rv + sw for some explicit r and s.
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Step 4 We already know that the point ProjV (a−b) ∈ V nearest to a−b has the form t′w− tv for
the unknown scalars t and t′ making a+ tv and b+ t′w be the points of minimal distance on
the two lines. By Step 3, we conclude that rv+sw = t′w− tv = −tv+ t′w, so (since v and
w are not scalar multiples of each other) the coefficients must match: −t = r (so t = −r)
and t′ = s. We have solved for t and t′! In other words, a− rv and b+ sw are the points at
minimal distance (and these can be explicitly computed, as can the distance between them,
if we wish).

Returning to our specific situation of interest, for Step 1 the basis {v,w} of V yields the orthog-
onal basis {w,v′} with

w =



4
3
2


 , v′ = v −Projw v = v − v ·w

w ·w w =



2
3
4


− 25

29



4
3
2


 =

1

29



−42
12
66


 .

The scaling factor 1/29 is annoying (though it cancels out in any projection calculations as done
below), so we’ll replace v′ with the scalar multiple

v′′ = 29v′ =



−42
12
66


 ;

that is, {w,v′′} is also an orthogonal basis of V and we will use it to compute ProjV .

Moving on to Step 2, the projection of a− b =




1
−1
0


 into V is given by

Projw




1
−1
0


+Projv′′




1
−1
0


 =

1

29
w +

−1

116
v′′.

This completes Step 2. Next carrying out Step 3, we express this in terms of v and w by going back
to how v′′ was built in terms of v′ and especially how v′ was built in terms of v and w:

1

29
w − 1

116
v′′ =

1

29
w − 1

116
(29v′) =

1

29
w − 1

4
v′

=
1

29
w − 1

4
(v −Projw(v))

=
1

29
w − 1

4
(v − v ·w

w ·ww)

=
1

29
w − 1

4
(v − 25

29
w)

= −1

4
v +

1

4
w.

This completes Step 3.
Finally, we remember that this projection we have computed also has the form t′w − tv for the

unknown scalars t and t′ making a + tv and b + t′w have minimal distance, so we solve for these
scalars by equating it with the expression obtained at the end of Step 3 and comparing coefficients.
That is, we have t′w−tv = −(1/4)v+(1/4)w, so t′ = 1/4 and t = 1/4. Hence, the points achieving
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the minimal distance are

a+
1

4
v =



1
0
0


+

1

4



2
3
4


 =



3/2
3/4
1


 , b+

1

4
w =



0
1
0


+

1

4



4
3
2


 =




1
7/4
1/2


 .

The distance between these points is the length of the difference between these points, which is



1/2
−1
1/2




(or its negative, depending on the order of subtraction). This length is
√
1/4 + 1 + 1/4 =

√
3/2. ■

7.5. Orthogonal basis formula and relation of correlation coefficient to best fit lines. In this
section we prove some results discussed in this chapter, beginning with a proof of Theorem 7.1.1.

PROOF. Write x′ = x − Projy x. We saw x′ · y = 0 in the proof of Proposition 6.1.1, but let’s
see it again:

x′ · y =

(
x− x · y

y · yy
)
· y = x · y − x · y

y · yy · y = x · y − x · y = 0. (7.5.1)

Next, y is not zero (we have assumed this). Also, x′ is not zero: if it were zero then x = Projy(x),
yet such a projection is always scalar multiple of y and we have assumed x is not a scalar multiple
of y. Therefore x′,y is a pair of nonzero orthogonal vectors belonging to span(x,y) by design (note
that y = 0x + 1y), and they exhaust that span since we can also write each of x and y as linear
combinations of x′ and y: x = x′+Projy(x) = x′+((x ·y)/(y ·y))y and y = 0x+1y. Since any
collection of pairwise orthogonal nonzero vectors is a basis for its span (Theorem 5.2.2), we conclude
that {x′,y} is an orthogonal basis of span(x′,y) = span(x,y). □

Now suppose we are given n data points (xi, yi), assembled into n-vectors

X =




x1
x2
...
xn


 and Y =




y1
y2
...
yn


 .

In Theorem 2.4.5 we described the relationship between the correlation coefficient r for the recentered
data (corresponding to the n-vectors X̂ and Ŷ) and the line of best fit. Let’s restate that in terms of
r2, which we expressed in (2.4.2) as the formula

r2 =
(X̂ · Ŷ)2

∥X̂∥2∥Ŷ∥2
=

(X̂ · Ŷ)2

(X̂ · X̂)(Ŷ · Ŷ)
.

We stated that r2 is near 0 when the line of best fit is a bad fit, and near 1 when it is a good fit (note
that this could happen either when r is near 1, or when r is near −1). We made the role of r2 as a
measure of quality of fit precise with (7.3.5). Here is the derivation of (7.3.5); it is a good illustration
of the utility of vector algebra.

PROOF. Using (7.3.3) we have

Y − (mX+ b1) = Y −
((

Y · X̂
X̂ · X̂

)
X̂+

(
Y · 1
1 · 1

)
1

)
=

(
Y −

(
Y · 1
1 · 1

)
1

)

︸ ︷︷ ︸
=Ŷ

−
(
Y · X̂
X̂ · X̂

)
X̂,

(7.5.2)
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where Y −
(
Y · 1
1 · 1

)
1 = Y − y1 is indeed equal to Ŷ.

Note that Ŷ · X̂ = Y · X̂ because the difference Ŷ−Y = −y1 is orthogonal to X̂. (Please make
sure you understand why this is true.) Putting this into the numerator of the final coefficient on the
right side of (7.5.2) yields

Y − (mX+ b1) = Ŷ −
(
Ŷ · X̂
X̂ · X̂

)
X̂ = Ŷ −ProjX̂ Ŷ;

the final equality is due to the formula (6.1.2) for projection to the span of a nonzero vector.

The vectors Ŷ − ProjX̂ Ŷ and ProjX̂ Ŷ are perpendicular to each other (you can either check
this with vector algebra, which is exactly what is done in (7.5.1), or draw a picture). Therefore, by the
Pythagorean Theorem in Rn (see Theorem 2.3.1) we have

∥Ŷ∥2 = ∥(Ŷ −ProjX̂ Ŷ) +ProjX̂ Ŷ∥2 = ∥Ŷ −ProjX̂ Ŷ∥2 + ∥ProjX̂ Ŷ∥2,
so ∥Ŷ − ProjX̂ Ŷ∥2 = ∥Ŷ∥2 − ∥ProjX̂ Ŷ∥2. But the vector difference on the left side is exactly
Y − (mX+ b1) by (7.5.2), so

∥Y − (mX+ b1)∥2 = ∥Ŷ∥2 − ∥ProjX̂ Ŷ∥2. (7.5.3)

Finally, using the definition of ProjX̂ Ŷ, we have

∥ProjX̂ Ŷ∥2 =
(
Ŷ · X̂
X̂ · X̂

)
X̂ ·
(
Ŷ · X̂
X̂ · X̂

)
X̂ =

(
Ŷ · X̂
X̂ · X̂

)2

X̂ · X̂ =
(Ŷ · X̂)2

X̂ · X̂
= r2(Ŷ · Ŷ),

so plugging into (7.5.3) yields ∥Y − (mX + b1)∥2 = ∥Ŷ∥2(1 − r2), which is exactly the desired
identity (7.3.5). □
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Chapter 7 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
the n-vector 1 the n-vector whose entries are all equal to 1 (analogous to 0 ∈ Rn) discussion preceding

(7.3.2)

Concept Meaning Location in text
best fit line to data in R2

(in “least squares” sense)
line in R2 whose sum of squares of (vertical!) errors
from given data points is minimized

Remark 7.3.1

Result Meaning Location in text
construction of orthogonal basis of a
“plane” in Rn

given a basis for a 2-dimensional linear
subspace V in Rn, an explicit recipe to
produce an orthogonal basis for V (useful
for computing ProjV )

Theorem 7.1.1

interpret linear regression for n data points
in R2 (not on a common vertical line) as
distance minimization in Rn

projection of Y into span(X,1) is mX +
b1, with “best fit” line being y = mx+ b

(7.3.1)

Skill Location in text
for 2-dimensional linear subspace V in Rn, compute or-
thogonal basis of V from a given basis

Example 7.1.2 (for the method; examples on
homework and exams will always involve integers
or fractions with small denominators, no need for
a calculator)

compute line of best fit to n data points in R2 (not on a
common vertical line) via projection to a specific plane in
Rn determined by the data

Example 7.3.2, Example 7.3.3, Example 7.3.4
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7.6. Exercises. (links to exercises in previous and next chapters)

Exercise 7.1. The vectors v =




1
0
8
−6


 and w =




5
5
23
−19


 span a plane through the origin in R4.

(a) Compute an orthogonal basis for this plane.

(b) Using your answer to (a), compute the orthogonal projection of the point x =




−26
16
15
−18


 onto this

plane. (Your answer should be a vector whose entries are integers.)

Exercise 7.2. Let v1 =




1
2
1
0


, v2 =




0
5
2
1


, and define V = span (v1,v2).

(a) Find a basis for V consisting of orthogonal vectors.

(b) Let b =




3
0
3
0


. Compute ProjV (b); your answer should be a 4-vector whose entries are integers.

(c) Find the scalars r and s for which ProjV (b) = rv1+sv2. (This amounts to taking the expression
you should have found in your solution to (b) for ProjV (b) in terms of the orthogonal basis from
(a), and rewriting it in terms of the original basis {v1,v2} for V . This doesn’t require working
with a system of 4 equations in 2 unknowns.)

Exercise 7.3. Let w1 =




1
1
1
1


 and w2 =




1
−3
1
1


. Define U to be the collection of all 4-vectors u that are

orthogonal to both w1 and w2. This exercise is a warm-up to the concept of “orthogonal complement” to
a linear subspace discussed in Theorem 19.2.5.

(a) Show that U is a linear subspace of R4 by writing it as a span of finitely many vectors. Explain
why dim(U) = 2.

(b) If a =




4
1
8
3


, compute ProjU(a). (The entries in ProjU(a) are all integers. Note also that

{w1,w2} is not a basis of U ; these wj’s don’t lie in U , but in your solution to (a) you should
have found some basis, from which you can make an orthogonal basis that may in turn be used
to compute ProjU .)
As a safety check on your work, you may want to check your answer against the original definition
of U and against the orthogonality property of projection; this is not required.

Exercise 7.4. Let P be the plane in R3 given by the equation 4x+ 5y − 2z = 0 (note that P contains the
origin, so it is a linear subspace). Find an orthogonal basis for P .

Exercise 7.5. Consider the 6 data points (x1, y1), . . . , (x6, y6) given as follows:

(−2,−1), (−1, 2), (0, 0), (1, 4), (3, 6), (5, 10).
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Suppose the line of best fit (in the least squares sense) is written as y = mx+ b.

(a) Write down explicit 6-vectors X and Y so that for the 6-vector 1 whose entries are all equal to 1,
the projection of Y into the plane V = span(X,1) in R6 is mX+ b1. (You are just being asked
to write down such X and Y, nothing more.)

(b) Compute an orthogonal basis of V = span(X,1) having the form {1,v} for a 6-vector v, and
find scalars t and s so that ProjV (Y) = tv + s1. (If you build v by the method in the main text
then you’ll get t and s that as fractions in reduced form have denominator at most 2.)

(c) By expressing v from (b) as a linear combination of X and 1, use your answer to (b) to compute
the equation y = mx + b of the line of best fit. (The values of m and b are fractions with
denominator at most 2.)

(d) Draw by hand a plot of the data points and the line you found in (c). How well does it seem to fit
the data?

Exercise 7.6. Consider the 7 data points (x1, y1), . . . , (x7, y7) given as follows:

(1,−4), (2,−1), (3, 1), (4, 5), (5, 5), (6, 7), (7, 8).

Suppose the line of best fit (in the least squares sense) is written as y = mx+ b.

(a) Write down explicit 7-vectors X and Y so that for the 7-vector 1 whose entries are all equal to 1,
the projection of Y into the plane V = span(X,1) in R7 is mX+ b1. (You are just being asked
to write down such X and Y, nothing more.)

(b) Compute an orthogonal basis of V = span(X,1) having the form {1,v} for a 7-vector v, and
find scalars t and s so that ProjV (Y) = tv + s1. (If you build v by the method in the main text
then you’ll get t and s that are integers.)

(c) By expressing v from (b) as a linear combination of X and 1, use your answer to (b) to compute
the equation y = mx+ b of the line of best fit. (The values of m and b are integers.)

(d) Draw by hand a plot of the data points and the line you found in (c). How well does it seem to fit
the data?

Exercise 7.7. Consider the collection of 5 data points (−3,−4), (−2, 0), (−1, 2), (0, 2), (1, 5). Suppose
the line of best fit (in the least squares sense) is written as y = mx+ b.

(a) Write down explicit 5-vectors X and Y so that for the 5-vector 1 whose entries are all equal to 1,
the projection of Y into the plane V = span(X,1) in R5 is mX+ b1. (You are just being asked
to write down such X and Y, nothing more.)

(b) Compute an orthogonal basis of V = span(X,1) having the form {1,v} for a 5-vector v, and
find scalars t and s so that ProjV (Y) = tv + s1. (If you build v by the method in the main text
then you’ll get t and s that are integers.)

(c) By expressing v from (b) as a linear combination of X and 1, use your answer to (b) to compute
the equation y = mx+ b of the line of best fit. (The values of m and b are integers.)

(d) Draw by hand a plot of the data points and the line you found in (c). How well does it seem to fit
the data?

Exercise 7.8. Consider the collection of 5 data points (−1, 3), (0,−1), (1,−2), (2,−1), (3,−4). Suppose
the line of best fit (in the least squares sense) is written as y = mx+ b.

(a) Write down explicit 5-vectors X and Y so that for the 5-vector 1 whose entries are all equal to 1,
the projection of Y into the plane V = span(X,1) in R5 is mX+ b1. (You are just being asked
to write down such X and Y, nothing more.)

(b) Compute an orthogonal basis of V = span(X,1) having the form {1,v} for a 5-vector v, and
find scalars t and s so that ProjV (Y) = tv + s1. (If you build v by the method in the main
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text then you’ll get t and s that are fractions with denominator at most 5 when written in reduced
form.)

(c) By expressing v from (b) as a linear combination of X and 1, use your answer to (b) to compute
the equation y = mx + b of the line of best fit. (The values of m and b are fractions with
denominator 5 when written in reduced form.)

(d) Draw by hand a plot of the data points and the line you found in (c). How well does it seem to fit
the data?

Exercise 7.9. Sometimes a quantity y of interest is expected to be (approximately “linearly”) related to
a pair of quantities x and u rather than just a single quantity x. (Example 7.2.3 illustrates a case where a
person’s basal metabolic rate is expected to be so related to 3 other quantities, and econometrics abounds in
such “linear models” with lots of quantities [DM, Ch. 1-2]). In such cases, as a variant on linear regression,
we seek three constants a, b, c for which

y ≈ a+ bx+ cv

as measured by data.

(a) Suppose we make n measurements of x, v, y, yielding data points (xi, vi, yi). Let X,V,Y ∈
Rn be the corresponding n-vectors for the n measurements of each of x, v, y. Assume W =
span(1,X,V) is 3-dimensional (a reasonable assumption when neither x nor v determines the
other).

Using Exercise 6.9(b), explain in words how the vector ProjW (Y) ∈ W encodes a “least
squares” choice of (a, b, c) in terms of the data.

(b) What is the practical difficulty in using (6.2.1) to compute ProjW (Y), whereas we had no diffi-
culty in computing the analogous such projection for linear regression in Section 7.3? (Later this
difficulty will be overcome using matrix algebra, in Theorem 20.6.3 and Remark 20.6.4.)

Exercise 7.10. The vectors v =




2
−1
−1
1


 and w =




11
5

−10
1


 span a plane P through the origin in R4. Let

L =








4− t
4 + 4t
4− t

−7− 2t


 : t ∈ R





be a line in R4.

(a) Consider the displacement vector x between any two different points of L (all such displacements
are scalar multiples of each other since L is a line). Show that x belongs to P; this is described
in words by saying L is parallel to P (see Figure 7.6.1 below for an illustration of an analogous
situation in R3).

Hint: you need to show that a 4-vector x belongs to P = span(v,w), and this becomes a
system of 4 equations in 2 unknowns; solve 2 of those equations and check your solution also
works for the other 2 equations.

(b) Whenever one has a linear subspace V of Rn and a line ℓ in Rn (possibly not through the origin)
that is parallel to V , it is a fact (not difficult to show, but you may take it on faith) that all points
in ℓ have the same distance to V ; this is illustrated for a plane V in R3 in Figure 7.6.1 below.
That is, for every point y ∈ ℓ and the point y′ ∈ V nearest to y, the distance ∥y−y′∥ is the same
regardless of which y on ℓ we consider.
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`•

••

•
y1

y2

V

y′
1

y′
2

FIGURE 7.6.1. All points y1 and y2 on ℓ have the same distance to the linear subspace V .

Taking V and ℓ to be P and L above, compute the common distance ∥y − y′∥ (since it is
independent of y, you may pick whatever you consider to be the most convenient point y in L to
do the calculation). Your answer should have the form

√
A for an integer A.

Exercise 7.11. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):

(a) Suppose x,y are two nonzero vectors in Rn which are not scalar multiples of each other. Let

x′ = x−Projy x, y′ = y −Projx y.

Then {x′,y′} is an orthogonal basis for span(x,y).
(b) Consider a “centered” collection of n data points (xi, yi): x = 0 and y = 0. If the best fit line for

the data has positive slope then then the correlation coefficient between the xi’s and yi’s is also
positive.
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Part II

Multivariable functions and optimization



“Nothing takes place in the world whose meaning is not that of some maximum or minimum.”
L. Euler

“Fortunately, using linear methods well known to me from [advanced math], I was able to build a
simplified approximate model for much of the 10-dimensional expectation surface. My methods reduced
the problem from 400 million years [of computation time] to [. . . ] about 2 hours of actual computer time.”

E. Thorp [Th, p. 34], author of Beat the Dealer
Overview of Part II

In this second Part, comprising Chapters 8–12, we get to what you may have considered to be the main
theme of the course (before learning about the role of linear algebra): functions of several variables
and how to do differential calculus with them. The experience from Part I with lines and planes in
both R3 and Rn for large n is useful for working with functions f(x1, . . . , xn) of n variables. We
shall extend the idea of derivatives to such functions and discuss its applications.

Chapter 8 introduces the idea of multivariable functions, and how to visualize them. There are a
few novel aspects. For example, we usually consider functions of one variable as being defined on the
entire real line, or on some interval. But the region on which a function of two variables can be defined
in R2 can have rather complicated geometry. We do not delve into this, but that is a genuinely new
phenomenon. Visualizing functions of two or more variables is another new challenge. You might be
tempted to look at their graphs, as for functions of one variable, but this is not the only useful way:
we will see how level sets of such functions provide another good visualization. As with n-vectors
and general linear subspaces of Rn and all the other things you learned in Part I, for functions of 4
or more variables we can no longer literally visualize them; instead we use the geometric language of
“higher-dimensional” linear algebra to extend our intuition.

There are several notions which might be called the “derivative(s)” of a multivariable function. In
Chapter 9 we introduce the most immediate notion: partial derivatives. The idea is that we consider
a function f(x1, . . . , xn) of n variables as a collection of functions of one variable xi by fixing all but
the ith variable and then using single-variable calculus with the remaining variable xi. This underlies
one of the main applications of multivariable calculus, discussed in Chapter 10: finding candidates
for where a function f of n variables attains its maximum and minimum values via a “first-derivative
test” similar to the single-variable case.

In Chapter 11 we introduce a slightly more general notion of derivative, called the gradient of a
function f : Rn → R. It is a vector (∇f)(a) at every point a ∈ Rn, telling us how f is varying
near a. The gradient descent method described in Chapter 11 is important in real-world optimization
problems. The Lagrange multiplier method in Chapter 12, for optimizing functions Rn → R whose
variables are constrained by some further relationship, also uses the concept of gradient.

Optimization for functions of n variables arises in many places in natural sciences, engineering, eco-
nomics, and elsewhere. Because of this great variety of applications, the subject of optimization has
taken on a life of its own; people from different disciplines think about it in rather different ways.
The underlying ideas all stem from the ones presented in this Part, but the specific contexts in which
these problems arise lead to specialized techniques tailored to fit special circumstances. Linear pro-
gramming, convex optimization, the principle of least action in physics, and equilibria that arise in
economic transactions are all examples of multivariable optimization in practice.

Although you will encounter optimization in different guises in many other courses, the ideas that
you learn here constitute the core principles of the subject and are well worth mastering.



8. Multivariable functions, level sets, and contour plots

Functions of more than one variable are called multivariable functions. Calculus that you studied
before this course involves functions of one variable, but many real-world quantitative phenomena (in
economics, natural sciences, computer programming, data science, and so much more) depend on many
unknowns. Thus, multivariable functions are a fundamental concept in applications of mathematics and
we need to adapt our visualization skills with single-variable functions (such as via graphs) to the multi-
variable case. This chapter focuses on defining and illustrating a lot of useful new terminology.

By the end of this chapter, you should be able to:

• distinguish between scalar and vector-valued multivariable functions;
• determine the component functions of a vector-valued function;
• recognize the level sets of a multivariable function;
• interpret some basic features of a 2-variable function (directions of increase and decrease)

from a plot of its level sets (i.e., a contour plot).

8.1. Basic terminology. For useful notation (e.g., f : A → B) and terminology involving functions,
see Table 0.0.1 and Appendix A. In particular a function from Rn to Rm, typically denoted as

f : Rn → Rm,

takes vectors in Rn as input and gives vectors in Rm as output. Keep in mind that a function assigns to
each input a single output, but it is fine if two inputs yield the same output (e.g., f(x) = ∥x∥ = f(−x)).

Definition 8.1.1. A scalar-valued function is a function Rn → R (that is to say, with m = 1). In
other words, a scalar-valued function gives real number outputs.

We have already seen a scalar-valued multivariable function in Section 7.3: the problem of finding a
best-fit line involved minimizing a scalar-valued function E : R2 → R of the vector (m, b) ∈ R2 (or
more concretely, E is an R-valued function of two variables m and b). Here are some more examples of
scalar-valued functions.

Example 8.1.2. The gas mileage you get from your car depends on the temperature T , and also on the tire
pressure P . Thus your mileage M can be regarded as a scalar-valued function M(T, P ) of T and P . ■

Example 8.1.3. The solubility σ of air in water depends on the temperature T and the salinity S of the
water. Therefore solubility can be regarded as a scalar-valued function σ(T, S) of T and S. ■

In both of the preceding examples, the function in question – mileage or solubility – also depends
on many other parameters; for example, mileage also depends on the number of passengers in the car.
Realistically we should regard mileage as a function M(T, P ) of just the temperature T and pressure P
only in a situation where these other parameters are held constant.

Example 8.1.4. Addition and multiplication are scalar-valued functions R2 → R:

A(x1, x2) = x1 + x2 M(x1, x2) = x1x2.

■

Example 8.1.5. If (x1, x2) is a point in R2, the distance between (0, 0) and (x1, x2) is given by the formula√
x21 + x22. You can also think of this as the length of the vector with coordinates x1 and x2; that is,

∥ ∥ : R2 → R defines a function, where
∥∥∥∥
[
x1
x2

]∥∥∥∥ =
√
x21 + x22.

Therefore “length of a vector in R2” is a scalar-valued function. ■
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Example 8.1.6. Define scalar-valued functions f : R3 → R and g : R3 → R by the rules

f(x) = x ·



1
1
1


 , g(x) = x ·



−1
3
0


 .

(Such rules arise when computing the projection of vectors onto a fixed line.) Written out explicitly,

f





x
y
z




 = x+ y + z and g





x
y
z




 = −x+ 3y. ■

Definition 8.1.7. A vector-valued function is a function f : Rn → Rm with general m ≥ 1. In other
words, a vector-valued function gives output considered as vectors in some Rm.

A vector-valued function f : Rn → Rm can be expressed in terms of m scalar-valued component
functions or coordinate functions f1, . . . , fm : Rn → R, defined by the expressions

f(x) =



f1(x)

...
fm(x)


 = (f1(x), . . . , fm(x))

(depending on whether we consider the output to be a “vector” or a “point”), with each fj a scalar-
valued function.

We can write the output of f on the input x ∈ Rn in (at least) three ways:

f(x) = f





x1
...
xn




 = f(x1, . . . , xn),

depending on whether we want to keep things compact, emphasize that the input to f is considered as
a vector in Rn, or emphasize that the output of f depends on n real-number inputs (the coordinates of
the point or vector x).

Example 8.1.8. Consider a small object flying through the air. At any given time t, its position in space is
a point x(t) = (x(t), y(t), z(t)) ∈ R3 and its velocity (a vector pointing in the direction of motion with
magnitude equal to the speed) is some

v(t) =



v1(t)
v2(t)
v3(t)


 ∈ R3,

so both position and velocity are R3-valued functions of time t ∈ R. In other words, we have vector-
valued functions

x : R → R3, v : R → R3.

In physics one learns that the component functions of x and v are linked through differentiation:

v1(t) = x′(t), v2(t) = y′(t), v3(t) = z′(t).

If we differentiate the component functions once more, we get yet another vector-valued function

a : R → R3

given by a(t) = (v′1(t), v
′
2(t), v

′
3(t)) = (x′′(t), y′′(t), z′′(t)) called the acceleration (which is the focus of

one of Newton’s force laws). ■
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Example 8.1.9. Suppose that we want to describe the wind throughout the San Francisco Bay Area at a
certain time. We can describe the wind velocity, at any given point, by a 2-vector measuring the wind
velocities (say in miles per hour) in the north and east direction. For example, if the wind velocity at some

point is v =

[
10
10

]
= 10

[
1
1

]
, that means the wind speed there is ∥v∥ = 10

√
2 ≈ 14.14 miles per hour,

with the wind there blowing in exactly a northeast direction.
The wind speed, as well as the wind direction, varies substantially across the San Francisco region

(because of the influence of mountains, bodies of water, etc.) To describe it completely, then, we must
give the velocity v at each point. Thus, if we introduce a coordinate system (x, y) – where x is the number
of miles east of Stanford, and y the number of miles north – we can describe the wind by giving a function

v(x, y) = wind velocity at position (x, y).

The function v is a typical example of a multivariable function. It takes as input a pair of numbers
(x, y) ∈ R2, and produces as output a vector v(x, y) ∈ R2. Figure 8.1.1 is a visualization of this vector-
valued function, drawing at (x, y) a copy of the vector v(x, y) based at (x, y).

x

y

FIGURE 8.1.1. Wind velocity represented as a vector-valued function of (x, y).

Writing v(x, y) = (v1(x, y), v2(x, y)) in terms of component functions, the value of v2 is the “northerly
component” of the wind direction, so when v2(a, b) < 0 at some point (a, b) it means that the wind
direction at (a, b) points in a southern (rather than northern) direction. ■

Example 8.1.10. In the previous example, the wind velocity at any given point will also change with time.
So we may want to regard wind velocity as a function of position and time:

v(x, y, t) = wind velocity at the point (x, y) at time t.

This function takes as input a vector (x, y, t) in R3 and produces as output a vector v(x, y, t) in R2. One
might try to visualize this as a movie version of Figure 8.1.1 in which the sea of arrows is undulating in
time. But as the number of input variables increases further or the output becomes an m-vector for m > 3
we can’t literally visualize it at all. Nonetheless, these low-dimensional visualizations can be a helpful
psychological device when confronting many-variable functions.

If we are interested in atmospheric modeling, practically all the quantities of interest – wind speed,
temperature, pressure, humidity – vary according to position and time, and therefore are given by mul-
tivariable functions. These multivariable functions are related by a complicated system of differential
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equations involving lots of variables. The difficulty of solving these differential equations is one reason
that weather prediction is so difficult. ■

Example 8.1.11. Suppose a company uses 3 inputs to make 2 type of products, and the total amount of
each of the 3 inputs is denoted as x1, x2, x3 respectively. The amount of each of the two output products
may then be considered as functions p1(x1, x2, x3) and p2(x1, x2, x3), so the vector-valued function

p : R3 → R2

defined by p(x1, x2, x3) = (p1(x1, x2, x3), p2(x1, x2, x3)) keeps track of the company’s entire production
activity for these two products.

Such a mathematical model involves some idealization: we may be ignoring dependence of each pi on
information more refined than the raw total amount of each of the 3 inputs. Moreover, as usual in modeling
of finance, we are treating the input amounts xi as if they may vary continuously through all real-number
values, whereas in reality they might vary only through some large but finite range of values (since prices
do not come in increments smaller than some basic unit, such as 1 cent in the US economy, and there is
only a finite amount of money in the world). The idealization of the xi’s as R-valued variables allows us to
use optimization techniques from calculus to analyze quantitative problems about the production process,
and it works well in practical applications of economics. ■

Example 8.1.12. Vector-valued functions can encode ways to manipulate vectors geometrically. For ex-
ample, the function T : R2 → R2 given by

T

([
x
y

])
=

[
−y
x

]

is a rotation.

x

y

u

T (u)

v

T (v)

w T (w)

•

u =

[
3
1

]
T (u) =

[
−1
3

]

v =

[
1
2

]
T (v) =

[
−2
1

]

w =

[
−1
−1

]
T (w) =

[
1
−1

]

FIGURE 8.1.2. Applying T to several vectors

What this means is that T (v) gives you the vector v after rotating counterclockwise by 90° (when v ̸= 0).
Figure 8.1.2 shows some specific input vectors to illustrate that T really is that rotation.

In a similar spirit, it turns out that the function T : R2 → R2 given by

T

([
x
y

])
=

[
(
√
3/2)x+ (1/2)y

−(1/2)x+ (
√
3/2)y

]

also rotates vectors. Can you figure out by how much T rotates vectors? Hint: the angle of rotation can be

computed as the angle between
[
1
0

]
and T

([
1
0

])
.
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Later, in Section 14.4, we will study this type of example in more detail and give a complete answer
for rotation through any angle. It leads to the study of matrices. ■

Example 8.1.13. For a given nonzero vector v ∈ R2 and any vector x ∈ R2, the projection

Projv(x) =
(x · v
v · v

)
v

as in Section 6.2 is a function R2 → R2 (where the vector x is the input). For example, if v =

[
2
4

]
, then

Projv

([
x
y

])
=

(
2x+ 4y

20

)[
2
4

]
=

[
(x+ 2y)/5
(2x+ 4y)/5

]
.

This projection is illustrated in Figure 8.1.3 for a specific x, but the visualization for this v is the same for
any x.

−1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

•0

v

x

Projv(x)

v =

[
2
4

]

x =

[
3
1

]

Projv(x) =
(x · v
v · v

)
v =

[
1
2

]

FIGURE 8.1.3. Projection of x onto the span of v.

A related example that is ubiquitous in applications to computer graphics is the projection T : R3 →
R3 into the xz-plane (or some other plane), expressing how a 3-dimensional object (such as a ball or a
house) is to be presented on a flat screen, as in Figure 8.1.4.

T

FIGURE 8.1.4. A 2-dimensional image of a 3-dimensional object
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In other words, T (v) is the point in the xz-plane where a point v ∈ R3 is shown in a 2-dimensional
rendering of a 3-dimensional object (and one may include shading or other data in the 2-dimensional
image to provide a sense of depth, creating the illusion of 3 dimensions within a flat screen).

■

8.2. Composition. There is a way of making a new function from two old functions that you encoun-
tered when studying the Chain Rule in single-variable calculus: feeding one function into another.

Example 8.2.1. For functions f : R → R and g : R → R, the composition f ◦ g : R → R is defined
by (f ◦ g)(x) = f(g(x)). As an illustration, the function h(x) = sin(x2) is the composition f ◦ g for
g(x) = x2 and f(u) = sin(u). Also, E(x) = ex

3−x is the composition f ◦ g for g(x) = x3 − x and
f(u) = eu. Even something as mundane as raising a function to a power is a composition. Indeed, for any
function g : R → R, the function g(x)7 is the composition f ◦ g for f(u) = u7. ■

Beware that when composing functions, the order of composition matters a lot! For instance, if f(x) =
x+ 1 and g(x) = 2x, then

(f ◦ g)(x) = 2x+ 1,

whereas
(g ◦ f)(x) = 2(x+ 1) = 2x+ 2.

For more complicated f and g, the distinction between f ◦ g and g ◦ f can be rather more dramatic. As
an example, if f(x) = x2 and g(x) = ex then (f ◦ g)(x) = f(ex) = e2x whereas (g ◦ f)(x) = g(x2) = ex

2

(which grows much more rapidly than e2x as x→ ∞).
Just as with functions R → R, we can form the composition of vector-valued functions:

Definition 8.2.2. If g : Rn → Rp and f : Rp → Rm are multivariable functions (note that g has
output belonging to Rp on which f is applied), we can form a new composite function:

take an input in Rn; first apply g to it, and then apply f :

input x ∈ Rn g
⇝ Rp f

⇝ Rm

As a shorthand, we write this new function as f ◦ g; the symbol ◦ is read as “composed with.” In
symbols, the new function is given by

(f ◦ g)(x) = (f applied to g(x)) = f(g(x))

Example 8.2.3. Consider the functions f : R2 → R2 and g : R2 → R2 defined by

f(u, v) = (uv, u+ v), g(x, y) = (exy, x− y)

(so f1(u, v) = uv, f2(u, v) = u + v, g1(x, y) = exy, g2(x, y) = x− y). Then f ◦ g : R2 → R2 evaluated
at (x, y) ∈ R2 equals

(f ◦ g)(x, y) = f(g(x, y)) = f(exy, x− y) = (exy(x− y), exy + x− y).

In this example, the composite function g ◦ f : R2 → R2 also makes sense. Its value on input
(u, v) ∈ R2 is

(g ◦ f)(u, v) = g(f(u, v)) = g(uv, u+ v) = (euv(u+v), uv − (u+ v)) = (eu
2v+uv2 , uv − u− v).

Observe that in this case, f ◦ g and g ◦ f are very different functions (just look at the formulas we have
computed for each). The order of composition matters (familiar for scalar functions: sin(x2) ̸= sin(x)2

as functions). ■
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Example 8.2.4. What is the composition of the rotation function T (from Example 8.1.12) and the projec-

tion P = Proj[ 24 ]
(from Example 8.1.13)? To work out (T ◦P )

([
x
y

])
, we first apply P to

[
x
y

]
, yielding

[
(x+ 2y)/5
(2x+ y)/5

]
, and then we apply T to this, yielding

[
−(2x+ y)/5
(x+ 2y)/5

]
. Therefore,

(T ◦ P )
([
x
y

])
=

[
−(2x+ y)/5
(x+ 2y)/5

]
.

Now compute P ◦T (i.e., composition in the reverse order) and confirm it is very different from T ◦P . Once
again: order of composition matters. Can you think about this visually without doing the algebra? ■

Example 8.2.5. Consider the function:

T : R2 → R2,

T

([
x
y

])
=

[
−y
x

]
.

As illustrated in Example 8.1.12, this function has a nice geometric interpretation: T takes an input vector
v and rotates it 90° counterclockwise around the origin to produce the output vector Tv.

For example,

T

([
3
4

])
=

[
−4
3

]

and

T

([
−4
3

])
=

[
−3
−4

]
,

so

(T ◦ T )
([

3
4

])
= T

(
T

([
3
4

]))
= T

([
−4
3

])
=

[
−3
−4

]
.

In general, the same calculation shows that

(T ◦ T )
([
x
y

])
=

[
−x
−y

]
= −

[
x
y

]
.

In other words,

(T ◦ T )(v) = −v.

Geometrically, this makes sense: if you a rotate vector v by 90° counterclockwise around the origin
twice, you end up with the vector −v of the same length but pointing in the opposite direction. This is
illustrated in Figure 8.2.1, even with a third application of T .
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−2 −1 0 1 2 3 4

−2

−1

0

1

2

3

4

x

y

v

T (v)

T (T (v))

T (T (T (v)))

•

v =

[
1
2

]
T (T (v)) =

[
−1
−2

]

T (v) =

[
−2
1

]
T (T (T (v))) =

[
2
−1

]

FIGURE 8.2.1. Repeatedly rotating by 90° counterclockwise returns in 4 steps

■

Example 8.2.6. For the functions g : R → R3 and f : R3 → R2 defined by

g(t) = (t, cos(t), sin(t)), f(x, y, z) = (y, z),

g can be visualized as the path of a particle moving on a helix on the cylinder y2 + z2 = 1 of radius 1
around the x-axis as shown in Figure 8.2.2, and f is the projection onto the yz-plane. Then f ◦g : R → R2

is given by
(f ◦ g)(t) = f(t, cos(t), sin(t)) = (cos(t), sin(t)),

the path of the particle’s “shadow” in the yz-plane moving counterclockwise around a red circle of radius
1 in the yz-plane shown in Figure 8.2.2.

−10 −5 0 5 10 −2
0

2
−2

0

2

FIGURE 8.2.2. Particle moving in the positive x-direction on a helix, with shadow in the
yz-plane (x = 0) tracing out a circular red path.

On the other hand, the composition g ◦ f the other way around doesn’t make any sense! Indeed, f has
output living in the yz-plane but the input for g is a scalar, so it makes no sense to evaluate g at a point
f(x, y, z) ∈ R2. ■
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8.3. Graphs, level sets, and contour plots. When working with functions that involve several vari-
ables, one is immediately confronted with the question of how to think about them. For functions of one
variable, y = f(x), we have basically two ways: we can study the function computationally or alge-
braically by using a formula for f(x), or we can study the geometry of its graph as a subset of the plane
R2: this consists of the points (x, y) for which y = f(x).

In our experience with functions f(x) of one variable, it can be quite helpful to visualize the function
graphically. We now describe two ways of doing this for a function f : Rn → R of n variables:

• using the graph of f (appropriately defined below),
• using the “level sets” of f (which are certain curves when n = 2) via diagrams to be called “con-

tour plots” (analogues of topographic maps that show elevations on land to hikers and bathymetric
maps that show depths near the ocean floor to submarines or other deep-sea vehicles).

Since a dominant theme in this course is to focus on techniques and viewpoints that are uniformly appli-
cable to Rn for all n, we want to emphasize right away that in real-world applications with n-variable
functions for n ≥ 2, the graph is often (though not always) less useful than the contour plot. This may
sound hard to believe, due to your experience with using graphs to think about everything in single-variable
calculus, but it is true. We will come back to this in Section 8.4 after discussing the core definitions and
some examples.

Much as the graph of a 1-variable function f(x) is the subset of R2 defined as

Graph(f) = {(x, y) ∈ R2 : y = f(x)},
for an n-variable function f : Rn → R its graph is a subset of Rn+1 defined as follows:

Definition 8.3.1. The graph of f : Rn → R is the subset of Rn+1 (not Rn!) defined as

Graph(f) = {(x1, · · · , xn, z) ∈ Rn+1 : z = f(x1, · · · , xn)}.

−2 −1 0 1 2
−1

0
1

2
−0.5

0

0.5

x
y

the graph of f(x, y) = x exp(−x2 − y2)

is the surface shown on the right.

For example,

The fact that the graph lies in Rn+1 makes it impossible to literally be drawn when n > 2. For our
purposes its main role will arise in the case n = 2, since the graph of a function f : R2 → R is a subset of
R3 that we (or better: a computer) can draw; don’t confuse this with the contour plot in R2. Such graphs
are a helpful way of taking our first steps into the world of multivariable functions, as we shall see.

Example 8.3.2. As a first illustration, let’s work out the graph of the function f(x, y) =
√

1− x2 − y2.
We can only take the square root of a nonnegative number, so we require 1− x2 − y2 ≥ 0, or equivalently

x2 + y2 ≤ 1.

This is the disk D centered at the origin in R2 with radius 1, on the left in Figure 8.3.1.
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FIGURE 8.3.1. The disc D (in R2) and graph (in R3) of f(x, y) =
√

1− x2 − y2 over D.

The graph of f is therefore

Graph(f) = {(x, y, z) ∈ R3 : (x, y) ∈ D, z = f(x, y)}
= {(x, y,

√
1− x2 − y2) : (x, y) ∈ D}

Notice that since z =
√

1− x2 − y2, we then have x2 + y2 + z2 = 1 with z ≥ 0. This graph is the upper
hemisphere of the sphere in R3 with radius 1 centered at (0, 0, 0), on the right in Figure 8.3.1. ■

Having seen graphs in R3 for some 2-variable functions, we now turn to a different (and ultimately
more useful) way to get a feeling for the behavior of an n-variable function f : Rn → R for n ≥ 2. We
can try to visualize f by considering what are called its “level sets”. For n = 2 this is something you may
have encountered in real life (without the “level set” terminology) in the following context:

Example 8.3.3. If you are hiking in a park and you get a “contour map” (or “contour plot”) of the terrain
you are about to hike in, it may look something like Figure 8.3.2 below.

60
0

400

400

2
0
0

20
0

200

−
1
0

−10

−
10

−100

−100

200
400
600

FIGURE 8.3.2. A contour plot and the graph of the altitude function A : R2 → R.

The curves on the left in Figure 8.3.2 indicate where the terrain is at a fixed level. For example, the
curve that is labeled by 400 represents where the terrain has an altitude of 400 feet. The mathematical way
to think about this is to consider the altitude function,

z = A(x, y).

The set of points (x, y) where A(x, y) = 400 is the curve on the contour map labeled 400. The set of
points (x, y) where A(x, y) = 600 is the curve on the contour map labeled 600. In general, the set of
points (x, y) where A(x, y) = c is called the level curve of the function A at level c (and is also called a
level set, or sometimes even a contour line even though it generally looks nothing at all like a line).
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The contour map consisting of a collection of level curves is very helpful in visualizing the altitude
function z = A(x, y), and gives us a good understanding of the terrain. Of course, the contour map
doesn’t show the level curves A(x, y) = c for every c; that would be impossible. Rather, the contour map
shows these level curves for “enough” values of c that one can get a sense of the hilliness of the terrain for
practical purposes. Between level curves drawn for values c1 < c2 are level curves for intermediate values
of c that are omitted for clarity.

The c’s also can be encoded as colors with varying intensity, yielding a contour plot that is a “heat
map” as for temperatures in Figure 8.3.3 (see this website for the current version of the same). ■

FIGURE 8.3.3. A “heat map” serving as a contour plot for the temperature everywhere.

Adapting the preceding idea to functions of any number of variables goes as follows:

Definition 8.3.4. Let f : Rn → R be a function. For any c ∈ R, the level set of f at level c is the set
of points (x1, · · · , xn) ∈ Rn for which f(x1, · · · , xn) = c.

If f is a function R2 → R of 2 variables then a contour plot of f is a picture in R2 that depicts
the level sets of f for many different values of c (often values with some common difference for
“consecutive” level sets, such as a common difference of 10, or 4, or 1, or 0.2, etc).

Example 8.3.5. Consider a function g(x, y) whose contour plot is as shown in Figure 8.3.4. Looking at
the values of g on the various level sets in this region, we observe that the values are changing in a definite
direction as we approach the each of the points P and Q.
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FIGURE 8.3.4. Contour plot for g with approximate local extrema marked
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This contour plot suggests that g attains a local maximum at P with g(P ) ≈ 0 and a local minimum
at Q with g(Q) ≈ −8. Even without seeing the surface graph of g in R3, the contour plot in R2 indicates
special geometry near the local extrema. There are also self-crossing level sets, making approximate “X”
shapes; this indicates a different type of behavior for g, as we shall understand later. ■

Remark 8.3.6 (online resource). The website Desmos plots level curves g(x, y) = c for varying c,
and the command ContourPlot in WolframAlpha makes the contour plot of g(x, y) for x and y varying
between chosen bounds (a sample is here). To explore surface graphs, try CalcPlot3D or GeoGebra.

The main lesson from this discussion is that for general n and a function f : Rn → R, there are two
quite different notions that can be used to explore the behavior of f (such as to find “local extrema” of
f , a topic you explored in great depth for n = 1 in single-variable calculus and which we will study in
multiples ways for general n in the rest of the course): its graph as a subset of Rn+1, and its collection of
level sets {x ∈ Rn : f(x) = c} that are certain subsets of Rn (e.g., for n = 2 these are typically curves,
which assemble for enough values of c to provide a contour plot for f on flat paper or computer screen).

8.4. Why contour plots? In Chapters 9 and 10 (for multivariable first derivatives) as well as in Chap-
ter 26 (for multivariable second derivatives), we will use contour plots to explain and learn about multi-
variable derivatives and optimization problems for functions f : Rn → R with n ≥ 2. Throughout that
entire discussion, the graphs of such functions f will play no essential role whatsoever (even in the case
n = 2, which will be the primary case for worked examples and for which we could think about the graph
as a surface in R3 that will sometimes be drawn – for motivational purposes only).

Given the ubiquity of modern software that allows one to create and manipulate 3-dimensional images
on a computer screen, for the study of functions of 2 variables (as a segue into the case of n variables for
general n ≥ 2) you might wonder why there is an emphasis on 2-dimensional contour plots rather than on
3-dimensional graphs. There are several reasons for this:

(i) (mathematical) Fundamental optimization techniques such as gradient descent (Section 11.3) and
Lagrange multipliers (Chapter 12) that work for functions f : Rn → R with any n take place
in Rn and not on the graph in Rn+1. For n = 2, this requires thinking about a function f(x, y)
from the perspective of R2, and that is exactly what the skill of working with the 2-dimensional
contour plot (rather than the 3-dimensional graph) is based upon.

(ii) (pedagogical) Thinking too much about graphs can cause confusion about the mechanism that
underlies gradient descent (an optimization technique to be discussed in Section 11.3): “the gra-
dient vector points in the direction where the function increases most rapidly” (Theorem 11.3.2).
At a point (a, b), the gradient of f(x, y) (a type of vector-valued multivariable first derivative of f
that we will define) is a vector in R2 that can be visualized in terms of a contour plot, but students
who focus on graphs often erroneously think the gradient is a vector in R3 pointing up along the
graph surface z = f(x, y) (at the point (a, b, f(a, b))); this is totally wrong.

(iii) (scientific) Among practicing scientists (in physics, neuroscience, economics, biology, chem-
istry, statistics, etc.), experimental outcomes continue to be more often communicated via 2-
dimensional contour plots than via 3-dimensional graphs. This may be the case because it is
generally easier to convey quantitative information (gradients, constraints, descent methods,
etc.) in a contour plot. Also, neuroscience studies show rather convincingly that most people
are better at understanding 2-dimensional images than 3-dimensional images, no matter how
nice the graphics (possibly because our brain receives information about the visual world as
a 2-dimensional projection onto the retina, and reconstructs depth late in the visual system).
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Certainly 3-dimensional images serve a useful role (such as when displaying the geome-
try of a molecule or protein), but 3-dimensional graphs of 2-dimensional data can be hard to
interpret without the ability to rotate them (such as when giving a typical slide talk or writing
a scientific paper).

Remark 8.4.1. The need to fundamentally change one’s way of thinking when generalizing calculus con-
cepts beyond the 1-dimensional case is not limited to the role of graphs. For example, in single-variable
calculus you computed a lot of definite integrals

∫ b

a
f(x)dx. Though you have encountered these to com-

pute areas and then some volumes (and arc-lengths), the utility of the definite integral goes much further,
including tasks in statistics, economics, and natural sciences that involve no geometry at all. What really
unifies these disparate applications of the definite integral is the need to “add up the contributions of many
small parts”. It is this latter viewpoint that is the best way to think about what definite integration means,
why it shows up everywhere, and how the idea of definite integration adapts to the multivariable setting.
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Chapter 8 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
f : Rn → Rm a function with input in Rn and output in Rm start of Section 8.1

(and Table 0.0.1)
f ◦ g for g : Rn → Rp and f : Rp → Rm, it the function Rn → Rm

defined by (f ◦ g)(x) = f(g(x))
Definition 8.2.2

Concept Meaning Location in text
scalar-valued function a function with input in Rn and output in R Definition 8.1.1
vector-valued function a function with input in Rn and output in Rm (any m) Definition 8.1.7
component function (or
coordinate function)

for vector-valued f : Rn → Rm, it is any fj : Rn → R
where fj(x) is jth entry in f(x) (1 ≤ j ≤ m)

Definition 8.1.7

composite function for g : Rn → Rp whose output is input to f : Rp → Rm, it
is f ◦g : Rn → Rm defined by “first apply g, then apply f”

Definition 8.2.2

graph of f : Rn → R the collection of points (x1, . . . , xn, f(x1, . . . , xn)) in Rn+1 Definition 8.3.1

level set of f : Rn → R
(at level c)

the collection of points x ∈ Rn satisfying f(x) = c Definition 8.3.4

contour plot (in R2) picture in R2 of many level curves of f : R2 → R labeled
by level values (usually changing by a fixed increment); not
to be confused with surface graph in R3 (see Figure 8.3.2)

Definition 8.3.4

Result Meaning Location in text
order of composition
(when both make
sense) matters

for g : Rn → Rm and f : Rm → Rn, usually f ◦ g : Rn → Rn

and g ◦ f : Rm → Rm are very different (even when n = m)
Example 8.2.3, Ex-
ample 8.2.4

Skill Location in text
for f : Rn → Rm, read off its scalar-valued component functions
f1, . . . , fm

illustrated in Example 8.2.3

understand that rotations and projections are vector-valued functions Example 8.1.12, Example 8.1.13, Fig-
ure 8.1.4

compute composition f ◦g of given g : Rn → Rp and f : Rp → Rm

by either working algebraically with component functions or inter-
preting geometrically (with rotations and projections)

Examples 8.2.3–8.2.6

recognize that composition of functions in some order may make no
sense

end of Example 8.2.6

for f : R2 → R, relate basic information in contour plot (in R2) and
surface graph (in R3)

Example 8.3.3

identify directions of increase and decrease for f : R2 → R from
labels in its contour plot

Example 8.3.5
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8.5. Exercises. (links to exercises in previous and next chapters) For notation (e.g., f : A → B) and
terminology involving functions, see Table 0.0.1 and Appendix A.

Exercise 8.1.

(a) Let f(x, y) be the function indicated by the contour plot in Figure 8.5.1. Approximate its local
extrema on the region shown, and the value of f at each local extremum.
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FIGURE 8.5.1. The contour plot for the function f .

(b) In this example, as well as in Figure 8.3.4, do you observe anything in common about the (approx-
imate) shape of the level sets as one approaches a local extremum? (This is our first exposure
to the geometry of contour plots being influenced by local extrema, a theme we will revisit in
Chapter 10 and then at great length in Part V for the multivariable second derivative test.)

Exercise 8.2. Consider the set S = {(x, y, z) ∈ R3 : x3 + z3 + 3y2z3 + 5xy = 0}.
(a) Give functions f, h : R3 → R for which S is a level set of both f(x, y, z) and h(x, y, z).
(b) By solving for z in terms of x and y, give a function g : R2 → R for which S is the graph of g.

Exercise 8.3. Consider the function g : R → R2 defined by g(t) =
(
et + e−t

2
,
et − e−t

2

)
.

(a) Show that every point in the output of g lies on the hyperbola x2 − y2 = 1.
(b) Are all points in the hyperbola {(x, y) ∈ R2 : x2 − y2 = 1} in the output of g? If “yes” then

explain why, and if “no” then explain why a specific point on the hyperbola is not in the output.

Exercise 8.4. Let f : R3 → R3 be the function f(x, y, z) = (x − y + 2z, 3x − 3y + 5z, 3x − 2y + 2z)
and let g : R3 → R3 be the function g(u, v, w) = (4u− 2v + w, 9u− 4v + w, 3u− v).

(a) Compute that g(f(x, y, z)) = (x, y, z) (It is much simpler to compute this composition by treating
each component function of a composite function separately rather than carrying along everything
at the same time.)

(b) Compute that f(g(u, v, w)) = (u, v, w).

The conclusion from the two parts above that feeding each of f or g into the other always yields what
we started with may seem like a miracle but it is actually a special case of a remarkable general result
(Theorem 18.1.8) in the theory of matrix multiplication to be discussed later.

Exercise 8.5. Let S be a level set {(x, y, z) ∈ R3 : f(x, y, z) = c} in R3.
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(a) If S is also the graph {(x, y, z) ∈ R3 : (x, y) ∈ D, z = g(x, y)} of a function g : D → R on
some region D in R2, explain why S meets each vertical line {(a, b, t) : t ∈ R} (for (a, b) ∈ R2)
in at most one point.

(b) For the sphere S = {(x, y, z) ∈ R3 : x2+ y2+ z2 = 4} of radius 2 centered at the origin, explain
both algebraically and geometrically (by drawing a picture) why S violates the “vertical line test”
in (a), so S is not the graph of a function.

Exercise 8.6. Sketch a contour map for the function f(x, y) = 2xy, labeling the level sets f = c with
the value of c. (The level set f = 0 looks somewhat different from the others.) Be attentive to what is
happening in each quadrant when c ̸= 0 (depending on whether c > 0 or c < 0).

Exercise 8.7.
(a) Sketch a contour map in the xy-plane for the function h(x, y) = sin(x), labeling level sets by

the values of h. (Hint: sin(x) is periodic in x with period 2π, so each level set should have a
“2π-periodic” repeating pattern.)

(b) Sketch a contour map in the xy-plane for the function f(x, y) = sin(x − 3y), labeling level sets
by the values of f . (Hint: This should be a “tilted” version of your picture in (a).)

Exercise 8.8. Let f : R2 → R3 be given by

f(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ)

and let g : R3 → R be given by
g(x, y, z) = x2 + y2 + z2.

(a) Calculate g ◦ f : R2 → R.
(b) Explain using (a) why each point f(θ, ϕ) lies on the unit sphere in R3 centered at the origin. It

turns out that every point in the unit sphere is in the output of f , but we are not asking you to
show this.

(Google “spherical coordinate system” to see the geometric meaning of f , with θ an angle in
the xy-plane. Beware that the notational conventions in math and in physics/engineering for θ
and ϕ are swapped; this may be because in German mathematical writing the usual notation for
an angle is ϕ rather than θ and early 20th-century physics was dominated by German scientists.)

Exercise 8.9. Let g : R2 → R be given by

g(v, w) = v2 − w2.

This exercise works out the contour plot of g via visual reasoning; later it will be an important special case
for the study of what are called “saddle points” in the multivariable second derivative test.

(a) Sketch the level set g(v, w) = 0.
(b) The level set g(v, w) = 1 is a hyperbola (with two “branches”). Mark where it cuts either of

the coordinate axes, and explain why for |v| or |w| large we have v2 ≈ w2 on this level set, so
v ≈ ±w. Sketch the resulting hyperbola, with asymptotes v = ±w.

(c) The level set g(v, w) = −1 is a hyperbola (with two “branches”). Mark where it cuts either of
the coordinate axes, and explain why for |v| or |w| large we have v2 ≈ w2 on this level set, so
v ≈ ±w. Sketch the resulting hyperbola, with asymptotes v = ±w.

(d) For c > 0, check that g(v/
√
c, w/

√
c) = 1 precisely when g(v, w) = c. Using this and (b),

explain why the level set g(v, w) = c is the same as the scaling up by the factor
√
c of the level

set in (b).
(e) For c < 0, similarly relate the level set g(v, w) = c to what you drew in (c) using a scaling factor

of
√
|c|.

(f) Sketch a contour map for g in the vw-plane, labeling the level sets.
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Exercise 8.10. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):

(a) Let f(x, y) = x2 − y and g(x, y) = x2 − y + 51. If S7 is the 7-level set of f(x, y) = x2 − y then
it is also the c-level set of g(x, y) for some c.

(b) Let f(x, y) = x2 − y and h(x, y) = (x2 − y)2. If S1 is the 1-level set of f(x, y) = x2 − y then it
is also the 1-level set of h(x, y).

(c) The graph of f(x, y) = x2 − y is the 2-level set of some function F (x, y).
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9. Partial derivatives and contour plots

With the experience from Chapter 8 under our belts, and our knowledge of some linear algebra, we
are ready to begin the study of multivariable calculus. Given a scalar-valued function f(x1, . . . , xn) of n
variables x1, . . . , xn, we will be able to differentiate it “with respect to” each variable xi. These are called
partial derivatives; we shall introduce them, explain them graphically, and discuss what they have to do
with finding maxima or minima.

By the end of this chapter, given a scalar-valued function f : Rn → R (see Table 0.0.1 for the function
notation f : A→ B) you should be able to:

• compute symbolically the partial derivatives of f , as well as second partial derivatives;
• recognize and interpret, from a graph or contour plot of f , positive and negative partial

derivatives.

9.1. Single-variable derivative review. One of the cornerstones of single-variable calculus is the
derivative of a function. In this section we review its definition and discuss some of its interpretations,
focusing on a few aspects that reappear in the more general setting of functions of n variables.

Single-variable calculus is the study of functions f : R → R, or f : I → R for some interval I in R.
There are many examples of such functions:

Example 9.1.1. If you are taking a car trip and t represents time (measured in minutes) since the journey
began, then f(t) could be the total distance you have traveled between times 0 and t. ■

Example 9.1.2. As an example from economics, x can represent the total amount of goods produced in a
factory and C(x) the total cost (say in dollars) of this production. ■

Example 9.1.3. In biology, P (t) could measure the total population of fish in a fixed environment, such
as a lake, as a function of time t. Typically one is interested in how this function depends on various
external factors such as the size of the environment, the number and type of predators, mortality rates, etc.
(and that dependence may impose conditions on the possibilities for P , sometimes expressed in terms of
a differential equation). ■

Remark 9.1.4. In the second example above, both the independent variable x and the value taken by
the function C are discrete rather than continuous: we do not measure fractions of a cent. However, it is
useful to treat such discrete variables as if they vary continuously so that we can study them using methods
from calculus. “Mathematical modeling” of discrete phenomena using continuous methods is a common
technique that works extremely well in practice, though one must always keep in mind that it is just a
model.

In your study of calculus you have encountered many different functions R → R, and are familiar
with how to associate to such a function its graph. For simplicity, we adopt a uniform notation and always
call the independent (input) variable x and the dependent (output) variable y (i.e., y = f(x)) and draw the
graph of the function in the xy-plane.

The derivative of a function f(x) at a point x = c is written in one of the equivalent forms

f ′(c),
df

dx
(c),

df

dx

∣∣∣
x=c

. (9.1.1)

Here are some ways you may have seen this quantity described:

(i) A basic interpretation of the derivative is that it represents the “instantaneous rate of change”. If
we change the value of x slightly from x = c to something nearby, say c+10−6, then the derivative
provides a good approximation for how much f(x) changes. Indeed, f ′(c) is (approximately) the
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ratio of the change of output to the (small) change in input near x = c. So if we increase from
c to c + 10−6, then to a good degree of approximation, the value of f has changed from f(c) to
f(c) + f ′(c)10−6.

The derivative f ′(c) multiplies the change of x, here 10−6, to compute the difference between
the two values of f(x). There is nothing special about 10−6; we could consider any small change
from x = c to x = c+ h, where h represents the tiny increment in the independent variable (with
smaller h making f ′(c) an even better approximation to the ratio of changes of output to input:
f(c+ h) ≈ f(c) + f ′(c)h, or equivalently f(x) ≈ f(c) + f ′(c)(x− c) for x near c).

(ii) The number f ′(c) is the slope of the line tangent to the graph of f at the point (c, f(c)). Recall
that if we consider all possible lines y = mx+ b, then only some of these pass through the point
(c, f(c)). This point lies on such a line precisely when f(c) = mc+ b, so this tells us what b is if
we know m (namely, b = f(c)−mc), so to determine the line we just need to know its slope.

If we consider all lines that pass through this point, then we expect that precisely one will
have a slope making it a “best fit” with the graph of f near this point. Strictly speaking, this is
only true if f is differentiable at x = c. (For instance, the graph of the function f(x) = |x| has no
best-fitting line through (0, 0).) Assuming that f is differentiable, once we have shown that there
is only one best-fitting line (in a suitable sense) we define f ′(c) to be its slope m.

We have been discussing the derivative at a specific point x = c, but it is convenient to think of the
derivative as a function too (by varying c). Thus we write

f ′(x) or
df

dx
for the function which assigns to every point x the value f ′(x), the derivative of f at x. (This assumes that
f has a derivative at every point x.)

We have exhibited two rather different ways of thinking about derivatives: (i) they describe the sen-
sitivity in the values of f to small changes in the independent variable (f(c + h) ≈ f(c) + f ′(c)h for
h near 0), and (ii) they are purely geometric quantities (slopes of tangent lines). Like so many ideas in
mathematics, derivatives can be interpreted in many different ways.

Remark 9.1.5. When we consider functions which represent quantities arising in some part of science
or engineering, then their derivatives sometimes have names specific from those disciplines. These may
provide further motivation or intuition.

In Example 9.1.1 where f(t) is the distance traveled, f ′(t) is the instantaneous velocity at time t. For
the total cost of production C(x) in Example 9.1.2, one calls C ′(x) the marginal cost: how much it costs
to produce 1 extra unit of product (informally: C(x+ 1) ≈ C(x) + C ′(x) · 1). Finally, in Example 9.1.3,
whether P ′(t) is positive or negative tells us whether the population is increasing or decreasing at that
moment of time, and |P ′(t)| indicates how sharply the population growth or decline is at that time.

Regardless of these interpretations, we emphasize that the primary mathematical definition of the
derivative is that f ′(c) is the limit of difference quotients:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

This is what the derivative “really is.” Depending on how the function is presented to us, this definition
may be hard to work with directly. For relatively simple functions given by expressions involving
polynomials, exponentials, etc., you have learned how to compute f ′(x), again as a function involving
the same types of expressions, without needing to go back to the original limit definition.
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It is easy to get drawn into thinking that these formulas for f ′(x) for familiar functions f(x) are
all that derivatives are, but they are not! They are simply the outcome of specific calculations which
are ultimately deduced from the limit definition. Such formulas are very convenient and useful in
many situations, but they apply only when f(x) is given by some simple expression. If you know the
function f(x) only through a sampling of its values, such as when x is the mathematical model for a
quantity that is really discrete, then such formulas are not of much help at all.

We now turn to some of the uses of the derivative. The primary one is to describe basic features of the
graph y = f(x). In particular, this graph has ‘peaks’ and ‘valleys’, and the derivative f ′(x) helps us to
understand these.

Definition 9.1.6. A point x = c is called a local minimum for f if, for values of x close to c, f(x) is at
least as big as f(c); i.e., f(x) ≥ f(c) at least when x is fairly close to c. We picture this by thinking of the
point (c, f(c)) as being at the bottom of a “well”.

We define a local maximum (at x = c) similarly: f(x) ≤ f(c) for all x near c.

•
•

local minimum

local maximum

x

y

A useful fact from single-variable calculus is that if f(x) is differentiable at every x, and if x = c is
a local maximum or local minimum for f , then f ′(c) = 0. In other words, at such points the tangent line
is horizontal, or alternatively (in terms of our other interpretation of the derivative) the value of f(x) is
insensitive (to first order) to small changes in x.

So to find the local maxima or local minima of f(x), we can proceed by first computing the function
f ′(x) and then solving f ′(x) = 0 (and hope the “second derivative test” applies there). Neither of these
steps may be simple. For example, if f is a polynomial of degree 25 then it is straightforward (if tedious)
to calculate f ′(x) as a polynomial of degree 24, but it is probably very difficult or impossible to find exact
solutions to f ′(x) = 0. On the other hand, if we only know the values of f(x) through discrete sampling,
as can happen when f arises in certain mathematical models, then we will not be able to compute f ′(x)
exactly but at best only find some reasonable approximation to it.

However, finding the solutions x of f ′(x) = 0 is not the whole story! For instance:

Example 9.1.7. Suppose that we have carried out this step for some function f , and have obtained a list
of numbers, say x = 3, 6.5, 12 and 137, where the derivative vanishes. We must then decide whether each
of these values is a local maximum, a local minimum, or perhaps neither.

There is a helpful test involving the second derivative of f(x), which we will review in Example 26.1.1,
but even that is sometimes inconclusive (consider f(x) = x3 and f(x) = ±x4). To repeat: finding where
f ′(x) = 0 is only a preliminary step, since it merely indicates the values of x which we need to study more
closely when seeking local maxima or local minima. ■

Keep in mind that there are points at which f ′(x) = 0 that are neither local maxima nor local minima,
such as f(x) = x3. At such critical points, the graph is concave-up on one side and concave-down on the
other side:
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Example 9.1.8. Consider f(x) = x3: this has derivative vanishing only at x = 0, but f(x) is negative for
x < 0 and positive for x > 0, so x = 0 is neither a local maximum or minimum for f . The graph of
y = x3 is concave-down when x < 0 and concave-up when x > 0, as shown in Figure 9.1.1.

x

y

−1 0 1
−1

0

1

FIGURE 9.1.1. The graph of f(x) = x3 over the interval [−1, 1].

■

This concludes our review of derivatives of functions of one variable.

9.2. Partial derivatives, a first look. Consider a function f(x1, x2) of 2 variables. Just as for func-
tions of one variable, we can ask: “What is the instantaneous rate of change of f at some point (x1, x2) =
(a, b)?” This pervades multivariable optimization in economics, natural sciences, etc., as will be seen later
on. Unlike the single-variable case discussed in Section 9.1, where there is essentially just one meaning
(though there is a variety of ways to interpret it), with more than one independent variable there are mul-
tiple possible meanings. “Partial” derivatives will provide a first step in this direction, but these and a
few other ideas to be introduced later (directional derivatives, the gradient, and the derivative matrix) will
ultimately all fit together into a coherent picture that tells us how to best approximate f(x1, x2) near (a, b)
with a “linear” function.

The main idea for “partial” derivatives is to consider the function f(x1, x2) as a collection of functions
of one variable, which we can do in two different ways. Firstly, for each value x2 = b, the function f(x1, b)
is a function of one variable, and as we choose different values of b, we get different functions of x1.

Example 9.2.1. Suppose f(x1, x2) = sin(x1 + x22). At x2 = 1 the resulting function f(x1, 1) of one
variable is sin(x1 + 1). Likewise at x2 = 1/2 it is f(x1, 1/2) = sin(x1 + 1/4), at x2 = 0 it is f(x1, 0) =
sinx1, and so on.

On the other hand, we could equally well think of x1 as being equal to some fixed value a, and then
consider the function of one variable f(a, x2). For f(x1, x2) = sin(x1 + x22), when x1 = 0 we get sin(x22),
for x1 = 1 we get sin(1 + x22), and so on. ■

Let’s interpret this visually via the graph of f in R3: the set of points (x1, x2, f(x1, x2)). It is a surface
in space whose height over (x1, x2) is f(x1, x2) (see Figure 9.2.1). If we set x2 equal to some value, say
x2 = 3, then we are considering the function f(x1, 3); the graph of this function of one variable is where
the graph of f meets the vertical plane x2 = 3. If we set x2 equal to another value, say x2 = 4, this
corresponds to sliding the vertical plane over to x2 = 4, which meets the graph of f in a different curve
(see Figure 9.2.1). Thus we can think of the surface graph of f as a collection of curves, each obtained
where the surface meets a vertical plane x2 = b; see Figure 9.2.1. This is a way of reducing the situation
to something we have studied before: algebraically we go from the function of two variables f(x1, x2) to a
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collection of functions f(x1, b) of one variable, to which we can apply what we know from single-variable
calculus. Geometrically, we think of the graph of f as the collection of graphs of single-variable functions.

x1

x2

x3

0

1
2

1

0

1

0

1

1
4

3
4 1

21
4

3
4

0

1

FIGURE 9.2.1. The graph of f(x1, x2) and its slices by the planes x2 = 0, x2 = 1/4,
x2 = 1/2, x2 = 3/4, x2 = 1 as the respective graphs of f(x1, 0), f(x1, 1/4), f(x1, 1/2),
f(x1, 3/4), f(x1, 1).

Slicing the surface graph with the planes x1 = a in another direction could have been considered instead.
That would correspond to working with the function f(a, x2) for various a.

We are now ready to define partial derivatives. Let (a, b) be any point. Suppose we hold x2 equal to a
fixed value b. As we just discussed, we can think of this as corresponding to the intersection of the graph
of f with the plane x2 = b, or symbolically as the function of one variable f(x1, b).

Definition 9.2.2. The partial derivative of f with respect to x1 at the point (a, b), denoted in any of
the equivalent ways

∂f

∂x1
(a, b),

∂f

∂x1

∣∣∣
(a,b)

, fx1(a, b),

means the derivative of the function f(x1, b) at x1 = a.
Said differently, the partial derivative of f with respect to x1 at (a, b) is the instantaneous rate of

change of f at the point (a, b) if we only move in the x1-direction (so x2 is held constant, at the value
b)! The formal definition is once again as a limit of difference quotients,

∂f

∂x1
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
. (9.2.1)

Observe that in (9.2.1) we only vary the first coordinate of the input and leave the second coordinate
at b. We repeat for emphasis: ∂f/∂x1 entails keeping x2 constant.

In precisely the same way, we can define the partial derivative of f with respect to x2 at (a, b),
denoted

∂f

∂x2
(a, b),

∂f

∂x2

∣∣∣
(a,b)

, fx2(a, b).

As above, the actual definition is the limit of difference quotients
∂f

∂x2
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
, (9.2.2)

now varying the x2-coordinate and holding x1 fixed at the value a.

Example 9.2.3. Consider f(x1, x2) = x21 + x22. To compute its partial derivative with respect to x1 at
(3, 2), we first set x2 = 2; i.e., consider the function f(x1, 2) = x21 + (2)2 = x21 + 4. The partial derivative
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value fx1(3, 2) is just the derivative of this function at x1 = 3. Thus we compute fx1(x1, 2) = 2x1 and
hence fx1(3, 2) = 6.

We could have done this a bit more directly. Namely, without first explicitly setting x2 = 2, we
differentiate the two summands in x21 + x22 separately. The derivative of x21 with respect to x1 is 2x1, while
the derivative of x22 with respect to x1 is 0 because x22 does not change at all if we vary only x1. Thus we
obtain that fx1(x1, x2) = 2x1 for any (x1, x2), so fx1(3, 2) = 6. ■

Just as for functions of one variable, we can think of partial derivatives in either of the two directions
as new functions. Thus ∂f/∂x1 (or fx1) is the instantaneous rate of change of f in the x1-direction at
any point (x1, x2), and ∂f/∂x2 is the instantaneous rate of change of f in the x2-direction at any point
(x1, x2). (The technique of “implicit differentiation” from single-variable calculus is understood better via
partial derivatives, but the link involves the multivariable Chain Rule that is discussed in Chapter 17.) For
functions of two variables there are two instantaneous rates of change: one in each of the two coordinate
directions. For functions of three (or n) variables, there are corresponding instantaneous rates of change
(i.e., partial derivatives), one with respect to each independent variable, as we shall see in Section 9.3.

In the remainder of this chapter we take up two questions:

(i) How do we actually compute partial derivatives symbolically for multivariable functions such as
sin(x1 + x22) or ex3

1x2 which are built from familiar functions such as polynomials, trigonometric
functions, exponential functions, etc.?

(ii) Even without having a simple formula for the function f , how can we interpret partial derivatives
in terms of visual data attached to f , at least in the 2-variable case?

It is a pleasant surprise that the partial derivatives in the coordinate directions can be used to build a
more fundamental concept of “total derivative” that enables us to to compute a notion of partial derivative
in any direction at all. This involves further linear algebra (via matrices), so we postpone it to Chapter 13.

9.3. Partial derivatives, symbolically. We now practice computing partial derivatives of functions
built from familiar expressions involving polynomials, exponentials, and trigonometric functions.

Example 9.3.1. Consider the function f(x1, x2) = sin(x21x
3
2). We now compute its two partial derivatives

at the point (−3, 2), first treating the partial derivative with respect to x1.
Method 1 (symbolic): First, as a function of (x1, x2),

∂f

∂x1
(x1, x2) = 2x1x

3
2 cos(x

2
1x

3
2). (9.3.1)

To obtain this we have applied the same principle as in the second half of Example 9.2.3: think of this
as a function of x1 alone, and regard x2 as a fixed constant (so we are varying only x1). We then apply
the Chain Rule in the usual way: we differentiate as a function of x1 with x2 treated as a fixed numerical

quantity, getting
∂f

∂x1
(x1, x2) = cos(x21x

3
2)

∂

∂x1
(x21x

3
2) = cos(x21x

3
2)(2x1x

3
2), getting (9.3.1). Now evaluate

at (−3, 2) to get fx1(−3, 2) = −(6)(8) cos((9)(8)) = −48 cos 72 (where the trigonometric functions are
evaluated on input in radians).

Method 2 (numerical): Rather than first working symbolically throughout (treating x2 like a fixed
numerical quantity whose actual value we don’t specify until we set it to be 2 after the x1-differentiation),
we could have first set x2 = 2 before computing any derivatives. Since f(x1, 2) = sin(8x21), differentiating
with respect to x1 yields fx1(x1, 2) = 16x1 cos(8x

2
1), so finally fx1(−3, 2) = −48 cos 72, as before.

Likewise, to compute fx2(−3, 2) we can proceed symbolically (Method 1) to get
∂f

∂x2
= 3x21x

2
2 cos(x

2
1x

3
2),
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so fx2(−3, 2) = 108 cos(72). If we instead proceed numerically (Method 2), we set x1 = −3 to arrive at
the function f(−3, x2) = sin(9x32) of x2 and differentiate that to obtain 27x22 cos(9x

3
2). Evaluating this at

x2 = 2 gives fx2(−3, 2) = 27(2)2 cos(9 · 23) = 108 cos(72). ■

Example 9.3.2. Let’s compute the partial derivatives of g(x1, x2) = e4x1−5x2 at (1,−1).
First we compute the partial derivative with respect to x1. Using Method 2 as in Example 9.3.1, we

substitute x2 = −1 to obtain g(x1,−1) = e4x1+5, so differentiating gives gx1(x1,−1) = 4e4x1+5 and
finally substituting x1 = 1 yields gx1(1,−1) = 4e9.

Alternatively, following Method 1 as in Example 9.3.1, we treat x2 as if it is a fixed constant but we do
not specify which constant value it has. This gives gx1(x1, x2) = 4e4x1−5x2 , so evaluating at (1,−1) yields
gx1(1,−1) = 4e4+5 = 4e9 once again.

To compute the partial derivative with respect to x2, we first use the numerical method (i.e., Method
2 from Example 9.3.1), so we substitute x1 = 1 to get the function g(1, x2) = e4−5x2 of x2, which has
derivative −5e4−5x2 . Evaluating this in turn at x2 = −1 gives that gx2(1,−1) = −5e9.

Alternatively, using Method 1 as in Example 9.3.1, treat x1 as a constant but do not specify which
constant value it has. This gives gx2(x1, x2) = −5e4x1−5x2 , so gx2(1,−1) = −5e9 once again. ■

We now phrase these two viewpoints (symbolic and numerical) for general functions.

If f(x1, . . . , xn) is a function of n variables, then at the point (a1, . . . , an) its ith partial derivative, or
equivalently its partial derivative with respect to xi for any i = 1, . . . , n, denoted as

fxi
(a1, . . . , an) or

∂f

∂xi
(a1, . . . , an) or

∂f

∂xi

∣∣∣
(a1,...,an)

,

can be computed in two ways (in practice one always uses Method 1 below, but its equality with
Method 2 below explains why partial derivatives satisfy some features of single-variable derivatives).

Method 1 (symbolic): think of the xj’s for j ̸= i as constant (without specifying their values) and
apply the familiar single-variable differentiation rules in terms of xi to obtain the new function of n
variables, fxi

(x1, . . . , xn). Then substitute (a1, . . . , an) for (x1, . . . , xn) throughout.

Method 2 (numerical): replace xj with aj in f for every j ̸= i, and then differentiate the result-
ing function f(a1, . . . , ai−1, xi, ai+1, . . . , an) of one variable xi using the rules from single-variable
calculus. Finally, after that, set xi = ai. In particular, for each i, the operation ∂/∂xi satisfies the

product and quotient rules (e.g.,
∂

∂xi
(fg) =

∂f

∂xi
g + f

∂g

∂xi
for all f and g)!

Why mention two methods which look almost identical? The point is that Method 1 explains why
Method 2 always proceeds “the same way” whatever values we use for the aj’s with j ̸= i. In practice
one uses the symbolic method, but thinking in terms of the numerical method illuminates more vividly
how partial derivatives are related to single-variable derivatives.

9.4. Summary. Since this is such a fundamental part of the subject, we take the opportunity to briefly
summarize what we have discussed above:

• For a single variable function, the usual derivative provides information about the change in
values of a function when we make a small increase in the independent variable:

g(x+ h)− g(x) ≈ dg

dx
× h, for h small.
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• For a function f(x1, x2) of two variables, the partial derivative
∂f

∂x1
gives information about how

the values of f change when we make a small increase in x1 while holding x2 constant.
As an example, let’s see what happens to f(x1, x2) = x21 + x1x

2
2 when we go from (x1, x2) =

(2, 1) to (x1, x2) = (2.1, 1); we have increased x1 slightly, but hold x2 fixed. We have:

f(2.1, 1)− f(2, 1)︸ ︷︷ ︸
=0.51

≈ ∂f

∂x1
(2, 1)× (0.1) = 0.5. (9.4.1)

Make sure you understand (9.4.1). We will explain it visually in Section 9.5. To summarize:

• Let f(x1, x2) be a scalar-valued function of (x1, x2). The partial derivative
∂f

∂x1
, sometimes abbreviated as fx1 ,

is the derivative of f with respect to x1, holding x2 as a constant. Similarly, ∂f
∂x2

– sometimes
abbreviated as fx2 – is the derivative of f with respect to x2, holding x1 as a constant.

• ∂f
∂x1

and ∂f
∂x2

are each scalar-valued functions of (x1, x2).
• Interpretation: if we hold x2 constant and change x1 by a small amount h, then approximately

(change in f ) = f(x1 + h, x2)− f(x1, x2) ≈
∂f

∂x1
× h. (9.4.2)

Similarly, if we hold x1 constant and change x2 by a small amount h, then approximately

(change in f ) = f(x1, x2 + h)− f(x1, x2) ≈
∂f

∂x2
× h. (9.4.3)

• These concepts generalize directly if f depends on more variables. Let f(x1, . . . , xn) be a
scalar-valued function of n variables. The partial derivative

∂f

∂xi
, sometimes abbreviated as fxi

,

is the derivative of f with respect to xi, regarding all other variables x1, x2, . . . , xi−1 and
xi+1, xi+2, . . . , xn as constants.

Remark 9.4.1 (optional). Beware that equations (9.4.2) and (9.4.3) are only approximations. Later, in
Chapter 25, we will see how to improve this approximation by using second derivatives. In more ad-
vanced applications, it is sometimes important to understand precisely how good the approximation is.
The first step toward this is the limit definition. For example, the mathematically precise formulation
of (9.4.2) is

lim
h→0

f(x1 + h, x2)− f(x1, x2)

h
=

∂f

∂x1
(x1, x2).

Stated more plainly, the error in equation (9.4.2) is very small relative to h, when h is very small.

The functions we encounter in this course are “differentiable”, which means that at every point the
limit defining the “derivative” (in the sense of partial derivatives for now, but later we will develop a more
powerful perspective) does indeed exist.

Just as for functions of one variable, there are however lots of functions that are not differentiable
at some points. The simplest example is the function f(x) = |x|, which is not differentiable at x = 0.
Likewise in the multivariable setting, the function f(x1, x2) = |x1+x2| does not admit a partial derivative
fx1 or fx2 at (0, 0) (that is, the limit defining such partial derivatives at (0, 0) does not exist), and similarly
at all points on the line where x1 + x2 = 0.
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The reason we steer away from non-differentiable functions in this course is not that they are not
useful (in fact, non-differentiable functions do arise in applications) but rather that their study requires
different ideas and techniques. For those who are curious, here are some real-world contexts where
non-differentiable functions play an essential role:

(i) (Brownian motion) The chaotic-looking behavior of particulate matter such as pollen or dust
when suspended in a fluid was first observed empirically by the botanist Robert Brown in the
early 19th century. The development of a mathematical theory of “Brownian motion” (for
objects moving under the influence of random forces) began in the late 19th century, with
applications by Einstein in 1905 to the kinetic theory of heat and gases (and in fact to the ini-
tial determination of the size of atoms and the related measurement of Avogadro’s constant).
In this mathematical theory, the jittery path followed by a particle under Brownian motion is
modeled by a function of time that is continuous but (typically) nowhere differentiable!

(ii) (stochastic calculus) In many fields there are systems involving a lot of random noise and
many interacting parts. Examples include finance (to predict future price of a stock, and the
variance thereof), climate modeling, filtering theory in signal processing (used by computers
on Apollo 11 during its descent to the Moon), and gene expression in biology. The math-
ematical framework for such problems is called stochastic calculus, in which many of the
functions of time that arise are typically highly non-differentiable (as in Brownian motion).

Part of stochastic calculus is the study of differential equations involving “noise terms”
(to model random forces in a system). A famous example of a stochastic differential equation
is the Black–Scholes equation used to price certain financial instruments; the 1997 Nobel
Prize in Economics was awarded for the discovery and study of this equation.

9.5. Partial derivatives, graphically. In Section 8.3, two tools in the study of functions f of 2 vari-
ables were discussed: the graph of f in R3 (the set of points (x, y, z) for which z = f(x, y)) and a contour
plot of f in R2 (a collection of curves in the xy-plane). Our goal in this section is to understand what
partial derivatives tell us about the contour plot. In practice contour plots are made by a computer, and
WolframAlpha is good at this; we won’t ask you to create them on any exam, nor on homework except
perhaps some basic examples whose level curves are things such as lines, circles, or parabolas.

Here is a contour plot (showing level sets at values in increments of 0.2) for a function F (x, y) which
may represent some experimental measurements (i.e., we may have no explicit formula for F (x, y)):
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FIGURE 9.5.1. A contour plot for some F (x, y) using increments of 0.2 in F -values
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This contour plot is in the xy-plane, and the label on each curve indicates the F -value on that curve (in
increments of 0.2). The x-axis extends from west to east and the y-axis extends from south to north. This
contour plot is rather complicated, which indicates that the function F (x, y) itself is fairly complicated.

We now use the 2-dimensional contour plot to read off qualitative information about the function
F (x, y). (Chapters 10–11 contain further discussion of the utility of 2-dimensional contour plots to express
information about the behavior of 2-variable functions.)

Imagine that you are walking from west to east along the red line y = 0 in Figure 9.5.1 while on the
surface graph z = F (x, y). Let us analyze what you observe as you do this. The contour plot is a bird’s
eye view of the graph z = F (x, y): your path looks like a straight line from the bird’s perspective, but as
you walk along the line y = 0 the function f(x) = F (x, 0) on this line varies in its values and the graph
of f(x) as shown in Figure 9.5.2 keeps track of elevation as one walks along the red line.
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FIGURE 9.5.2. Graph of f(x) = F (x, 0), marking increments of 0.2 vertically (F -values).
The red curve is the slice of the surface z = F (x, y) by the plane y = 0, the horizontal
coordinate is x, and the vertical coordinate is z.

In Figure 9.5.2 we have drawn a dot on the red curve every time the altitude changes by 0.2 units. This
value 0.2 agrees with how we have labeled the contour plot in Figure 9.5.1: the different contour curves in
Figure 9.5.1 correspond to level sets for F at different values 0.2 units apart. We label each such dot with
the altitude, and also drop a dashed vertical line down to the x-axis.

In other words, in Figure 9.5.2 there is one dot and an accompanying dashed line for each time you
meet one of the contours in the contour plot. Note that the contour curves for F (x, y) in Figure 9.5.1
are very close together near the point (x, y) = (1, 0). In Figure 9.5.2, this corresponds to the fact that
the x-coordinates of the dots are more tightly clustered near x = 1. In physical terms, elevation changes
rapidly in this region since the plot shows level sets in uniform increments (0.2 in this case). By definition
the derivative f ′(x) of f(x) = F (x, 0) is the partial derivative ∂F

∂x
at (x, 0). Here are some observations:

• The regions where f ′(x) = ∂F
∂x
(x, 0) is positive are those where you are walking uphill in Figure

9.5.2 as you walk from west to east (i.e., it is where the numbers f(x) = F (x, 0) on the labels
increase). For example, along the interval of x-values in [−1, 0] (with y = 0) is all uphill.

• The regions where f ′(x) = ∂F
∂x
(x, 0) is negative are those where you are walking downhill, again

as you walk from west to east in Figure 9.5.2. The region along [−2,−1] is downhill.
• When the absolute value |f ′| = |∂F

∂x
| is large, the path is very steep. For example, it seems

dangerously steep at x = 1. Notice that the contours (shown at uniform increments, 0.2 in this
case) are closer together near x = 1. On the other hand, when the slope is more gradual (i.e.,
|f ′| = |∂F

∂x
| is near 0), the contour curves (shown at uniform increments) are further apart. For

instance, the slope is more gradual near x = 2.
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• At points where f ′ = ∂F
∂x

= 0, the path momentarily flattens out (in the x-direction): this occurs
here in the valley near x = −1 and on the peak to the left of x = 1, and also presumably in the
flat area at x = 0.

More generally, for any b, ∂F
∂x
(x, b) tells us about the slope of the path as we walk from west to east

along the surface graph z = F (x, y) on the curve in the surface lying above the horizontal line y = b, and
the magnitude (i.e., absolute value) of this partial derivative at x = a indicates the frequency with which
we pass across contour lines as we move along the line y = b near (a, b). High frequency of crossing
contour lines (shown at uniform increments of F -values!) corresponds to |Fx(a, b)| being large, and low
frequency corresponds to Fx(a, b) ≈ 0. We summarize all of this of follows:

Interpretation of partial derivatives on a contour plot: Visualize F (x, y) as the height above (x, y)
on the surface graph z = F (x, y), where x is the east-west coordinate and y is the north-south coordi-
nate (so larger values of x mean that we are further to the east, while larger values of y mean that we
are further to the north). Then:

• ∂F
∂x
(a, b) equals the slope (instantaneous change in altitude) experienced by someone walking

on the surface z = F (x, y) just as they go past the point (a, b) from west to east.
• ∂F

∂y
(a, b) equals the slope (instantaneous change in altitude) experienced by someone walking

on the surface z = F (x, y) as they walk past the point (a, b) from south to north.

As an example, if ∂F
∂y
(0, 0) > 0 then a northerly path on the surface z = F (x, y) is going uphill as

it passes over (0, 0).

On a contour plot of the function F (x, y), the partial derivatives can be interpreted as follows:

• The sign of ∂F
∂x
(a, b) tells us whether the labels of the contours (which represent the values

of F ) are increasing or decreasing as we walk through (a, b) from west to east.
• The sign of ∂F

∂y
(a, b) tells us whether the values of F on the contours are increasing or de-

creasing as we walk through (a, b) from from south to north.
• If ∂F

∂x
(a1, b1) >

∂F
∂x
(a2, b2) > 0 then in the x-direction the slope at (a1, b1) is steeper than

the slope at (a2, b2), so the contours (when shown for uniform increments in F -values) are
spaced closer together as we move east across (a1, b1) than they are as we move east across
(a2, b2). There is a corresponding statement for negative x-partial derivatives (still moving
east). The situation for ∂F

∂y
can be described in very similar terms (for moving north).

Example 9.5.1. Let’s do a similar analysis for a path as shown in Figure 9.5.3 that heads north along the
red line x = 2.25 on the same contour plot as in Figure 9.5.1.
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FIGURE 9.5.3. The line x = 2.25 (in red) and the same contour plot for F (x, y)
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We want to address two issues concerning F (2.25, y) as we walk up along the red line in Figure 9.5.3:

(i) Is the path uphill or downhill, or are there regions for each?
(ii) Is the path steeper at the beginning or the end of the path?

In each case, we want to interpret the answer in terms of properties of ∂F
∂y

.
When going upwards along the red line (so from south to north), the labels of the contours (level

curves) are decreasing. For example they go down from 1.8 to 1.0, then to 0.6, and so on: the successive
contours we cross have labels that decrease successively by 0.2. This tells us that the path is downhill,
which says that the partial derivative ∂F

∂y
is negative at all points where the red line intersects the contours.

Furthermore the distance between the contours starts out small, then is fairly large, and then gets
smaller again. This tells us that the path is steepest at the beginning of the path (the furthest south), then
levels out, and then gets a bit steeper again when we get further north. In terms of partial derivatives, this
says that ∂F

∂y
is most negative at the southern-most point where the red line intersects the contours, then

gets larger (closer to zero) toward the middle of the path, and finally becomes more negative again as we
proceed further north. ■

Example 9.5.2. Figure 9.5.4 is a contour plot of a function f(x, y) = ax + by + c, for certain (nonzero)
constants a, b, and c, with contours shown for f -values in increments of 3.
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FIGURE 9.5.4. A contour plot corresponding to a surface graph that is a plane

Evaluating the first partial derivatives yields

∂f

∂x
(x, y) = a and

∂f

∂y
(x, y) = b

This means for each unit distance we walk east, our altitude changes by a units (it rises if a > 0 and falls
if a < 0, or stays the same if a = 0). And for each unit distance we walk north, our altitude changes
by b units. The fact that these partial derivatives are constants – i.e., they do not depend on x and y – is
expressed by the contour plot consisting of evenly spaced lines.

■

Example 9.5.3. In Figure 9.5.5 we give a contour plot of f(x, y) = x(y2 + 1) (using f -value increments
of 1, but omitting odd f -value labels on the right side for readability) with the following points marked:

P = (0, 0) Q = (3/2, 0) R = (7/2, 0) S = (2, 1) T = (2,−1).
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FIGURE 9.5.5. A contour plot for f(x, y) = x(y2 + 1) using increments of 1 in f -values

Let’s determine the answers to the following two qualitative questions at each point, first by looking at
the contour plot (if that gives enough information) and then by computing the partial derivatives of f(x, y)
at each point:

(i) Is ∂f
∂x

positive, negative, or 0?
(ii) Which of ∂f

∂x
and ∂f

∂y
is bigger, and how do we arrange the values of ∂f

∂x
(and likewise for ∂f

∂y
) in

increasing order at all of these points?

For (i), the label of the contour is always increasing as we move from west to east (i.e., in the direction
of increasing x), so ∂f

∂x
> 0 at all of these points. Alternatively, we can compute this partial derivative to

be ∂f
∂x

= y2 + 1, which is visibly always positive.
Turning to (ii), at P = (0, 0) if we pass through going north (the direction of increasing y) then we

stay on a fixed contour line, so ∂f
∂y
(0, 0) = 0. Since ∂f

∂x
> 0 at all points, we know that ∂f

∂x
(0, 0) > ∂f

∂y
(0, 0).

At the other points, it is difficult to tell from the contour plot whether the contour lines are closer or further
apart when we travel through the point from west to east versus when we pass through the point from south
to north. However, at S and T the nearby contour lines (which again are shown for f -value increments of
1) are more tightly packed in both the vertical and horizontal directions than at P,Q,R, so

fx(S), fx(T ) > fx(P ), fx(Q), fx(R)

(and the symmetry of Figure 9.5.5 across the x-axis suggests that fx(S) = fx(T )).
For fy, we similarly see that the steepness (whether up or down) in the vertical direction looks greater

at S and T than at P,Q,R, so

|fy(S)|, |fy(T )| > |fy(P )|, |fy(Q)|, |fy(R)|.

The reason for the absolute values is that we haven’t yet taken into account the sign of the y-partial
(whereas we have already seen that fx > 0 everywhere). Looking at the contour labels, we see that f is
decreasing as we pass through T moving upwards (i.e., labels of contour lines nearby are going down),
so fy(T ) < 0, whereas f is increasing as we pass through S moving upwards, so fy(S) > 0. Likewise,
fy ≈ 0 near P,Q,R since the contour lines are rather “spread out” when moving vertically through those
points. Hence, the picture provides the qualitative conclusion

fy(S) > fy(P ), fy(Q), fy(R) > fy(T ).
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Let’s compare these qualitative conclusions from the contour plot with exact calculations of partial
derivatives from the formula for f . We have ∂f/∂x = y2 + 1, so

∂f

∂x
(0, 0) = 1

∂f

∂x

(
3

2
, 0

)
= 1

∂f

∂x

(
7

2
, 0

)
= 1

∂f

∂x
(2, 1) = 2

∂f

∂x
(2,−1) = 2.

Similarly ∂f/∂y = 2xy, so

∂f

∂y
(0, 0) = 0

∂f

∂y

(
3

2
, 0

)
= 0

∂f

∂y

(
7

2
, 0

)
= 0

∂f

∂y
(2, 1) = 4

∂f

∂y
(2,−1) = −4.

These exact calculations agree with the qualitative conclusions we obtained from inspection of the contour
plot. ■

9.6. Second partial derivatives. There is a notion of “second derivative” for multivariable functions
f : Rn → R, defined similarly to the case of single-variable functions: we compute a partial derivative of
a partial derivative. The new issue when n > 1 is that we have the freedom to choose in which direction
to form each successive partial derivative.

As an example with n = 2, consider

f(x, y) = x3 − 7x2y + 5y4.

Note that fx = ∂f/∂x is equal to 3x2 − 14xy and fy = ∂f/∂y is equal to −7x2 +20y3. Now we have the
following options for a second derivative: we can differentiate fx with respect to x or with respect to y, or
we can differentiate fy with respect to x or with respect to y.

We introduce notation for all of these possibilities:

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
denotes the x-partial derivative of fx;

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
denotes the y-partial derivative of fx;

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
denotes the x-partial derivative of fy;

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
denotes the y-partial derivative of fy;

Example 9.6.1. For f(x, y) = x3 − 7x2y + 5y4 as above, we have computed fx and fy, so we can
differentiate each of those with respect to either x or y to compute all 4 second derivatives:

∂2f

∂x2
=

∂

∂x
(3x2 − 14xy) = 6x− 14y,

∂2f

∂y∂x
=

∂

∂y
(3x2 − 14xy) = −14x,

∂2f

∂x∂y
=

∂

∂x
(−7x2 + 20y3) = −14x,

∂2f

∂y2
=

∂

∂y
(−7x2 + 20y3) = 60y2.

■

Example 9.6.2. Let f(x, y) = x ln(1 + y). Then fx = ln(1 + y) whereas fy = x/(1 + y). Therefore,

∂2f

∂x2
= 0,

∂2f

∂y∂x
=

∂

∂y
(ln(1 + y)) =

1

1 + y
,

∂2f

∂x∂y
=

∂

∂x
(

x

1 + y
) =

1

1 + y
,
∂2f

∂y2
=

−x
(1 + y)2

.

■
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You will notice that in both of the preceding examples, we have

∂2f

∂x∂y
=

∂2f

∂y∂x
,

or in words: the derivative of fy with respect to x is the same as the derivative of fx with respect to y.
This possibly surprising result holds in all reasonable situations. It is called equality of mixed partials,

and implies that for a function f(x, y) there are really only 3 second partial derivatives (namely
∂2f

∂x2
,

∂2f

∂x∂y
=

∂2f

∂y∂x
, and

∂2f

∂y2
) and not 4 second partial derivatives as initially seemed to be the case.

These concepts make sense for functions f(x1, . . . , xn) of n variables for any n (not just n = 2):

Definition 9.6.3. For a function f(x1, . . . , xn) of n variables that is differentiable in each xi separately
(as happens in all examples that arise for us), the second partial derivatives are defined to be

∂2f

∂xi∂xj
= xi-partial derivative of

∂f

∂xj
(when j = i it is denoted

∂2f

∂x2i
)

when these exist.

In accordance with the “equality of mixed partials” that we observed in Examples 9.6.1 and 9.6.2, we
have as a general (perhaps surprising) fact:

Theorem 9.6.4 (Clairaut–Schwarz). Consider a function f(x1, . . . , xn) that is continuous, and for
1 ≤ i, j ≤ n suppose that the partial derivatives ∂f/∂xi and ∂f/∂xj as well as the second partial
derivatives ∂2f/∂xi∂xj and ∂2f/∂xj∂xi exist and are continuous (as will be the case in all examples
that arise for us). Then the order of applying ∂/∂xi and ∂/∂xj to f does not matter:

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

(Due to the equality, we often denote this second partial derivative by the notation fxixj
or fxjxi

.)

For example, in the case of a 3-variable function f(x, y, z), equality of mixed partials says that there
are really only 6 possibly “different” second partial derivatives:

∂2f

∂x2
,
∂2f

∂y2
,
∂2f

∂z2
,

∂2f

∂x∂y
=

∂2f

∂y∂x
,

∂2f

∂x∂z
=

∂2f

∂z∂x
,

∂2f

∂y∂z
=

∂2f

∂z∂y
.

A precise explanation for Theorem 9.6.4 is provided in Section 9.7 for those who are interested. There
we also give an example to illustrate that the equality can fail for somewhat peculiar f(x, y) whose graph
doesn’t look at all strange near the point where the equality breaks down (see Figure 9.7.1).

Remark 9.6.5. Theorem 9.6.4 is true more for algebraic than geometric reasons, though its original dis-
covery (without proof) by N. Bernoulli 13 around 1718 in a geometric setting ([En, App. 1, p. 202, last 3
lines], esp. “d̄δ = δd̄” there) led him to consider it to be “an axiom, which I thought to be obvious to
anybody” [En, Sec. 4.2.5]. Clairaut’s proof in 1740 was wrong, as were many subsequent ones. Only in

13Nicolaus I Bernoulli (1687-1759) belonged to a family of many famous 17th and 18th century Swiss mathematicians and
made important contributions to the early development of probability theory and differential equations. He rarely published his
results, preferring to communicate them via private letters, because (as he wrote in a letter [En, Sec. 4.1.1, p. 95]) “I am not
ambitious, and [. . . ] have judged it to be sufficient that [. . . ] I have solved it.”
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the 1860’s was it realized that the result requires some hypotheses on the mixed partials. The first cor-
rect proof by modern standards was given by Schwarz in 1873 [En, Sec. 1.4, pp. 11-12]. (The history is
complicated due to tremendous changes in the practice of mathematics over the past 300 years.)

9.7. Proof of equality of mixed partials. To explain more why Theorem 9.6.4 holds, we focus
on the case n = 2 to simplify the notation; this is the essential case anyway, since the result concerns
partial derivatives in two coordinate directions (the other coordinates are fixed throughout the process).
So consider a continuous f(x, y) for which ∂f/∂x, ∂f/∂y, ∂2f/∂x∂y, ∂2f/∂y∂x all exist and are
continuous. Our goal is to show that

∂2f

∂x∂y
=

∂2f

∂y∂x
.

First we give an informal reason for equality of mixed partials goes, again in the case n = 2
(which is really the essential case). For h, k near zero, the limit definition of partial derivatives gives

∂2f

∂y∂x
(a, b) =

∂(fx)

∂y
(a, b) ≈ fx(a, b+ k)− fx(a, b)

k
,

fx(a, b+ k) ≈ f(a+ h, b+ k)− f(a, b+ k)

h
, fx(a, b) ≈

f(a+ h, b)− f(a, b)

h
.

Feeding the second and third approximations into the first yields
∂2f

∂y∂x
(a, b) ≈ (f(a+ h, b+ k)− f(a, b+ k))/h− (f(a+ h, b)− f(a, b))/h

k

=
f(a+ h, b+ k)− (f(a, b+ k) + f(a+ h, b)) + f(a, b)

hk
,

and the same considerations with the roles of ∂/∂x and ∂/∂y swapped yields

∂2f

∂x∂y
(a, b) ≈ f(a+ h, b+ k)− (f(a+ h, b) + f(a, b+ k)) + f(a, b)

hk
.

The expressions approximating the two mixed partials are equal since f(a, b+ k) + f(a+ h, b) =
f(a+ h, b) + f(a, b+ k), so taking h, k ever closer to 0 then yields the equality of the limits of these
approximations, namely equality of (∂2f/∂y∂x)(a, b) and (∂2f/∂x∂y)(a, b) as desired.

This argument, due to Euler around 1730 [En, Sec. 1.4, pp. 10-11, App. 2], was the first one for
Theorem 9.6.4. It can be turned into an actual proof by handling the notation “≈” with more precision
(to make contact with the continuity hypotheses that cannot be dropped).

A more complete justification, based on other principles (closer to the level of this course), goes
as follow. Upon fixing the value of x, we first apply the Fundamental Theorem of Calculus to g(y) =
f(x, y). Note that g is differentiable with derivative g′(y) = (∂f/∂y)(x, y), by the very definition
of y-partial derivatives; keep in mind that we have fixed the value of x. By hypothesis the partial
derivative fy is continuous, so g′ is continuous. Hence, the Fundamental Theorem of Calculus applies
to g, yielding that for any y0 we have

f(x, y0) = g(y0) = g(0) +

∫ y0

0

g′(y) dy = f(x, 0) +

∫ y0

0

∂f

∂y
(x, y) dy. (9.7.1)

Now consider differentiating both sides of (9.7.1) with respect to x. Approximate the definite
integral with respect to y by a Riemann sum. If we x-differentiate each term in the Riemann sum
and then pass to the limit of those Riemann sums, since x-differentiation passes through sums it is
plausible that we get the x-partial of the limit of the Riemann sums, which is the x-partial of the
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definite integral with respect to y. This says ∂/∂x “passes through” the definite integral with respect
to y, or in words: we can differentiate with respect to x and integrate with respect to y in either order.
(A rigorous justification uses continuity of ∂

∂x
(∂f/∂y) = ∂2f/∂x∂y, so this is where the continuity

of ∂2f/∂x∂y is used in the reasoning.) Applying this fact, taking the partial derivative of both sides
of (9.7.1) with respect to x yields

∂f

∂x
(x, y0) =

∂f

∂x
(x, 0) +

∫ y0

0

∂2f

∂x∂y
(x, y) dy.

This last equality is valid for any x and any value of y0. To go further we want to vary the value of
y0 and so treat it as a variable, which we wish to denote as y. Thus, to avoid conflict of notation with
the integration variable on the right side, we rename the latter as t. That is, we restate the formula we
have as:

∂f

∂x
(x, y) =

∂f

∂x
(x, 0) +

∫ y

0

∂2f

∂x∂y
(x, t) dt. (9.7.2)

Now apply ∂/∂y to both sides of (9.7.2). The left side becomes ∂2f/∂y∂x. On the right side, the
y-derivative of the first term vanishes because this term does not depend on y, and we can use the Fun-
damental Theorem of Calculus in the y-direction for the second term to see that its y-derivative equals
the integrand at t = y. (This application of the Fundamental Theorem of Calculus uses continuity of
the integrand along the direction of integration, which in this case is the second coordinate direction;
that in turn holds because of our continuity assumption on ∂2f/∂x∂y.) But that integrand is simply
the second-partial ∂2f/∂x∂y, so equating left and right sides after applying ∂/∂y to each side yields
(∂2f/∂y∂x)(x, y) = (∂2f/∂x∂y)(x, y) as desired. We are done!

Just so you can see that the preceding result is not a formality, we give an explicit f(x, y) in
Example 9.7.1 below for which equality of mixed partials fails at the origin. This f(x, y) violates
the hypothesis in Theorem 9.6.4 that its second-partials are all continuous, yet its graph z = f(x, y)
shown in Figure 9.7.1 looks nice near the point where equality of mixed partials fails, so one can’t
expect to “see” such bad behavior just by staring at the graph.

−1
0

1 −1

0
1

−0.2

0

0.2

•

FIGURE 9.7.1. The graph of f(x, y) violating equality of mixed partials

Example 9.7.1. Consider

f(x, y) =

{
xy(y2 − x2)/(x2 + y2), (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).
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Note that the roles of x and y here are slightly asymmetric because of the sign in the numerator.
The graph of f(x, y) looks a bit wavy but not otherwise so bad at the origin. It turns out that
(∂2f/∂x∂y)(0, 0) = −1 and (∂2f/∂y∂x)(0, 0) = 1. To see this, we will compute (∂2f/∂x∂y)(0, 0)
by first calculating fy(x, 0) for all x, then differentiate it with respect to x, and finally set x = 0.

When x ̸= 0, we can use the formula defining f to compute fy(x, y) for x ̸= 0 and any y. Doing
this, and simplifying the resulting expression using standard algebra, one finds that fy(x, 0) = −x for
all x ̸= 0. Meanwhile, for x = 0 we have

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0,

so fy(0, 0) = 0. Hence, the formula fy(x, 0) = −x actually holds for all x (allowing x = 0). A
similar argument shows that fx(0, y) = y for all y.

Therefore,
∂2f

∂x∂y
(x, 0) =

∂

∂x
(fy(x, 0)) =

∂

∂x
(−x) = −1

for all x, so
∂2f

∂x∂y
(0, 0) = −1. On the other hand, calculating the same way gives that

∂2f

∂y∂x
(0, y) =

∂

∂y
(y) = 1 for all y, so

∂2f

∂y∂x
(0, 0) = 1. ■
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Chapter 9 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text

fxi
,
∂f

∂xi
,
∂f

∂xi

∣∣∣
(a1,...,an)

partial derivative of f(x1, . . . , xn) with respect to the
variable xi

Definition 9.2.2 (n = 2),
box at end of Section 9.3

∂2f

∂xi∂xj
,
∂2f

∂x2i
second partial derivatives of f : Rn → R Definition 9.6.3

fxixj
shorthand notation for second partial derivatives of
f : Rn → R

end of Theorem 9.6.4

Concept Meaning Location in text
single-variable derivative
in a linear approximation

for f : R → R, f(c + h) ≈ f(c) + f ′(c)h for small
h and f(x) ≈ f(c) + f ′(c)(x− c) for x near c

end of item (i) after (9.1.1)

partial derivative for f : Rn → R, hold all but one variable constant
and differentiate in the remaining variable

(9.2.1), (9.2.2) for n = 2

second partial derivative partial derivative of partial derivative (can use differ-
ent coordinate directions at each step)

Definition 9.6.3

Result Meaning Location in text
equality of symbolic
and numerical meth-
ods for computing
partial derivatives

identify partial derivative as single-variable derivative in a spe-
cific coordinate direction

box at end of Section
9.3

basic geometry of
surface graph is en-
coded in contour plot

the approximate magnitude and the sign of partial derivatives of
f : R2 → R are encoded in density of level curves and change
of their labels when moving up or to the right across a contour
plot with uniform increments for f -values

box preceding Ex-
ample 9.5.1

equality of mixed
partials

order of applying ∂/∂xi and ∂/∂xj doesn’t matter Theorem 9.6.4

Skill Location in text
compute partial derivatives by both the symbolic and numerical methods Examples 9.3.1, 9.3.2

in a contour plot for f : R2 → R (with uniform increments for labels), use
density and sparsity of level curves when moving horizontally or vertically
through (a, b) to see if partial derivative at (a, b) has big or small absolute
value (i.e., is f changing rapidly or not in that direction through (a, b)?)

Section 9.5

use increase or decrease in labels of level curves when moving horizontally
or vertically through (a, b) in contour plot for f : R2 → R to read off
sign of partial derivative there (i.e., is f increasing or decreasing in that
direction through (a, b)?)

Section 9.5

compute second partial derivatives of f : Rn → R Examples 9.6.1, 9.6.2
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9.8. Exercises. (links to exercises in previous and next chapters)

Exercise 9.1. Compute the following partial derivatives “numerically” (i.e., using Method 2 from Exam-
ple 9.3.1).

(a)
∂f

∂x1
(1/2,−5), where f(x1, x2) = x1 cos(πx1x2).

(b)
∂g

∂x2

∣∣∣
(1,1,3)

, where g(x1, x2, x3) = ex1x3 + x22.

(c) hx1(1/2, 3/2), where h(x1, x2) = 3x21 + 8x1x2 + 10x22.

Exercise 9.2. Compute the following partial derivatives “symbolically” (i.e. using Method 1 from Exam-
ple 9.3.1).

(a)
∂f

∂z
(1, 2, 3), where f(x, y, z) = z2 tan(πx/4) + yz.

(b)
∂g

∂x

∣∣∣
(5,8)

, where g(x, y) = 12ecos y + y3.

(c) hx3(2,−1, 3, 0, 5), where h(x1, x2, x3, x4, x5) = 2x1x
2
2 + 3x1x3x5 + 9x24x5 − x2 + x3 + 8.

Exercise 9.3. Use the symbolic method to express the following partial derivatives as multi-variable
functions (of x and y). That is, you should carry out Method 1 of Example 9.3.1, except for the final
step of evaluating the derivative function at a particular point. Then compare the values of your derivative
function at the indicated points.

(a)
∂f

∂y
, where f(x, y) = (12xy)/(1 + 4y2). Which is greater:

∂f

∂y
(0, 0) or

∂f

∂y
(2, 0) (or are they

equal)?
(b) gx, where g(x, y) = e−x2−2xy−2y2 . Which is greater: gx(1, 1) or gx(−1,−1) (or are they equal)?

Exercise 9.4. Use partial derivatives to approximate the following values of functions. (You may leave
your answer as a fraction or in terms of e; if you want to use a calculator to turn that into a decimal
approximation then that is fine, but if so then do not plug in such a decimal approximations until the
very last step. We want to see that you understand how to perform basic algebraic manipulations with
derivatives.)

(a) f(−1.2, 5), where f(x1, x2) =
√
x1 + 2x22.

(b) g(2, 1,−0.9), where g(x, y, z) = exz + y2 (as from Exercise 9.1(b)).

Exercise 9.5. Suppose a function f : R2 → R has the following values: f(1, 1) = 25, f(1.01, 1) = 22,
and f(1, 0.99) = 23. Also, let g(x, y) = 1 + ln(x2y2), and define h(x, y) = f(x, y) · g(x, y).

(a) Estimate fx(1, 1) and fy(1, 1).
(b) Using the symbolic method, compute gy(1, 1).

(c) Estimate
∂h

∂y
(1, 1).

Exercise 9.6. Consider the contour plot in Figure 9.8.1 of a 2-variable function f(x, y).
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FIGURE 9.8.1. Contour plot of a function f(x, y).

Determine whether each of the following partial derivatives is clearly positive, clearly negative, or
close to zero. Give an explanation for each of your answers.

(a) fx(1, 1).

(b)
∂f

∂y
(2, 0).

(c) fy(1, 2).

(d)
∂f

∂x
(−2,−1).

Exercise 9.7. Consider the contour plot in Figure 9.8.2 of a 2-variable function f(x, y).
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FIGURE 9.8.2. Contour plot of a function f(x, y).

This plot does not use uniform increments in f -values: the gaps between f -values for successive level
curves grow by a lot as we move to the right. Pay attention to those f -values in what follows. For each of
the following pairs of partial derivatives, explain which one is greater. Also explain which one is greater
in magnitude (i.e., in absolute value).
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(a) fx(0,−2) or fx(2,−2)?

(b)
∂f

∂y
(0,−2) or

∂f

∂y
(0,−1)?

(c) fy(−1,−1) or fx(−1,−1)?

Exercise 9.8. Consider the contour plot in Figure 9.8.3 of a 2-variable function f(x, y).
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FIGURE 9.8.3. Contour plot of a function f(x, y) and the vertical line x = 1.

(The f -values for successive level curves in this plot do not have uniform gaps.) Direct your attention to

the vertical line x = 1. For the interval −2 < y < 2, explain where
∂f

∂y
(1, y) is positive or negative. (For

example, for the function g(x, y) = xy2, we have
∂g

∂y
(x, y) = 2xy. Therefore,

∂g

∂y
(1, y) = 2y is negative

for −2 < y < 0 and positive for 0 < y < 2.) Because you’re basing your answer on the contour plot
rather than on a formula for the function, your answer doesn’t have to be exact.

Exercise 9.9. Consider the function f : R2 → R given by f(x1, x2) = sin(x1 + x22) (you might find it
helpful to refer to Example 9.2.1 and Figure 9.2.1). As always in calculus, trigonometric functions are
understood to be evaluated on numerical input in radians in order to have clean differentiation formulas.

(a) Symbolically compute
∂f

∂x1
and

∂f

∂x2
. That is, give an expression for each as a function of the

variables x1 and x2.
(b) Using the expression from part (a), determine whether fx1(1/2, 1/2) and fx2(1/2, 1/2) are posi-

tive or negative. Give an alternative justification using the graph of f in Figure 9.2.1.
(c) Since sin takes values between −1 and +1, the same is true for f . We would like to consider the

level set of f at level +1. Plot this level set in the x1x2-plane.
(d) Give a point in the level set from part (c) whose x2-coordinate is 2 (there are many possible

choices).

(e) Compute
∂f

∂x1
(x1, 2) and

∂f

∂x2
(x1, 2) at the point you gave in part (d) (the answer should not

depend on the point you chose).

Exercise 9.10. Draw a contour plot in the plane whose associated function f : R2 → R satisfies all of
the following conditions (you do not need to give an expression for the function f ):
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(a) fx(x, y) > 0 whenever x > 0.
(b) fy(−1, 1) ≈ 0.
(c) fy(1, 0) < 0.
(d) fx(−1, 0) < 0.

There are, of course, many possible correct answers.

Exercise 9.11. For each of the following functions f and points P , symbolically compute all its partial
derivatives and then evaluate them at P .

(a) f(x, y) = (x− y)/(x+ y), P = (2, 1).
(b) f(x, y) = x/

√
x2 + y2, P = (1, 1)

(c) f(x, y, z) = ln(xy + z), P = (1, 2, 3).

Exercise 9.12.

(a) For f(x, y) = ax2 + bxy + cy2, show that xfx + yfy = 2f .
(b) For f(x, y) = x/(x2 + y2), show that xfx + yfy = −f .
(c) For f(x, y) = ln(y/x), show that xfx + yfy = 0.

Exercise 9.13.

(a) For f(x, y) = ln(ax2 + bxy + cy2), show that xfx + yfy = 2.
(b) For f(x, y, z) = (x− y)(y − z)(z − x), show that fx + fy + fz = 0. (Hint: use the product rule

rather than expand out the entire product at the start; it is cleaner that way.)

Exercise 9.14. Compute all second partial derivatives of the function

f(x, y, z) = sin(x2yz)− 2(x+ y)z3 − ln(3x+ 2yz).

(As a safety check on your work, you may wish to compute each of fxy, fxz, and fyz in both possible ways
and confirm that your answers coincide.)

Exercise 9.15. For each of the following function f(x, y), compute all second partial derivatives. (As a
safety check on your work, you may wish to compute fxy in both possible ways and confirm that your
answers coincide.)

(a) f(x, y) = exy + y ln(x).
(b) f(x, y) = ln(x2 + y2).

Exercise 9.16. This exercise addresses second partial derivatives of some low-degree 2-variable polyno-
mials.

(a) Compute the second partial derivatives of a function of the general form P1(x, y) = C+Ax+By
(with A,B,C fixed numbers) to confirm these are the zero function.

(b) Compute each second partial derivative of P2(x, y) = 6x2 − 8xy + 14y2 to confirm these are
constant functions.

(c) More generally, compute each second partial derivative of P2(x, y) = Ax2 + Bxy + Cy2 (with
A,B,C fixed numbers) to confirm these are constant functions.

Exercise 9.17. Consider the equation
∂2f

∂x∂y
= 0

for an unknown function f . Unlike single-variable differential equations (which you probably encountered
in high school or in Math 20, and which are studied in greater depth in Math 53), such “partial differential
equations” typically have a huge variety of solutions. This exercise illustrates that variety.
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(a) Show that the cubic polynomials

f(x, y) = A+Bx+ Cy +Dx2 + Exy + Fy2 +Gx3 +Hx2y + Ixy2 + Jy3

(with constants A,B, . . . , I, J) that satisfy this partial differential equation are those with E =
H = I = 0 (i.e., the ones with no “mixed” terms xnym with n,m > 0). Hint: plug this expression
into the desired equation and see what conditions emerge on the coefficients.

(b) Show that any function of the form f(x, y) = g(x) + h(y), where g and h are functions of one
variable (differentiable as often as we want), is a solution of this partial differential equation.

Exercise 9.18. One of the most famous equations in physics is Laplace’s equation: for functions f(x, y)
depending on just 2 variables, it is the equation

∂2f

∂x2
+
∂2f

∂y2
= 0.

Functions f satisfying this equation are called harmonic; they arise in the study of “equilibrium configu-
rations” in the natural sciences. For example, in the study of gravity (resp. electromagnetism), harmonic
functions arise as those whose value at any point (a, b) is the amount of work needed to move a unit mass
(resp. unit charge) from some fixed point (say (0, 0)) to (a, b).

(a) Determine which 2-variable cubic polynomials

f(x, y) = A+Bx+ Cy +Dx2 + Exy + Fy2 +Gx3 +Hx2y + Ixy2 + Jy3

(with constants A,B, . . . , I, J) are harmonic. Your answer will involve relations among coeffi-
cients.

(b) Show that the functions f1(x, y) = ex sin y and f2(x, y) = ln(x2 + y2) are harmonic (we only
consider f2 on its domain where (x, y) ̸= (0, 0)).

Exercise 9.19. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):

(a) It is possible for distinct contours for f(x, y) to meet.
(b) There is a continuous f(x, y) with continuous fx, fy, fxx, fyy, fxy and fyx for which

fx(x, y) = sinx+ yexy and fy(x, y) = cos y − xexy
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10. Maxima, minima, and critical points

A useful result in single-variable calculus is the first derivative test:

if f : (a, b) → R is differentiable and attains a local maximum or local minimum at
some point x = c inside this open interval (i.e., a < c < b) then f ′(c) = 0. (Any point
where f ′(c) = 0 is called a critical point for f , so local maxima and local minima of
differentiable functions on an open interval are always critical points.)

It is worth emphasizing that the differentiability of f is necessary here. For example, the function f(x) =
|x| attains its minimum value of 0 at x = 0, but since f is not differentiable at that point we cannot say
that x = 0 is a critical point for f ; the first derivative test is useless when dealing with functions that are
not differentiable at all points.

In this chapter, we explore the situation for functions of more than one variable. Namely, we describe a
first derivative test for (differentiable) multivariable functions, and then go on to define a notion of “critical
point” for such functions. Things will be a bit more complicated than in the single variable case. Indeed,
optimization (i.e., finding maxima and minima) of functions f : Rn → R contains a genuinely new
phenomenon when n ≥ 2: a new type of critical point intermediate between a local maximum and a local
minimum, called a saddle point. As we will discuss more fully in Section 10.2, this is quite different from
single-variable critical points at which the function attains neither a local maximum nor a local minimum
(such as f(x) = x3 at x = 0).

By the end of this chapter, you should be able to:

• use partial derivatives to identify potential local maxima and local minima (you will not yet
be able to distinguish among these possibilities based on derivative information because a
multivariable “second derivative test” is reached only much later, in Chapter 26);

• use a contour plot to distinguish local maxima, local minima, and saddle points.

10.1. Motivation. Optimization for functions of n variables is one of the important applications of
multivariable calculus. We now describe some real-world situations where such optimization is used.

Example 10.1.1 (Function fitting, revisited). We discussed in Section 7.3 how linear algebra in RN is used
to find the line y = mx+ b that best fits N data points (xi, yi) (which we assume are not all on a common
vertical line). More precisely, we say that this line “best fits” the data if the function

E(m, b) =
N∑

i=1

(yi −mxi − b)2

is minimized as a function of the two variables m, b.
Because E(m, b) is a simple function (even though it looks messy, it is just a quadratic expression in

m, b), there are various ways to determine where it reaches its minimum value. We shall do this using
calculus in Example 10.3.1. This gives the same answer as if we had used only linear algebra (as it must),
but the advantage of the calculus approach is that it can be used with more complicated fitting problems.

For example, suppose we look at the graph of the data points (xi, yi), and notice that it looks approxi-
mately “periodic” (like the graph of sine or cosine) as in Figure 10.1.1.
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FIGURE 10.1.1. Raw data which appears to be approximately periodic

This might suggest that it is more reasonable to try to fit the data points (xi, yi) with a function of the
form

A sin(Bx+ C),

The meaning of these variables is that B describes the frequency of the oscillation, A its amplitude, and
C its phase.

Our fitting task amounts to finding (A,B,C) that minimizes the “sum of squared error” function

E(A,B,C) =
N∑

i=1

(yi − A sin(Bxi + C))2.

This more complicated minimization problem can no longer be carried out using linear algebra, but re-
quires multivariable calculus. ■

Example 10.1.2 (drug design, protein folding). In the physical sciences, many problems can be stud-
ied by means of energy minimization. For example, predicting how a protein folds is a fundamental
problem in molecular biology, and a useful clue for understanding the folding that occurs in nature
is that it minimizes the energy. The energy of a protein configuration corresponds to a function of
hundreds or thousands of variables (that keep track of the configuration), and numerically solving the
associated minimization problem is a valuable tool in work on protein folding. The geometric struc-
ture of a molecule also minimizes electronic energy, and the corresponding minimization problem is
therefore of much interest in computational chemistry; see Appendix J.

In the field of computer-aided drug design, computer simulations based on energy minimization
are used to predict which chemical compounds are likely to be worth creating in the lab to test out for
a specific drug. ■

Example 10.1.3 (system of springs). Consider the system of hanging springs as shown in Figure 10.1.2.
There are two springs, with spring constants k1, k2 holding up two weights with masses m1,m2. The two
springs have length 1 when unstretched.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 187



1

1

m1

m2

k1

k2

FIGURE 10.1.2. Mechanical configuration with two springs and two masses

Imagine that you initially support the weights with your hand, so none of the springs are stretched,
and then you let go. What happens? The weights will drop down and then start bouncing up and down;
eventually they will settle down to a new position (where the downward forces on the masses due to
gravity are balanced by the upward forces on the masses due to the springs). To find this position, one
can minimize a “potential energy” function given as follows. Write the lengths of the two springs as
1 + x1, 1 + x2 (so that x1 = 0 corresponds to the first spring not being stretched at all, and similarly for
the other spring.) The potential energy is given by

V (x1, x2) =
1

2
(k1x

2
1 + k2x

2
2)−m1gx1 −m2g(x1 + x2)

where g is a certain constant (the acceleration due to gravity at the surface of the earth). The sought-
after position is the point (x1, x2) that minimizes V (x1, x2). (This problem can be solved in other ways
too.) A worked example of minimizing such a function is given in Example 10.2.14 (using a multivariable
analogue of the “first derivative test” for extrema from single-variable calculus, to be introduced in Section
10.2).

We can also analyze the bouncing. This is an example of a system of coupled oscillators, and we will
show in Section 27.1 how to analyze such systems using some more advanced techniques in linear algebra
to be developed later in this book. An interesting feature of such applications is that the physical process
is governed by a system of differential equations yet linear algebra turns out to be an extremely powerful
tool for organizing the solution process there too. ■

10.2. Testing for critical points. Just as for functions of one variable, we need to define what it
means for a function f : Rn → R of n variables to have a local maximum or a local minimum. For
simplicity, suppose that n = 2 (though the general definition is the same, only with a bit more notation).

Definition 10.2.1. A function f(x, y) achieves a local maximum at (a, b) if f(a, b) ≥ f(x, y) for all
(x, y) which are sufficiently near to (a, b). In other words, if we move in any direction from (a, b),
then as long as we stay nearby, f(x, y) decreases (or stays the same).

A function f(x, y) achieves a local minimum at (a, b) if f(a, b) ≤ f(x, y) for all (x, y) sufficiently
near (a, b) (i.e., moving in any direction from (a, b) causes f(x, y) to increase or stay the same).

•

•local minimum

local maximum
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Let us try to understand what is going on by reducing to functions of one variable. Suppose that f(x, y)
has a local maximum at (a, b), in the sense of Definition 10.2.1. If we keep x close to a and keep y fixed
at the value b then (as we discussed in Chapter 9) we have

f(a+ h, b) ≈ f(a, b) + fx(a, b)h

for values of h near 0.
Thus, if fx(a, b) > 0 and we consider small h > 0 then this shows that f(a + h, b) should be larger

than f(a, b), so (a, b) cannot be a local maximum. Similarly, if fx(a, b) < 0 and we consider small h < 0
then f(a + h, b) will again be larger than f(a, b). (This is analogous to the fact that if the derivative for
a single-variable function is positive somewhere then the graph is sloping upward nearby, while if the
derivative is negative somewhere there then the graph is sloping downward nearby.)

This shows that if (a, b) is a local maximum then the options fx(a, b) > 0 and fx(a, b) < 0 are ruled
out, so necessarily fx(a, b) = 0. Using precisely the same reasoning by wiggling y while keeping x = a,
when (a, b) is a local maximum for f we also conclude also that fy(a, b) = 0.

We summarize what we have learned as follows:

if f : R2 → R has a local maximum at (a, b), then
∂f

∂x
(a, b) = 0 and

∂f

∂y
(a, b) = 0.

We can reason the same way for local minima, and also for functions of more than two variables. This
leads to a general result:

Let f : Rn → R be a function.

Theorem 10.2.2. Suppose that a point a ∈ Rn is either a local maximum or a local minimum of f .

Then all partial derivatives of f vanish at x = a; i.e.,
∂f

∂xi
(a) = 0 for 1 ≤ i ≤ n.

Definition 10.2.3. If
∂f

∂xi
(a) = 0 for all 1 ≤ i ≤ n then we say a is a critical point for f . In particular,

every local maximum and every local minimum of f : Rn → R is a critical point. (In Chapter 26
you will learn a “multivariable second derivative test” that gives a way to check if a critical point is a
local extremum. You are not expected to carry out this important further task until much later in the
course.)

Remark 10.2.4. Strictly speaking, in the preceding theorem and definition we should assume f is
“differentiable” in an appropriate n-variable sense that recovers the notion from single-variable cal-
culus when n = 1. We have not given that definition because it requires certain concepts in linear
algebra that have not yet been introduced. However, it turns out that this definition (which we will
give in Remark 13.5.13 for those who are interested) is always satisfied when the partial derivatives
∂f/∂xi : R

n → R all exist and are continuous, as will be the case for everything we do in this course.

Let us illustrate Theorem 10.2.2 and Definition 10.2.3 with a few examples.

Example 10.2.5. Consider f(x, y) = x2 + y2. We compute that

fx(x, y) = 2x, fy(x, y) = 2y,

so the simultaneous vanishing of partial derivatives happens only at the origin (x, y) = (0, 0). Now
f(0, 0) = 0, and if (x, y) is any other point (it does not even need to be near the origin), then f(x, y) > 0
by inspection. This means that (0, 0) is a local minimum. Since the condition f(x, y) ≥ f(0, 0) even holds
without requiring (x, y) to be close to (0, 0), we say that (0, 0) is a “global minimum” for f .

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 189



Similarly, if we consider g(x, y) = −x2 − y2 then the partial derivatives are gx = −2x, gy = −2y and
these simultaneously vanish only when (x, y) = (0, 0). Furthermore, g(0, 0) = 0 while g(x, y) < 0 for
any other point, so the origin is a global maximum for g.

0

0

0 the graph of g

the graph of f

(−1,−1,−2)

(−1,−1, 2)

(1,−1,−2)

(−1, 1, 2)
•

•
•

•

•
•

•

•

FIGURE 10.2.1. The graphs of f = x2 + y2 and g = −x2 − y2 over the square [−1, 1]× [−1, 1]

These generalize to functions of more than 2 variables, as follows. The function

f(x1, . . . , xn) = x21 + . . .+ x2n

satisfies fxi
= 2xi for each i = 1, . . . , n. The partial derivatives simultaneously vanish only at the origin

(0, . . . , 0), and just as before, the origin is a global minimum (since a sum of squares must be ≥ 0 and can
only vanish when the squares all equal 0). Likewise the function g(x1, . . . , xn) = −x21 − . . . − x2n has a
global maximum at the origin.

The extrema for these functions can be understood without (partial) derivatives, by the algebraic rea-
sons mentioned above. Also, for n = 2 the graph can be visualized as “bowl shaped”, pointing either
down or up (depending on the sign), making it visually apparent that the origin is a local maximum or
local minimum (depending on the sign). In subsequent examples we will have to do more work to find
local maxima and local minima. ■

Example 10.2.6. Let g(x, y) = 3x2y + 2y3 − xy, so

gx = 6xy − y, gy = 3x2 + 6y2 − x,

so for a point (a, b) to be a critical point the conditions are 0 = 6ab−b = b(6a−1) and 3a2+6b2 = a. The
first condition says that either b = 0 or a = 1/6, and correspondingly the second condition says 3a2 = a
(so a = 0 or a = 1/3) or 3(1/6)2 + 6b2 = 1/6 respectively. In the latter case, we have 6b2 = 1/12, so
b = ±1/(6

√
2). Putting it all together, there are 4 critical points:

P = (0, 0), Q = (1/3, 0), R = (1/6, 1/(6
√
2)), S = (1/6,−1/(6

√
2)).

Are these local extrema? It turns out thatR is a local minimum, S is a local maximum, and P andQ are of
neither type! We will return to this to analyze it via a multivariable second derivative test based on linear
algebra in Section 26.4 (see Example 26.2.3, with Figure 26.2.2 showing a contour plot for g). ■

Example 10.2.7. Let f(x, y) = 4x2 − 2xy + y2 + 8x− 2y + 5. We compute that

fx = 8x− 2y + 8, fy = −2x+ 2y − 2.

Solving fx = fy = 0 amounts to solving a system of 2 linear equations in 2 unknowns. Using substitution
of one equation into the other, the unique solution is (x, y) = (−1, 0). This is the only critical point of f ,
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at which the value is f(−1, 0) = 1.

0

30

−2 0−1 1

0
1

−2

•

The green line is determined by the equation

fy = −2x+ 2y − 2 = 0.

The red line is determined by the equation

fx = 8x− 2y + 8 = 0.

Their point of intersection is (x, y) = (−1, 0).

The surface is the graph of

f(x, y) = 4x2 − 2xy + y2 + 8x− 2y + 5.

How can we tell whether this is a local maximum or local minimum, or perhaps neither? That is, how
do the values of f(x, y) for (x, y) near (−1, 0) compare to the value 1 at (−1, 0)? One method is: plot the
graph on a computer (as shown above) and just stare at it! By visual inspection, it looks like it is probably
a local minimum, though to be more convinced one might want to “zoom in” and rotate the graph a bit
to be sure. This method has a couple of defects, the most serious one being that it doesn’t adapt well to
problems in more unknowns (we can’t literally “see” the graph of f(x1, . . . , xn) in Rn+1 when n > 2).
We want to use methods that can adapt to problems with any number of variables, so we seek another
technique.

In Chapter 26 we will discuss a very systematic method applicable in any number of variables –
essentially a multivariable version of the second derivative test – but for now we handle it using a bit of
algebra (which adapts to quadratic expressions in any number of variables; you are not expected to figure
it out for yourself yet, but you can read through the calculations when presented as below).

The idea is first to move the coordinates to be centered around the point of interest (−1, 0). Define
v = x + 1 and w = y, so in (v, w)-coordinates that point becomes the origin. The usefulness of this is
seen by rewriting everything in terms of v and w rather than x and y: since x = v − 1 and y = w, we can
write

f(x, y) = f(v − 1, w) = 4(v − 1)2 − 2(v − 1)w + w2 + 8(v − 1)− 2w + 5

= 4v2 − 8v + 4− 2(vw − w) + w2 + 8v − 8− 2w + 5

= 4v2 + w2 − 2vw + 1.

This eliminated the appearance of “degree 1” terms (there is no av + bw term).
Now comes the part which we do not expect you to see on your own, which is to complete the square in

a clever way: by splitting up 4v2 into v2 (to be absorbed with w2−2vw to make w2−2vw+v2 = (w−v)2
that is a perfect square) and a remaining 3v2 we get

4v2 − 2vw + w2 + 1 = 3v2 + (v2 − 2vw + w2) + 1 = 3v2 + (v − w)2 + 1

that is ≥ 1 everywhere, and it is only ever equal to 1 when the two terms 3v2 and (v−w)2 that are always
≥ 0 actually vanish. Such vanishing forces v = 0 and v − w = 0, so also w = 0, and hence only happens
at the origin (v, w) = (0, 0). That corresponds to being at (x, y) = (−1, 0), so we have shown by bare
hands that f(x, y) has a local (even global) minimum at (−1, 0). In Example 10.2.14 we’ll give one more
example resting on algebraic cleverness and luck, and in Chapter 26 we will develop more robust tools
involving no cleverness and no luck. ■
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Example 10.2.8. In Figure 10.2.2 we give a contour plot of f(x, y) = x2 − y2:
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FIGURE 10.2.2. A contour plot for f(x, y) = x2 − y2 using increments of 1 in f -values

The level curves are labeled in f -value increments of 1. As we move along lines in R2 through
the origin, is the function f(x, y) increasing or decreasing, and does it have a local maximum or local
minimum at the origin on the line of motion? This question is internal to the xy-plane R2, though it can
also be expressed in terms of the surface graph z = f(x, y) in R3: if we stand over the origin and walk in
some straight-line direction (such as due north, or due east), are we going uphill or downhill?

Let’s analyze this for walking due north and then due east, with three different ways of analysis: first
using the contour plot, then using a computation of the partial derivatives of f(x, y), and finally looking at
the graph in R3. All three approaches will give consistent conclusions, but some ways will provide more
refined information than others.

In the contour plot, the level set going through the origin is labeled by 0, and when heading north from
the origin the contour lines (i.e., level sets) are labeled with decreasing negative numbers. This says that
we are going downhill as we head north. Similarly, when heading east away from the origin we see that
the contour curves are labeled with increasing positive numbers, so such a path is going uphill.

To compare those qualitative conclusions with exact calculations using partial derivatives, we first note

that
∂f

∂y
= −2y. At the origin this value is zero, but as we head north (i.e., letting y increase beyond 0) this

partial derivative becomes ever more negative. This means that a northerly path out of the origin begins

approximately level but as we keep moving the terrain quickly goes downhill. Similarly, since
∂f

∂x
= 2x

we see that this vanishes at the origin but becomes ever more positive we as we head east (i.e., letting x
increase beyond 0). Hence, an easterly path out of the origin begins approximately level but as we keep
moving the terrain quickly goes uphill.

Finally, turning to the surface graph z = x2 − y2 in R3 as shown in Figure 10.2.3, we see that it
has a “mountain pass” at the origin precisely because of the dichotomy in the behavior: x2 − y2 has a
local minimum at the origin when restricted to certain lines through the origin in the xy-plane (such as the
x-axis y = 0) and a local maximum at the origin when restricted to certain other lines through the origin
in the xy-plane (such as the y-axis x = 0). The picture of the surface graph near (0, 0, f(0, 0)) = (0, 0, 0)
in Figure 10.2.3 makes clear why we call (0, 0) a saddle point for x2 − y2.
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The graph of f(x, y) = x2 − y2.

Notice the saddle point at (x, y) = (0, 0).

FIGURE 10.2.3. Graph z = x2 − y2 in R3, with red dot at a “saddle point” over (0, 0)

Observe that in the contour plot for the same function x2 − y2 in Figure 10.2.2, at (0, 0) the plot has
an “X” shape for the level set through that point. This will turn out to express exactly the “saddle” feature
of the surface graph over (0, 0). We will soon define the concept of saddle point in general, and analyze it
systematically (for any number of variables) throughout Chapter 26. It will be seen to represent a genuinely
new phenomenon of the multivariable world with no counterpart in single-variable calculus, and has rather
practical significance too (e.g., in Section J.2 it is related to a molecule transitioning between different
states). ■

Next is an example involving functions that are slightly more complicated.

Example 10.2.9. Suppose that h(x, y) = x sinx−cos y. We compute that hx = sinx+x cosx, hy = sin y,
The equations hx = 0 and hy = 0 are now not so easy to solve explicitly. However, one solution is easy to
find: namely hx(a, b) vanishes when a = 0, and hy(a, b) vanishes when b = 0, so (0, 0) is a critical point.

x

z

y

z

FIGURE 10.2.4. The graphs of h(x, 0) = x sinx− 1 and h(0, y) = − cos y

By looking at the graph for x sinx−1 (see Figure 10.2.4) we see that this function has a local minimum
as a function of x at x = 0, and − cos y has a local minimum as a function of y at y = 0. Thus, it seems
reasonable to guess that h has a local minimum at (0, 0). This is true, and is suggested by the surface
graph in Figure 10.2.5.
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FIGURE 10.2.5. The graph of h(x, y) = x sinx− cos y

But looking at a surface graph is not a technique that helps beyond 2-variable functions. We will have
tools of wider applicability to verify the local extremum property in Chapter 26 (see Example 26.2.1).

Note that h has many other critical points. The function x sinx− 1 oscillates as |x| grows (beyond the
range shown in Figure 10.2.4), with successive peaks for large |x| becoming bigger and bigger, so there
are infinitely many values of x where its derivative vanishes. Similarly, − cos y has derivative sin y which
vanishes at y = 0, π,−π, 2π,−2π, . . .. So there are infinitely many critical points of h on R2. ■

We emphasize that if a is a critical point of f : Rn → R, then it may be neither a local maximum nor
a local minimum. In fact, for functions of two or more variables there is a new phenomenon (which
we saw in Example 10.2.8 for x2 − y2 at (0, 0)):

Definition 10.2.10. A critical point a ∈ Rn of f : Rn → R is a saddle point if (i) as we move away
from a along some line (e.g., parallel to a coordinate axis) then f increases nearby, so a is a local
minimum along that line, and (ii) as we move away from a along some other line then f decreases, so
a is a local maximum along that line.

Such behavior can happen with n variables when n > 1 because then there are “more lines” in Rn

through a point along which we can move away from the point: in R there is only one line through a point,
but in R2 there are many lines through a point (e.g., not only horizontal, but also vertical, diagonal, etc.),
let alone in Rn for n > 2. This is a genuinely multivariable phenomenon.

We do not yet have any general methods for determining when a critical point is a local maximum or
local minimum or a saddle point (or perhaps even more exotic possibilities?). The method for this, which
involve second partial derivatives, will be discussed in Chapter 26.

Example 10.2.11. For f : Rn → R with a critical point at a ∈ Rn, you may wonder why we have to wait
until Chapter 26 to formulate a “multivariable second derivative test” when n > 1. Can’t we somehow use
the signs of the second partial derivatives of f at a (if these second partials at a are all nonzero) to figure
out the behavior of f near a? The answer is negative, as we shall illustrate in a moment with an example.
The way around this difficulty requires organizing the values fxixj

(a) in terms of several new concepts in
linear algebra (matrices, quadratic forms, eigenvalues) that are studied later in this book.

To illustrate why the signs of the second partials are insufficient when n > 1, we give a function
f(x, y) with a critical point a at which all three values fxx(a), fyy(a), fxy(a) are positive yet f has a
saddle point (rather than a local minimum) at a! Consider f(x, y) = xex+3y − x + sin2(y). This has
partials fx = (1 + x)ex+3y − 1 and fy = 3xex+3y + 2 sin(y) cos(y) = 3xex+3y + sin(2y) that both vanish
at 0, so the origin is a critical point of f . We compute

fxx = (2 + x)ex+3y, fyy = 9xex+3y + 2 cos(2y), fxy = 3(1 + x)ex+3y,

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 194



so fxx(0) = 2, fyy(0) = 2, fxy(0) = 3 are all positive. On the coordinate axes we have f(x, 0) =
xex − x = x(ex − 1) and f(0, y) = sin2(y), each of which is checked (via single-variable calculus) to
have a local minimum at the origin.

But the behavior of f(x, y) on the line y = −x is encoded in the function g(x) = f(x,−x) =
xe−2x − x + sin2(−x) = x(e−2x − 1) + sin2(x) that has a critical point at x = 0 (because g′(x) =
(1 − 2x)e−2x − 1 + sin(2x) satisfies g′(0) = 0) yet that is a local maximum for g(x) since g′′(x) =
4(x− 1)e−2x + sin(4x) satisfies g′′(0) = −4 < 0. Hence, f has a saddle point at 0. ■

Remark 10.2.12. Here is another genuinely multivariable phenomenon: any single-variable polynomial
anx

n + an−1x
n−1 + · · · + a1x + a0 that is everywhere ≥ 0 attains a minimal value somewhere (e.g.,

think about a parabola, or x4 − 2x2 + 3), but this fails for multivariable polynomials! For example,
f(x, y) = (1− xy)2 + x2 ≥ 0 and in fact f(x, y) > 0 everywhere (otherwise f(a, b) = 0 for some (a, b),
but then (1− ab)2 and a2 vanish, an impossibility since if a = 0 then (1− ab)2 = 12 = 1 ̸= 0), yet f has
no minimal value because for any c > 0 (however tiny you wish) we have f(

√
c, 1/

√
c) = c.

Example 10.2.13. The contour plot in Figure 10.2.6 for a function f(x, y) shows several types of critical
points. The numerical label on each contour line is the value of f along that contour line (and these appear
with increments of 0.2 in the f -value). We want to find a local maximum, a local minimum, and a saddle
point, and make some observations about the geometry of the contour plot near each type of point.

If we look at the collection of nested ovals centered on S, and inspect the numerical values of the
function that label the level sets, we see that those numbers are strictly increasing, so ovals seem to be
honing in on a point S that is a local maximum.

Likewise, the collection of nested ovals near P have function values going in a decreasing direction.
Hence, we similarly expect that these ovals are honing in on a point P that is a local minimum.

0
.8

0.8

0
.8

0.6

0.6

0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.2

0
.2

0.
2

0.
2

0.
2

0
.2

0
.2

0.2

0

0

0

0
0

0

0

0
−0.2

−
0.2

−
0
.2

−0
.2

−0
.2

−0.2

−
0.2

−
0.2

−0.2

−0.4

−0.4

−0.4

−
0.4

−
0
.4

−0.4

−
0.4

−
0
.4

−0
.6

−0.6

−0.6

−0.6

−0.6

−0.8

−
0
.8

−
0
.8

−1 0 1 2 3

−2

−1

0

1

2

•P

•Q
•R

•S

FIGURE 10.2.6. A contour plot with a variety of types of critical points

We also see saddle points at R and Q. Indeed, as we move away from R in the north-east direction
then the value of the function (as indicated by the numerical label on the level sets nearby) is going up
whereas if we move away from R in the south-east direction then the value of the function is going down.

There are (at least) two interesting observations to make:
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(i) At a saddle point the contour plot looks like an “X” shape dividing the nearby space into 4 regions,
with the saddle point at the center of the “X”. The function values go up as we move away into
one pair of opposite regions and go down as we move away into the other pair of opposite regions.
On the other hand, near local extrema (both local maxima and local minima) the level sets are
oval-shaped and in fact look increasingly like ellipses. Why is this?

(ii) Near the critical points, the locations of the level sets for a common small step size in the function
value (.2 in the plot shown here) become rather “spread out”; i.e., not as densely packed as
elsewhere. Why is this?

For (i), the first part of the observation is expressing approximately the geometry of the saddle shape
of a surface graph as drawn in Example 10.2.8 for the function x2 − y2. The lesson is that x2 − y2 is a
prototype for all 2-variable saddle points, with its contour plot (as shown in Example 10.2.8) a prototype
for that near all saddle points of 2-variable functions. The reason this works so well as a prototype is
ultimately due to a version of the multivariable second derivative test (Theorem 26.3.1), whose relevance
will be explained in Section 26.3 (see Remark 26.3.6). This will also explain the observation about ellipses
near local extrema, and an application of this mathematical understanding of saddle points to the transition
process between molecular structures for a fixed set of atoms is given in Appendix J.

For (ii), one might try to reason in terms of the approximate flatness of a graph surface z = f(x, y)
as we get close to the top of a hill or the bottom of a valley (a 2-dimensional analogue of the flatness of
the graph of a function h(t) near a critical point in single-variable calculus). But there is another way to
express the observation that will lead to an explanation having wider significance, as follows.

The visual picture in (ii) of spreading-out of level sets near a critical point is saying in numerical terms
that at a place where the partial derivatives are all small, to attain a given numerical change in the function
value towards a local extremum (such as increments of ±0.15) seems to requires moving a bigger distance
than at a place where the partial derivatives are not all small. This latter formulation also makes sense as
a possible property for functions f : Rn → R near a critical point for any n (not just n = 2).

But is such a property for the behavior near a critical point actually true in general? Yes! You may try
to convince yourself for n = 2 using hills and valleys in a surface graph; in Section 11.1 we will use the
connection between dot products and angles among vectors (a synthesis of algebra and geometry) to give
a general explanation for n-variable functions for any n (see Remark 11.1.6). ■

Example 10.2.14. Though we lack general tools at present (beyond the single-variable case) to determine
whether or not a critical point is a local extremum, there are some “quadratic” cases where this can be
done by hand. Let’s work out a specific example: we will minimize the function

V (x, y) = 2x2 + y2 − 4x− 8(x+ y);

a physical system where this arises is given in Example 10.1.3. To find the critical points, we compute

Vx = 4x− 12, Vy = 2y − 8,

so these simultaneously vanish only at P = (3, 4). This is the unique critical point.
Is P a local maximum, local minimum, saddle point, or something worse? The physical context from

Example 10.1.3 in terms of potential energy suggests that P should be a local minimum (since in physical
settings the tendency is for systems to evolve in a direction that minimizes potential energy), but that isn’t
a justification. If we can give a mathematical justification then that would be a virtue of the mathematical
model for the physical situation.

In lieu of any better idea, let’s translate the coordinates to put the critical point P at the origin and see
what happens. Define new variables v = x− 3 and w = y− 4, so v = w = 0 at the critical point. To write
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V (x, y) in terms of v and w, we make the substitutions x = v + 3 and y = w + 4 into the definition of V :

V (v + 3, w + 4) = 2(v + 3)2 + (w + 4)2 − 4(v + 3)− 8((v + 3) + (w + 4))

= 2(v2 + 6v + 9) + (w2 + 8w + 16)− 4v − 12− 8(v + w + 7)

= 2v2 + 12v + 18 + w2 + 8w + 16− 4v − 12− 8v − 8w − 56

= 2v2 + w2 + (12v − 4v − 8v) + (8w − 8w) + (18 + 16− 12− 56)

= 2v2 + w2 − 34.

The linear expressions (i.e., av and bw) entirely canceled out! This happened exactly because we are at
a critical point. The quadratic part 2v2 + w2 is visibly positive away from v = w = 0, so the minimum
value is −34 and it is attained exactly at v = w = 0. But v = w = 0 is precisely the critical point P , so P
is a global minimum for V (at which the minimal value is V (3, 4) = −34).

We got lucky because not only did the linear terms entirely disappear when we shifted the critical point
to the origin, but also no cross-term (i.e., a vw-term) ever appeared. If there had been a cross-term then
we wouldn’t have been able to eye-ball the behavior at v = w = 0 as readily as we did. The presence of
cross-terms in quadratic expressions turns out to be a pervasive issue in the determination of whether or not
a critical point for a general function f : Rn → R is a local extremum (e.g., this issue arose in Example
10.2.7, where it was bypassed via cleverness), so we have to learn how to grapple with it. A systematic
way to handle cross-terms will be discussed in Sections 26.3–26.4, once we have the appropriate further
background in linear algebra. ■

10.3. Fitting curves to data. Let us now revisit the problem of fitting lines or curves to data. We
systematically work through the computations and discuss how to interpret the answer.

Example 10.3.1. Suppose we are given a collection of data points (xi, yi), i = 1, . . . , n, not all on the
same vertical line; i.e., not all the xi have the same value. (If they all have the same value, a vertical line
fits the data precisely!) We want to find the value of (m, b) which minimizes

E(m, b) =
n∑

i=1

(yi −mxi − b)2.

We explained in Section 7.3 how to find the solution using linear algebra. Now we do it using calculus
(i.e., partial derivatives) to see that the answers agree. We begin by computing the two partial derivatives:
∂E

∂b
=
∑n

i=1 −2(yi−mxi−b),
∂E

∂m
=
∑N

i=1 −2xi(yi−mxi−b). The values ofm and bwe are looking for

must satisfyEm(m, b) = 0, Eb(m, b) = 0, so we need to solve the system of simultaneous linear equations
n∑

i=1

(yi −mxi − b) = 0,
n∑

i=1

xi(yi −mxi − b) = 0.

It looks like a mess, but remember that each of xi and yi are numbers that we know beforehand. So
we can rewrite this in a more transparent way as

m
n∑

i=1

xi + nb =
n∑

i=1

yi, m
n∑

i=1

x2i + b
n∑

i=1

xi =
n∑

i=1

xiyi.

This is “2 equations in 2 unknowns”m and b (the coefficients involve expressions in the known data points
(xi, yi) and n, so they are known numbers). To be concrete, for Example 7.3.2 these equations become

−15m+ 5b = 0, 55m− 15b = 12.
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The first equation shows that b = 3m, and inserting this into the second equation gives 10m = 12, so
m = 6/5 and hence b = 18/5. Thus, the line which best fits this data is y = (6/5)x + (18/5), as shown
in Figure 10.3.1. This agrees with our earlier answer (as it must)!
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FIGURE 10.3.1. The plot for Example 7.3.2.

■

Example 10.3.2. Here is a closely related example which builds on the idea that sometimes we want to
find more complicated curves which best fit a certain set of data. So now let us find constants A,B,C
for which the function y = A sin(Bx + C) best fits data points (x1, y1), . . . , (xN , yN). When the data
represents some phenomenon which we expect to be periodic (e.g., temperatures in a given location over a
several-year period), it is quite reasonable to use the periodic sine function as a model for the change over
the seasons.

We proceed just as before, by trying to find a minimum of the total squared error

E(A,B,C) =
N∑

i=1

(yi − A sin(Bxi + C))2 .

We compute the three partial derivatives ∂E/∂A, ∂E/∂B and ∂E/∂C, and this requires a bit more work
than in the previous example. Please make sure you understand the following computation:

∂E

∂A
=

N∑

i=1

−2 sin(Bxi + C) (yi − A sin(Bxi + C)) ,

∂E

∂B
=

N∑

i=1

−2Axi cos(Bxi + C) (yi − A sin(Bxi + C)) ,

∂E

∂C
=

N∑

i=1

−2A cos(Bxi + C) (yi − A sin(Bxi + C)) .

■
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This is an instructive example because this system of equations is pretty complicated and it is very
unlikely that we can find the exact values of the solutions (A,B,C) in terms of the data points (xi, yi).
For such a system of equations it is reasonable to try to think about how to find a numerical approximation
to critical points (A,B,C).

10.4. Extrema on boundaries. In the preceding discussion, for f : Rn → R we have been looking
for critical points (i.e., points a ∈ Rn at which all partial derivatives ∂f/∂xi vanish) since all local maxima
and local minima for f have to be among such points. But in practical applications we often need to find
maxima or minima of f when f is regarded as a function only on some region D in Rn. Working on a
fixed region often corresponds to practical constraints:

Example 10.4.1. The coordinates xi may have a physical or other real-world meaning that constrains them
to always be non-negative (e.g., height above the ground, or some temperature in Kelvin). In such cases
we may use D = {(x1, . . . , xn) ∈ Rn : xi ≥ 0 for all i}. ■

Example 10.4.2. In an economic model, xi may correspond to the total value of the ith investment. Al-
though negative monetary value in economics can be interpreted as debt, in the context of stock market
investments there may be no real meaning for a negative value of an investment, so xi ≥ 0.

But there might also be some large possible value Vi of xi beyond which we don’t want to use the
economic model anymore, so we may also want to demand xi ≤ Vi for all i. Consequently, we may use
D = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ Vi for all i}. ■

When seeking maximal and minimal values of a function on a region D (rather than on the entirety of
Rn), extrema might be attained at points that are not among those where partial derivatives vanish. This
is a phenomenon that arises in single-variable calculus, as we now review to illustrate the point.

Example 10.4.3. Consider the task of finding the maxima and minima of the function

f(x) = 1
3
x3 − 3x2 + 5x− 5

on the interval [−2, 6] (see the blue curve in Figure 10.4.1).
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FIGURE 10.4.1. The graphs y = f(x) (left) and y = f ′(x) (right).
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Evaluating f at its two critical points yields f(1) = −8/3 = −2.666 . . . and f(5) = −40/3 =
−13.333 . . . . Hence, without any further inspection, one might guess that −40/3 is the minimum and
−8/3 is the maximum for f on the interval [−2, 6]. However, this is not the case because we have to
always remember to check what happens at the endpoints! In fact, the graph of f as the blue curve
in Figure 10.4.1 shows quite visibly that an extremum on a closed interval (such as on [−2, 6] for us) can
occur at an endpoint without a horizontal tangent line there.

Explicitly, we compute f(−2) = −89/3 = −29.666 . . . and f(6) = −11. Thus, amongst the values
of f at its two critical points x = 1 and x = 5 as well as at the two endpoints x = −2 and x = 6, the
smallest value is f(−2) = −89/3 and the largest is f(1) = −8/3. In other words, the maximum on this
interval occurs at x = 1, which lies in the open interval (−2, 6) (i.e., away from the endpoints) whereas
the minimum occurs at the endpoint x = −2. ■

The moral of Example 10.4.3 is to remind us that in single-variable calculus, a local extremum x = c
for a function f : I → R on an interval I is necessarily a critical point only when c is not an endpoint of
I . It can happen (as in Example 10.4.3) that an endpoint of I is a local extremum for f on the interval I ,
and in such cases that endpoint need not be a point where f ′ vanishes.

It is natural to expect an analogue of the above “endpoint” phenomenon (i.e., local extremum on a
region occurring at a non-critical point) may arise in the multivariable setting when studying f : D → R
for a subset D of Rn. The replacement of “endpoint” for such D is called a boundary point. Rather
than delve into general concepts, we will limit ourselves to some specific examples that can be readily
visualized and convey the main idea.

Example 10.4.4. Let D be the rectangle {(x, y) : −1 ≤ x ≤ 6, 3 ≤ y ≤ 7}. The points along the outer
edge are called boundary points, and the other points of D are called its interior points.

boundary points

interior points

-1 0 1 2 3 4 5 6
3

4

5

6

7

Explicitly, the boundary points are those points in D of the form: (−1, y) (left edge), (6, y) (right
edge), (x, 3) (bottom edge), and (x, 7) (top edge). The interior points are those (x, y) satisfying both of
the strict inequalities

−1 < x < 6 and 3 < y < 7.

■

Example 10.4.5. Let D be the solid ball

{(x, y, z) ∈ R3 : (x− 3)2 + (y + 2)2 + (z − 5)2 ≤ 9 = 32}
of radius 3 centered at (3,−2, 5). In this case the points of the outer sphere

{(x, y, z) ∈ R3 : (x− 3)2 + (y + 2)2 + (z − 5)2 = 9}
are called the boundary points, and the other points of D are called its interior points. Explicitly, the
interior points are those (x, y, z) ∈ R3 whose distance to the center of the ball is strictly less than 3:

(x− 3)2 + (y + 2)2 + (z − 5)2 < 9.

■
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Hopefully from the above two examples you can imagine the appropriate notions of boundary point
and interior point for other familiar regions in a plane (e.g., the region bounded by a polygon) or in 3-
dimensional space (e.g., the region bounded by a cylinder with finite height). In Section 10.5 we define
the notions of “boundary point” and “interior point” more precisely, for those who are interested. The
analogue in Rn with n > 1 of treating endpoints of an interval separately when checking for extrema is:

Theorem 10.4.6. For a function f : Rn → R and a region D inside Rn, suppose the function
f : D → R considered on D has a local extremum at a point a ∈ D (i.e., f(x) ≥ f(a) for all x ∈ D
near a, or f(x) ≤ f(a) for all x ∈ D near a).

The point a must be a critical point of f when a is in the interior ofD (but generally not otherwise).
In particular, any local extremum of f : D → R either is a critical point on the interior of D or is a
boundary point of D.

In Theorem 10.4.6, the notion of “local extremum” is meant from the perspective of evaluating f at
points of D near a; it is not assumed that the values of f at points near a off of D have any relation to
f(a). This is a “constrained” sense of optimization (a constrained local maximum or minimum).

Strictly speaking, in Theorem 10.4.6 we need to assume f is “differentiable” in an appropriate n-
variable sense, the same issue which we discussed in Remark 10.2.4.

A huge difference between the study of local extrema at boundary points of regions D in Rn when
n > 1 as opposed to when n = 1 is that the possibilities for the geometry of the boundary of D
are much richer when n > 1 (even when n = 2) than when n = 1. For example, a closed disk has
boundary a circle whereas a closed (bounded) interval in R has boundary that is just a pair of points.
This makes the study of local extrema of f : D → R at boundary points much richer when n > 1 (and
the task will be taken up systematically in Chapter 12 using a new concept that pervades optimization
problems in economics, physics, and many other fields: Lagrange multipliers).

Example 10.4.7. To illustrate the principle in Theorem 10.4.6, we first revisit the rectangle

D = {(x, y) ∈ R2 : −1 ≤ x ≤ 6, 3 ≤ y ≤ 7}
from Example 10.4.4. For f(x, y) defined on this rectangle, suppose we wish to locate the points where
f : D → R attains maximal and minimal values. (We will consider an explicit f on another explicit
rectangle in Example 10.4.8 below, but for now we want to describe the general method to be carried out.)

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

3

7

−1

6
x

y

•
•

•

•

•

•

x = −1
x = 6

••

• ••

•

•

•

y = 3

y = 7

FIGURE 10.4.2. A variety of potential local extrema for a function on a rectangle
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To aid in the discussion, in the middle of Figure 10.4.2 we show the graph in R3 of some function
f(x, y) over the region D in the xy-plane. As a first step, we seek points where both partial derivatives
fx and fy vanish. There might be several points in D at which both such partial derivatives vanish. For
example, suppose (0, 5) and (5, 6) are the only points where fx and fy both vanish, shown as red points
in Figure 10.4.2. Does f necessarily achieve its maximal and minimal values on D at those two points?
In general, not necessarily! We must also examine the values of f at the boundary points of D (i.e., along
the edges of the rectangle).

That is, we should extremize f along each side, and compare those values against f(0, 5) and f(5, 6).
More explicitly, considering f on each side of the rectangle gives us one-variable optimization problems:

(i) The left edge consists of points (−1, y) for 3 ≤ y ≤ 7, so looking at f on the left edge corresponds
to the function f(−1, y) on the interval [3, 7].

(ii) The right edge consists of points (6, y) for 3 ≤ y ≤ 7, so looking at f on the right edge corre-
sponds to the function f(6, y) on the interval [3, 7].

(iii) The top edge consists of points (x, 7) for −1 ≤ x ≤ 6, so looking at f on the top edge corresponds
to the function f(x, 7) on the interval [−1, 6].

(iv) The bottom edge consists of points (x, 3) for −1 ≤ x ≤ 6, so looking at f on the bottom edge
corresponds to the function f(x, 3) on the interval [−1, 6].

To summarize, finding extrema of f along the boundary corresponds to finding extrema of the four single-
variable functions

f(x, 7), f(x, 3), f(−1, y), f(6, y) (10.4.1)

with −1 ≤ x ≤ 6 in the first two cases and 3 ≤ y ≤ 7 in the last two cases. We can handle these via
single-variable calculus. The graphs of these one-variable functions are shown as planar slices on the left
and right in Figure 10.4.2.

For instance, finding critical points of the third of the four functions in (10.4.1) away from the end-
points of its interval [3, 7] corresponds to analyzing the equation fy(−1, y) = 0 on the interval (3, 7),
and similarly with fx(x, 7) = 0 on the open interval (−1, 6) for the first function in (10.4.1), and so on.
Solutions to these conditions are additional candidates for extrema of f on D. These points are shown as
blue points in Figure 10.4.2.

Finally, there are also the endpoints of each of these edge intervals, corresponding to the 4 corners of
the rectangle D: (−1, 3), (−1, 7), (6, 3), (6, 7). These points are shown as green points in Figure 10.4.2.

■

Example 10.4.8. Here is a case with a specific f on a specific region in R2 to illustrate a complete calcu-
lation in practice. Consider the function

f(x, y) = 3x2 − 2y2 + 2x+ 2y − 1

on the rectangle

D = {(x, y) ∈ R2 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.

Its graph is shown in Figure 10.4.3, but we will argue in a graph-free way that can be adapted to the
n-variable setting for any n.
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-1
0
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-5

0

5
The graph of f(x, y) = 3x2 − 2y2 + 2x+ 2y − 1.

The interior critical point is shown in red.

The edge critical points are blue.

The corner points are green.

The extrema can only occur at these colored points.

FIGURE 10.4.3. Potential local extrema on the interior and boundary of the region D

We first compute
fx = 6x+ 2, fy = −4y + 2,

so
fx = 0 implies x = −1/3, fy = 0 implies y = 1/2.

Hence, the vanishing of both partial derivatives happens precisely at the single point (−1/3, 1/2) (which
we observe is on the interior of the rectangle D). Note that f(−1/3, 1/2) = −5/6. This single critical
point in the interior is shown in red in the figure.

Next, we analyze how f behaves on the edges of D. Focusing on the bottom edge amounts to studying
the function f(x,−1) = 3x2+2x−5 on the interval [−1, 1]. This has derivative fx(x,−1) = 6x+2, which
vanishes at precisely x = −1/3, so (−1/3,−1) is another candidate. We evaluate f(−1/3,−1) = −16/3.

In a similar way along the other edges, we compute:

(i) fx(x, 1) = 0 at precisely x = −1/3 (with f(−1/3, 1) = −4/3),
(ii) fy(−1, y) = 0 at precisely y = 1/2 (with f(−1, 1/2) = 1/2),

(iii) fy(1, y) = 0 at precisely y = 1/2 (with f(1, 1/2) = 9/2).

These four critical points “on the edges” are shown in blue.
Finally, evaluating at the 4 corners, we have

f(−1,−1) = −4, f(−1, 1) = 0, f(1,−1) = 0, f(1, 1) = 4.

These points are shown on the graph in green.
Comparing the values of f at all of these points (the one critical point on the interior, the one critical

point on each edge away from the corners, and all 4 corners) and seeing which is biggest and which is
smallest, we see that f has its global maximum on the unit square at the boundary point (1, 1/2), with
f(1, 1/2) = 9/2, and its global minimum at the boundary point (−1/3,−1), with f(−1/3,−1) = −16/3.

This method does not help at all in determining whether the other points that we identified above are at
least local maxima or minima over the domain, or if the critical point in the interior is a saddle point. ■

The general principle for functions f : D → R on regions D in R2 is that to find extrema we have
to really consider two or more problems (generalizing the experience in single-variable calculus of
treating endpoints separately for extrema problems).

(i) First we must identify the possible extrema in the interior, which we do using the first partial
derivative test (to find critical points there): Theorem 10.4.6.

(ii) Then we must look at the restriction of the function to boundary curves. These are 1-
dimensional, so in practice the problem there eventually reduces to an extrema problem for

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 203



a function of one variable (by parameterizing each boundary curve), which we hope in turn
to solve using our knowledge of single-variable calculus.

Moving beyond 2 variables to the 3-variable case, if we are instead considering a function f : D → R
for a region D inside R3 such as a solid cube, then we first consider its extrema in the interior (which must
be among the critical points, by Theorem 10.4.6). Then we need to find extrema on each of the square
faces (bringing us back to an instance of our 2-dimensional extrema problem on a region with boundaries).
In particular, the study of these square faces requires separate work on its edges and in particular at all of
the vertices of the cube. As you can see, this is potentially a lot of work!

We hope that the preceding examples convey a sense of how one can aim to find maxima and minima
in any given situation on a reasonable region D inside Rn by combining the technique of critical points
on the interior and “lower-dimensional” extrema problems along the boundary.

Remark 10.4.9. The problem of finding extrema of functions is one of the most important applications
of multivariable calculus, and arises in many contexts (economics with maximizing utility functions, ma-
chine learning with gradient descent for minimization, physical sciences with energy minimization, SVD
with Rayleigh quotient maximization, etc.). Often the functions that one encounters “in nature” are com-
plicated, or may not be given by an elementary formula or by any explicit rule (e.g., problems in compu-
tational biochemistry and computer science are usually of this type). In such cases, one often investigates
extrema questions numerically.

The general principle we have learned is that maxima and minima at interior points occur where the
partial derivatives vanish simultaneously. However, the task of finding critical points often must also be
carried out numerically, especially when the function of interest is not given by any explicit formula.
There are extremely efficient and quick algorithms for locating to within an arbitrary degree of precision
the critical points of f . An indication of one way this is done is given in Appendix I.

10.5. Details on interior and boundary, and relation of extrema to critical points. The moral
of Example 10.4.3 is that we could not detect via derivatives that the minimum of f occurs at the
endpoint −2 because when we only consider values −2 + h which lie inside the interval; i.e., small
h ≥ 0, then f(−2 + h) ≥ f(−2), but this is not enough information to conclude that the limiting
difference quotient

lim
h→0

f(−2 + h)− f(−2)

h
must vanish. Indeed, for that we would have also needed to know that f(−2+h) ≥ f(−2) with small
h < 0, which is false if we consider the values of f outside the interval. More specifically, it does
not even make sense to consider f(−2 + h) with h < 0 if we only allow ourselves to consider f as a
function on [−2, 6].

The desire to extend the separate treatment of endpoints of intervals to the setting of extrema
problems in Rn for n > 1 leads us to define what it means for a point a to be an interior point of a
region D inside Rn, as follows.

Definition 10.5.1. A point a ∈ D is an interior point if all nearby points x ∈ Rn also lie in D.
Otherwise we call a a boundary point of D.

So in the 1-dimensional case with D = [−2, 6], any point a with −2 < a < 6 is an interior point:
any value a+ h with h sufficiently small still lies inside the interval [−2, 6]. However, if a = −2 then
a+h = −2+h lies in the interval D only when h is sufficiently small and positive: all points −2+h
with h < 0 lie outside the interval.
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Similar reasoning with h of the opposite sign holds at the other endpoint a = 6. We conclude that
a = −2 and a = 6 are the boundary points of [−2, 6] (as we would want to be the case) since they fail
the criterion for being interior points. In other words, for a closed bounded interval [b, c] with b < c,
the interior points are those in the open interval (b, c) whereas the boundary points are b and c.

The situation in Rn with n > 1 is a bit more complicated for boundary possibilities, so we are just
going to consider some examples that should give you the basic idea.

Example 10.5.2. Let D be the rectangle {(x, y) : −2 < x < 6, 3 < y < 7} omitting the edge
segments (where x = −2 or 6, and where y = 3 or 7). We claim that every point a = (a1, a2) ∈ D
is an interior point. The reason is that, by definition, −2 < a1 < 6, 3 < a2 < 7, so for any
a+ h = (a1 + h1, a2 + h2) with h1, h2 sufficiently near 0 (depending on how far the ai’s are from the
endpoints of the respective intervals in the two coordinate directions) we see visually that a + h still
lies in D.

This situation is to be contrasted with the related region D′ = {(x, y) : −2 ≤ x ≤ 6, 3 ≤ y ≤ 7}
for which we have included the edge segments. For any point a on those edges, a+ h lies outside D′

with h pointing in a suitable direction (depending on a and as small as we please). As an example,
with a = (−2, 4) the point a + h never belongs to D′ when h1 < 0, no matter how small we make
h. ■

Example 10.5.3. Here is an example to check your understanding of Definition 10.5.1. Let D be the
unit disc

{x = (x1, x2) ∈ R2 : x21 + x22 < 1},
omitting the outer circle of radius 1. Check for yourself by drawing pictures that if a is any point in
D and h is a short enough vector (in fact, we may take h to be any vector with ∥h∥ < 1− ∥a∥) then
a+ h ∈ D.

On the other hand, for the related region D′ = {x : x21 + x22 ≤ 1} that includes the outer circle,
a point a on that outer circle is not on the interior. Indeed, there are many nonzero vectors h with
positive length as short as we wish for which a+ h lies outside D′ (i.e., has length larger than 1): use
such h pointing in the same direction as a. ■

The key takeaway from this discussion is the following. If f is defined on some region D inside
Rn, and if a is an interior point ofD then the difference quotient definition of the jth partial derivative
of f at a makes good sense – we can evaluate

f(a1, . . . , aj + hj, . . . , an)

for all hj sufficiently near 0, both positive and negative values are allowed – and furthermore, if
f : D → R attains a local maximum or local minimum at an interior point a ∈ D then all such partial
derivatives vanish at a. On the other hand, if a is not an interior point of D then although we might
still be able to calculate a partial derivative at that point by taking a limit of a difference quotient

lim
hj→0

f(a1, . . . , aj + hj, . . . , an)− f(a)

hj

with hj → 0 only from the positive side or only from the negative side (a “one-sided limit”), this is
not enough to conclude that the partial derivatives vanish when f : D → R has a local maximum or
local minimum at such a boundary point a.
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Chapter 10 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
nothing new!

Concept Meaning Location in text
local max. and local min.
for f : Rn → R

point a ∈ Rn so that for all x near a either always
f(x) ≤ f(a) (local maximum) or always f(x) ≥
f(a) (local minimum)

Definition 10.2.1

critical pt for f : Rn → R point a ∈ Rn at which all partial derivatives of f
vanish

Definition 10.2.3

saddle pt for f : Rn → R point a ∈ Rn so that there are different lines L and
L′ through a with f restricted to L having a local
maximum at a and f restricted to L′ having a local
minimum at a

Definition 10.2.10

local extrema for f : D →
R on region D in Rn

point a ∈ D so that for all x ∈ D near a either always
f(x) ≤ f(a) (local max.) or always f(x) ≥ f(a)
(local min.)

in statement of Theorem
10.4.6

Result Meaning Location in text
local extremum for
f : Rn → R is criti-
cal point

if a ∈ Rn is a local maximum or local minimum for f then
fxi

(a) = 0 for all i
Theorem 10.2.2

local extremum for
f : D → R is either
critical pt in interior
or is boundary pt

for a region D in Rn, if a ∈ D is a local maximum or local
minimum for f : D → R then either a is a boundary point of
D or else it is in the interior of D with all fxi

(a) equal to 0

Theorem 10.4.6

Skill Location in text

find critical points as candidates for local extrema of f : Rn → R Examples 10.2.6, 10.2.7

use contour plot to identify local extrema and saddle points for a
function f : R2 → R

Example 10.2.13

find maxima and minima for f : D → R on region D by treating
boundary points separately (may not be critical points)

Examples 10.4.7, 10.4.8
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10.6. Exercises. (links to exercises in previous and next chapters)

Exercise 10.1. Let f(x, y) = xy2 − 4xy + (1/2)x2 + 1.

(a) Show that this function f has exactly 3 critical points: (0, 0), (0, 4), and (4, 2).
(b) By examining the behavior of f on the lines y = 0 and y = x that pass through (0, 0), explain

why (0, 0) is a saddle point. (It turns out that (0, 4) is also a saddle point, whereas (4, 2) is a local
minimum.)

(c) For the square S = {(x, y) ∈ R2 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}, analyze f on each side of S
and compare with f(0, 0) to determine where f as a function on S attains its maximal value and
where f as a function on S attains its minimal value. (Hint: to save work, check that f on each
edge of the square has non-vanishing derivative and so is strictly increasing or strictly decreasing
along the edge.)

Exercise 10.2. Let f(x, y) = x3 − 3x2 − 6xy + 9x+ 3y2.

(a) Show that this function f has exactly 2 critical points: (1, 1) and (3, 3).
(b) By examining the behavior of f on the lines x = 1 and y = x that pass through (1, 1), explain

why (1, 1) is a saddle point. (It turns out that (3, 3) is a local minimum.)
(c) By examining the behavior of f on the x-axis, show that f has no global maximum and no global

minimum.

Exercise 10.3. Let f(x, y) = 3x2y + y3 + 6xy.

(a) Find all critical points of f . (There are four, all with integer coordinates.)
(b) A critical point you should have found in (a) is (0, 0). The restrictions of f(x, y) to the horizontal

and vertical lines through (0, 0) don’t help to analyze the saddle property there since f(0, y) = y3

(which does not have a local extremum at y = 0) and f(x, 0) = 0 for all x. Check (0, 0) is a
saddle point by looking at f on the diagonal lines y = x and y = −x passing through (0, 0).

Exercise 10.4. Let f(x, y) = x2 + 3xy + y2, and let D be the region defined by y ≥ 1 and x2 + y2 ≤ 10.
(This is the part of the disk x2 + y2 ≤ 10 on or above the line y = 1.)

(a) Draw a picture of D, indicating any “corners” on its boundary.
(b) Find the critical points of f in the interior.
(c) Find the extrema of f on the boundary of D by describing both the bottom edge and circular arc

in terms of x alone (making the analysis on both the bottom edge and circular arc a single-variable
calculus problem). Combine with (b) to find the extrema of f on D (find both the extreme values
and where these are attained).

Exercise 10.5. Let D = {(x, y) ∈ R2 : 0 ≤ x ≤ 4, 0 ≤ y ≤ x2} (the region over the interval [0, 4] in the
x-axis and “below y = x2”). Let f(x, y) = x3 + y3 − 3xy. It is a fact that f has extrema on D.

(a) Draw a picture of D and show that there are no critical points of f on the interior of D (the
region given by strict inequalities: 0 < y < x2, 0 < x < 4); in particular, f has no extrema on
the interior.

(b) By analyzing f on the boundary of D (which consists of 3 parts: the parabolic arc of points
(x, x2) for 0 ≤ x ≤ 4 and two line segments), use single-variable calculus to find the extrema on
the boundary.

(c) Find the maximal and minimal values of f on D, and where they occur.

Exercise 10.6. Consider the region D = {(x, y) ∈ R2 : x2 + y2 ≤ 16, x + y ≥ 0} (the half of the
disk of radius 4 centered at the origin that lies on or above the line x + y = 0 through the center). Let
f(x, y) = x2 + y2 − 4y. It is a fact that f has extrema on D.
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(a) Draw a picture of D, labeling the coordinates of any “corners”, and show that there is one critical
point of f in the interior of D. Evaluate f there.

(b) By analyzing f on the boundary of D (which consists of 2 parts: the circular arc and the diameter
of the circle), use single-variable calculus to find the extrema on the boundary.

(c) Find the maximal and minimal values of f on D, and where they occur.

Exercise 10.7. Up to change of units, the class of functions in Example 10.1.3 consists of those of the
form V (x, y) = kx2 + k′y2 −mx−m′(x+ y) with k, k′,m,m′ > 0.

(a) Show that V has exactly one critical point: P = ((m+m′)/(2k),m′/(2k′)).
(b) Let’s “recenter” the coordinates so that P looks like the origin: define

v = x− m+m′

2k
, w = y − m′

2k′

(note that v(P ) = 0 and w(P ) = 0). Express V (x, y) in terms of v and w, and deduce from this
that P is a global minimum for V . (In Chapter 26 we’ll develop a more systematic technique to
determine when a critical point is a local minimum.)

Exercise 10.8. Let V be the span of vectors v1, . . . ,vk in Rn, and let x ∈ Rn be any vector. By the
Orthogonal Projection Theorem (Theorem 6.2.1) there is a unique vector v ∈ V for which ∥x − v∥
is minimized, and it makes x − v orthogonal to everything in V . This exercise explains (via partial
derivatives) part of this result: for any v minimizing the distance, x− v is orthogonal to everything in V .
We carry this out for k = 2 just to avoid heavier notation (the method works in general).

(a) Define f : R2 → R by f(t1, t2) = ∥x − (t1v1 + t2v2)∥2; this is the squared distance from x
to a vector t1v1 + t2v2 (which can be anything in V since v1 and v2 span V ; we are assuming
k = 2). Note that minimizing f is the same as minimizing the squared distance from x to V .
Using properties of dot products, show that

f(t1, t2) = ∥x∥2 − 2t1(v1 · x)− 2t2(v2 · x) + t21∥v1∥2 + 2t1t2(v1 · v2) + t22∥v2∥2.
(b) Show that each partial derivative fti is given by

fti = 2vi · (−x+ t1v1 + t2v2).

(c) Deduce from (b) that if a1v1+a2v2 is a point in V closest to x then the difference x−(a1v1+a2v2)
is orthogonal to everything in V . (Hint: keep in mind that v1 and v2 span V , as we are assuming
k = 2.)

Exercise 10.9. Let f(x, y) = x3y2(6−x− y). Show that there is only one critical point of f in the region
where x > 0 and y > 0, and find it.

Exercise 10.10. Let f(x, y) = x4 + y4 − 2x2 + 4xy − 2y2. Find all critical points of f . (There are three
such points; in your solution you should find that x3 = −y3 at a critical point, so x = −y at such points.)

Exercise 10.11. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) If x = c1 is a critical point for the function f(x), and y = c2 is a critical point for the function
g(y), then (c1, c2) is a critical point for the function f(x)g(y).

(b) Suppose P = (0, 0) is a critical point of f(x, y) = ax2 + bxy+ cy2, and both fxx(P ) and fyy(P )
are positive. The point P must be a local minimum for f .
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11. Gradients, local approximations, and gradient descent

For a scalar-valued function f : Rn → R, we now package all of its partial derivatives into a single
vector-valued function denoted ∇f : Rn → Rn called the gradient of f . We use the gradient to compute
a good local approximation to a scalar-valued function f : Rn → R, and discuss how to visualize it.

By the end of this chapter, for a function f : Rn → R and point a ∈ Rn, you should be able to:

• use partial derivatives to compute the gradient (∇f)(a) ∈ Rn at a (it is a vector that packages
all n partial derivatives of f at a);

• compute a local approximation to f near a ∈ Rn using (∇f)(a);
• use ∇f to compute the equation of the tangent plane (resp. tangent line) to a level set f = c

when n = 3 (resp.n = 2);
• identify directions of most rapid increase or decrease, symbolically or (for n = 2) on a plot.

11.1. The linear approximation for a scalar-valued function. For a function f of a single variable
x, we know that a small change h in the value of x near x = a causes an approximate change of f ′(a)h
in the value of f(x) near x = a: f(a + h) ≈ f(a) + f ′(a)h for all h near 0. We can write this in another
way: for x very close to a,

f(x) ≈ f(a) + f ′(a)(x− a), (11.1.1)

which is the same statement of approximation except with x in place of a + h (so x − a = h is small).
Now the right side is the equation of a line: the tangent line to the graph of y = f(x) at the point (a, f(a)).

What is the analogue for a scalar-valued function f : Rn → R?

Consider f : Rn → R. We will sometimes write the inputs to f as vectors; e.g., when n = 2 we think

of f as a function f
([
x
y

])
.

Definition 11.1.1. The gradient of f is defined to be

∇f =




∂f
∂x1
∂f
∂x2...
∂f
∂xn


 .

Note that the gradient of f is a vector-valued function Rn → Rn: its value (∇f)(a) at a ∈ Rn is
an n-vector. For x near a ∈ Rn, the linear approximation to f is

f(x) ≈ f(a) + ((∇f)(a)) · (x− a). (11.1.2)

Observe that this looks just like the single-variable case (11.1.1) except that now there are vectors
and a dot product involved. (When n = 1 this recovers exactly the familiar single-variable case, with
(∇f)(x) equal to the 1-vector [f ′(x)] ∈ R1 = R.)

Although we encourage you to remember the vector-language formulation (11.1.2) since it looks so
similar to the single-variable case, let us write it out explicitly in the case of a two-variable function (i.e.,
n = 2) without the vector notation. The formula says:

f(x, y) ≈ f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b)︸ ︷︷ ︸
(∇f)([ ab ])

[
x−a
y−b

] for (x, y) near (a, b). (11.1.3)
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For an explanation of why (11.1.3) is true (applying equally well to the more general (11.1.2)), see Section
11.4. One thing that comes out of this explanation is that each individual term of (11.1.3) has a concrete
meaning:

f(x, y) ≈ f(a, b) + fx(a, b) (x− a)︸ ︷︷ ︸
change due to changing x

+ fy(a, b) (y − b)︸ ︷︷ ︸
change due to changing y

That is, the terms correspond to the change in f when we change one variable at a time.
We refer to either (11.1.2) or (11.1.3) as the local approximation for f at a or as the linear approxi-

mation for f at a.

Example 11.1.2. Consider the function f(x, y) = x2 + 2y2 + xy near the point a = (1, 1). The contour
plot is shown below.
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x A contour plot of f(x, y) = x2 + 2y2 + xy.
a = (1, 1).

x = (1.3, 0.9).

FIGURE 11.1.1. A situation for using linear approximation to estimate f(x)

Working at the point x = (1.3, 0.9) near a as in Figure 11.1.1, let’s estimate f(1.3, 0.9) using the
linear approximation formula with a = (1, 1). That is, what is the f -value for the level set of f through
x = (1.3, 0.9)?

First we find (∇f)(1, 1):
∂f

∂x
= 2x+ y and

∂f

∂y
= 4y + x,

so (∇f)(x, y) =
[
2x+ y
4y + x

]
and therefore (∇f)(1, 1) =

[
3
5

]
. By (11.1.2),

f(1.3, 0.9) ≈ f(1, 1) + (∇f)(1, 1) ·
[
.3
−.1

]

= 4 +

[
3
5

]
·
[
.3
−.1

]

= 4.4.

The exact value is f(1.3, 0.9) = 4.48, as shown in Figure 11.1.1. ■

Example 11.1.3. Let’s approximate f(1.03, 0.99) and f(1.003, 0.999) for f as in the previous example.
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Note that

f(1 + h, 1 + k) ≈ f(1, 1) + (∇f)(1, 1) ·
[
h
k

]

= 4 +

[
3
5

]
·
[
h
k

]

= 4 + 3h+ 5k.

Consequently,

f(1.03, 0.99) ≈ 4 + 3(0.03) + 5(−0.01) = 4.04 f(1.003, 0.999) ≈ 4 + 3(0.003) + 5(−0.001) = 4.004.

The exact values are f(1.03, 0.99) = 4.0408 and f(1.003, 0.999) = 4.004008. Note that the approxi-
mation is very accurate when h and k are very small. You should not expect the linear approximation
4+ 3h+5k to be accurate for large h and k. For example, using the linear approximation with h = k = 9
to estimate f(10, 10) gives 76 but f(10, 10) = 400. The huge deviation is visible in Figure 11.1.2, show-
ing the graph and the plane z = 4+ 3(x− 1) + 5(y− 1) = −4+ 3x+5y giving the linear approximation
to f at (1, 1).

10

-2
-20

400

-2

10•

(a, f(a))

FIGURE 11.1.2. Comparing the graph of f and the linear approximation to f at a = (1, 1).

■

Example 11.1.4. The amount of oxygen that can dissolve in water depends substantially on temperature
and air pressure, and, to a lesser extent, on salinity. Consider the following information (from [Col, p. 88])
at an air pressure of 1 atmosphere (the air pressure at ground level, corresponding to 760 mm of mercury
(Hg)).

• The amount of dissolved oxygen in pure water at 20° C is 9.09 mg/L.
• The amount of dissolved oxygen in pure water at 25° C is 8.26 mg/L.
• The amount of dissolved oxygen at 20° C in water with salinity 1% is 8.57 mg/L.

Based on this information, let’s estimate the amount of dissolved oxygen in water at 18° C with a salinity
of 3.5% (approximately the salinity of seawater), still at an air pressure of 1 atmosphere. (Salinity is often
measured in units of grams of salt per kilogram of water, called “parts per thousand” and denoted ppt; we
will disregard such a 1000-fold scaling of the salinity number.)

Let f(T, S) be the solubility of oxygen in water, measured in mg/L, at temperature T (in degrees
Celsius) and salinity S. The above given information says

f(20, 0) = 9.09, f(25, 0) = 8.26, f(20, 0.01) = 8.57.
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This lets us roughly estimate the partial derivatives via their definition in terms of difference quotients:
∂f

∂T
(20, 0) ≈ f(25, 0)− f(20, 0)

5
= −0.166,

∂f

∂S
(20, 0) ≈ f(20, 0.01)− f(20, 0)

0.01
= −52.

From this, get an estimate (with air pressure equal to 1 atmosphere)

f(T, S) ≈ 9.09 +

[
−0.166
−52

]
·
[
T − 20
S

]
= 9.09− (0.166)(T − 20)− 52S (11.1.4)

for T near 20 and S near 0. (This estimate decreases as the salinity S increases, as oxygen solubility
should.) We thereby obtain the numerical estimate

f(18, 0.035) ≈ 9.09− (0.166)(−2)− (52)(0.035) ≈ 7.60

The real value is 7.68 mg/L, so the approximation worked quite well!
Likewise, if we keep T at 20 and try S = 0.04 and again take the air pressure to be 1 atmosphere then

(11.1.4) gives the estimate
f(20, 0.04) ≈ 9.09− (52)(0.04) = 7.01

whereas the true value is 7.18 mg/L; still not bad! ■

Using just three measured values, we can estimate the solubility of oxygen in water at any other value
of (T, S) that is reasonably close to (20, 0). As a general rule of thumb, one should never use approximate
partial derivative information at some (a, b) to estimate f(x, y) for (x, y) too far away from (a, b). This
is for much the same reason that the “tangent line approximation” to a graph in single-variable calculus
should never be used too far from the point at which the tangent line is based.

It is a bit surprising that the above estimate worked well even though we estimated (∂f/∂T )(20, 0)
using a difference quotient involving a temperature value 5 units away from 20 (namely, we used f(25, 0)).
Next, we push our luck against the rule of thumb by trying a temperature value 5 units below 20 rather
than just 2 units below 20 (going away from 20 in the direction opposite from T = 25 that was part of the
input data).

Example 11.1.5. Let’s use (11.1.4) to estimate the solubility of oxygen at a temperature of 15° C for S = 0
(pure water), S = 0.01, and S = 0.035. Plugging into the estimate (11.1.4), we get

f(15, 0) ≈ 9.09− (0.166)(−5) = 9.92, f(15, 0.01) ≈ 9.09− (0.166)(−5)− (52)(0.01) = 9.40,

f(15, 0.035) ≈ 9.09− (0.166)(−5)− (52)(0.035) = 8.10.

The real answers are 10.08 mg/L, 9.49 mg/L, and 8.14 mg/L respectively. These are reasonably good in
view of how far away 15 is from 20. ■

Remark 11.1.6. If f : Rn → R has a local extremum at some a then we know that the partial derivatives
fxj

(a) at a all vanish (Theorem 10.2.2), so for points b near a the partial derivatives fxj
(b) are all near

fxj
(a) = 0. Hence, the linear approximation to f near such b takes the form

f(b+ h) ≈ f(b) + ((∇f)(b)) · h
where the gradient (∇f)(b) is short (its n entries fxj

(b) are all small, so its overall length is near 0).
If c = f(b) labels the level set of f in which b lives then to make f(b + h) achieve a desired value

nearer to the local extremum f(a) – such as c± 0.15 (sign depending on whether a is a local maximum or
local minimum) – we need the dot product ((∇f)(b)) ·h to be equal to the signed increment step (such as
±0.15). But how can we achieve this when (∇f)(b) is very short? In general, how big in magnitude can
a dot product v · w be for nonzero n-vectors v and w? In terms of the angle θ between such vectors we
have

v ·w = ∥v∥∥w∥ cos(θ),
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so the most positive (resp. negative) this can be is ∥v∥∥w∥ (resp.−∥v∥∥w∥), achieved when θ = 0°
(resp. θ = 180°), as we saw in Example 2.2.3 Thus, as (∇f)(b) becomes shorter (which occurs as we
look at level sets ever closer to the local extremum a) we need to make h longer (and to point more fully
in the direction of the appropriately signed vector ±(∇f)(b)) in order for the dot product to even have a
chance of being equal to the desired step size (such as ±0.15). This need for h to become longer is exactly
accounting for observation (ii) in Example 10.2.13 that there is a “spreading out” among level sets with a
fixed increment gap in the function values as we approach a local extremum.

11.2. The gradient as normal to contours. We now explain the visual significance of the gradient.

Theorem 11.2.1. Let f : R2 → R be a scalar-valued function, and suppose (∇f)(a, b) ̸= 0.

(i) The gradient (∇f)(a, b) is perpendicular to the level set of f that goes through (a, b) (mean-
ing: it is perpendicular to the tangent line of the level set through (a, b)). It points in the
direction of maximal increase for f(x, y) for (x, y) moving away from (a, b). The following
figure demonstrates this with the function f(x, y) = xy − x.
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A contour plot of f(x, y) = xy − x.
The gradient ∇f is drawn at three points:

a = (1, 3), b = (2, 2), c = (4, 3/2).
Observe that∇f is perpendicular to the level curve.

(ii) The equation

(∇f)(a, b) ·
[
x− a
y − b

]
= 0

in the (x, y)-plane is the line tangent to the curve in the contour plot of f(x, y) through
(x, y) = (a, b). Explicitly, the equation of this line is

fx(a, b)(x− a) + fy(a, b)(y − b) = 0. (11.2.1)

For an explanation of Theorem 11.2.1, see Section 11.4. A similar result (with a similar explanation)
holds when R2 is replaced with R3:

Theorem 11.2.2. For a scalar-valued function f : R3 → R and point a for which (∇f)(a) ̸= 0, the
gradient vector is perpendicular to the plane tangent to the level set of f through a. In particular, this
tangent plane has the equation

(∇f)(a1, a2, a3) ·



x− a1
y − a2
z − a3


 = 0. (11.2.2)

As a special case, the graph of a function h : R2 → R is the surface S with equation z = h(x, y)
that is the level set f = 0 of the function f(x, y, z) = z−h(x, y) whose gradient (−hx,−hy, 1) never
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vanishes (due to the third entry being 1). The tangent plane to S at a point (a, b, h(a, b)) then has
equation (−hx(a, b),−hy(a, b), 1) · (x− a, y − b, z − h(a, b)) = 0 that after some algebra becomes

z = h(a, b) + hx(a, b)(x− a) + hy(a, b)(y − b). (11.2.3)

The result in (11.2.2) carries over to functions f : Rn → R for n > 3 as well, except that the concept
of tangent plane to a level-set surface in R3 has to be replaced with an appropriate notion of “tangent
hyperplane” to a level set {f = c} in Rn.

Example 11.2.3. Consider the circle defined by the equation x2 + y2 = 25. Let’s find a normal vector
to this circle at (x, y) = (3, 4), as well as the equation of the tangent line to the circle at this point. This
specific case can be done via single-variable calculus (try if you are interested), but we’ll do it here using
gradients as an illustration of a general method that applies to situations with 3 or more variables too.

Define h(x, y) = x2 + y2, so h(3, 4) = 25 and ∇h =

[
2x
2y

]
. A normal vector to the level set h = 25

(this is our circle) through (3, 4) is given by the gradient vector (∇h)(3, 4) =
[
6
8

]
.

Now, if
[
x
y

]
is any point on the tangent line, the vector from

[
3
4

]
to
[
x
y

]
is perpendicular to the normal

vector
[
6
8

]
. As an equation, this says

[
x− 3
y − 4

]
·
[
6
8

]
= 0,

and so 6(x − 3) + 8(y − 4) = 0 is the equation of the tangent line. After simplifying, this becomes
3x+ 4y = 25 as shown in Figure 11.2.1.
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FIGURE 11.2.1. The level set of h(x, y) = x2 + y2 through (3, 4) and its tangent line there.

■

Example 11.2.4. Consider the curve x2 + xy + y3 = 7. Let’s find a nonzero vector perpendicular to the
curve at the point (2, 1) (this means: perpendicular to the tangent line of the curve at (2, 1)).

The curve is a level set of the function h(x, y) = x2 + xy + y3 shown in Figure 11.2.2, so the gradient
vector (∇h)(2, 1) is perpendicular to the curve at (2, 1). Using partial derivatives of h we obtain that

(∇h)(x, y) = (2x+ y, x+ 3y2),
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so (∇h)(2, 1) = (5, 5). Thus (5, 5) is such a vector.
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FIGURE 11.2.2. Contour plot for h(x, y) = x2 + xy + y3 including the level set through (2, 1).

■

Example 11.2.5. Let’s find a parametric representation for the line that intersects the curve x2+xy+y3 = 7
at the point (2, 1) perpendicularly to the curve there (meaning: perpendicular to the tangent line there).

Recall from (3.3.1) that the parametric equation of a line through a point p in the direction v is

x(t) = p+ tv.

In this problem p = (2, 1) is a point on the line. For the direction vector v, we need a (nonzero) vector
that is perpendicular to the tangent line of the curve at (2, 1). We already found such a vector, namely
(5, 5), in Example 11.2.4. Thus,

x(t) =

[
2
1

]
+ t

[
5
5

]
=

[
2 + 5t
1 + 5t

]

is a parametric representation for the line. This line is shown in Figure 11.2.2. ■

Here is another example, now in three dimensions:

Example 11.2.6. Consider the sphere S given by the equation x2+ y2+ z2 = 6. Let’s find an equation for
the tangent plane to S through the point (2, 1, 1).

Let f(x, y, z) = x2 + y2 + z2. Thus ∇f =



2x
2y
2z


. As we saw in Theorem 11.2.2, this tangent plane is

perpendicular to the gradient (∇f)(2, 1, 1) =



4
2
2


 and so its equation is



4
2
2


 ·



x− 2
y − 1
z − 1


 = 0.

After simplifying, this becomes
2x+ y + z = 6.

■
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Example 11.2.7. Consider the surface S defined by z = x2 + y2. Let’s find the equation of the tangent
plane to S at the point (1, 2, 5).

We can rewrite the equation as x2 + y2 − z = 0. Thus, the surface S is a level set of the function
f(x, y, z) = z − x2 − y2. Hence, the gradient vector

(∇f)(x, y, z) =



−2x
−2y
1




is perpendicular to the level set of f through each point (x, y, z). Thus, the gradient

(∇f)(1, 2, 5) =



−2
−4
1




is perpendicular to S at (1, 2, 5). The tangent plane to the surface through (1, 2, 5) is therefore perpendic-

ular to



−2
−4
1


, so its equation is obtained from the “point-normal” form:



−2
−4
1


 ·





x
y
z


−



1
2
5




 = 0.

This simplifies to −2(x− 1)− 4(y − 2) + (z − 5) = 0, or equivalently z = 2x+ 4y − 5.
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Comparing the graph of f(x, y) = x2 + y2

and the tangent plane of f at (1,2,5).
The tangent plane is given by z = 2x+ 4y − 5.

FIGURE 11.2.3. A surface graph and the best linear approximation at the yellow point.

■

11.3. Gradient descent. One of the main reasons to study calculus of n variables is to optimize
multivariable functions; i.e., to find their local maxima and minima (with the eventual aim of finding
global maxima and minima). Realistic problems of this type cannot be solved exactly; rather one needs
ways to numerically approximate the answer. A powerful method for doing this is gradient descent; we
give a brief introduction to it in this section. It will be discussed in the context of broader applications in
Example 12.4.4 (to solve linear programming problems), Section G.3 (for learning in neural networks),
and Appendix I (using Newton’s method).

Disclaimer: realistic gradient descent requires a lot more care with approximation details and numer-
ical methods than we have time to explain here. Our goal is to give a first exposure to some of the basic
ideas, especially how knowledge of linear algebra illuminates one’s understanding of the procedure.
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Example 11.3.1. Imagine that a raindrop falls on a hill. It will head to the bottom – water always finds the
lowest elevation. Or at the very least it will find a local minimum: it might not find the bottom of the hill,
but it will find a lake half-way down the hill, perhaps. The raindrop certainly doesn’t know anything about
the geography of the hill. However, at every moment, it simply “chooses” to roll in the steepest possible
direction. It is not only raindrops that find local minima. Physical systems find energy minima, and they
do so by moving in the “direction” where potential energy decreases the most. ■

The preceding example suggests the following strategy, called gradient descent:

to find the minimum of a function f(x, y), do the following: move away from (x, y) in
the direction in which f decreases the fastest.

Similarly, to find the maximum of a function f(x, y), do the following: move away
from (x, y) in the direction in which f increases the fastest.

We need to make this mathematically precise. We can quantify direction (without regard to speed)
by giving a unit vector v ∈ R2; i.e., a vector of length ∥v∥ = 1. To test “how fast f is increasing or
decreasing in the direction of v” we use the local approximation from (11.1.2) with t ∈ R near 0:

f(a+ tv) ≈ f(a) + (∇f)(a) · (tv) = f(a) + t(∇f)(a) · v.
This says that if we move a small distance |t| in the direction v for t > 0 and in the direction of −v for
t < 0 then the change in f is ≈ t ((∇f)(a) · v), whose rate of change with respect to t (i.e., its t-derivative)
is (∇f)(a) · v. Thus, our question becomes:

how do we choose a unit vector v so that (∇f)(a) · v is largest (and then work with
t > 0 when seeking to maximize f and with t < 0 when seeking to minimize f )?

We can solve this by geometry! The dot product (∇f)(a) · v equals ∥(∇f)(a)∥∥v∥ cos(θ), where θ is
the angle between v and (∇f)(a). Clearly, the largest this gets is when cos(θ) = 1, and for that we want
θ = 0°. Likewise, the most negative it gets is when cos(θ) = −1, which says θ = 180°. Therefore:

Theorem 11.3.2. Let f : Rn → R be a scalar-valued function and a ∈ Rn a point at which the
gradient (∇f)(a) ∈ Rn is nonzero.

The gradient (∇f)(a), or rather the associated unit vector (∇f)(a)/∥(∇f)(a)∥, is the direction
in which f increases most rapidly at a. Likewise, the opposite unit vector −(∇f)(a)/∥(∇f)(a)∥ is
the direction in which f decreases most rapidly at a.

Example 11.3.3. Many physical systems can be modeled using the gradient of a function. What this means
is that an object of interest experiences a force that is given by

force = −(∇V )(x, y, z) (11.3.1)

where V (x, y, z) is called the “potential energy” function.
For example, the “potential energy” function for the gravitational force created by the sun has the form

V (x, y, z) = c/
√
x2 + y2 + z2 for a suitable constant c > 0 (We choose coordinates putting the sun at

(0, 0, 0).) In words, equation (11.3.1) says that the object experiences a force along the direction where V
is most rapidly decreasing. That is to say, the object “wants” to go to where V is smallest. ■

Example 11.3.4. Numerical work on energy minimization problems (such as in molecular biology
and computational chemistry, discussed in Example 10.1.2) and the maximum likelihood estimation
method in statistics (for computing the “most likely’ parameters in a probabilistic model) relies on
gradient descent and its refinements.
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To reconstruct the image of a black hole from noisy data (noise due to atmospheric interference),
the image restoration can be set up as the task of minimizing a certain “energy” [BJZFDF1, Sec. 4.2,
(9)]. For this application to handle imaging for certain kinds of black holes, gradient descent is too
slow and so a more refined optimization technique is needed; see Example I.1.3. ■

Here are some worked numerical examples of gradient descent.

Example 11.3.5. Let us find a minimum of f : R2 → R

f(x, y) = x2 − 3xy + 3y2 + 5y + 2x.

First of all,

(∇f)(x, y) =
[
2x− 3y + 2
−3x+ 6y + 5

]
.

We will start somewhere and move in the direction of the negative gradient; in other words, we will start

off trying
[
x
y

]
= a, for some a that we hope is near the minimum, and then at each stage we will move

from a to
a+ t(∇f)(a)

for some t < 0 with small absolute value. (The coefficient t is negative since we are seeking to decrease f
rather than to increase f , as we are trying to minimize f .) In other words, we move in the direction of the
negative gradient; the magnitude |t| and the length ∥(∇f)(a)∥ tell us how far we have moved.

We need to decide on two things:

(1) What is a – where do we start? We have no idea here; let’s try a = (0, 0).
(2) What is t – how far do we go at each step? Again, we have no idea. In a realistic interpretation

of gradient descent, one tries several values of t and seeks the best one. (In machine learning
contexts, |t| is sometimes called the learning rate.) In the bare-bones version here, let’s use
t = −(0.1).

At each step, we will move from a to the point a−(0.1)(∇f)(a). Starting at a = (0, 0), we go through
the following sequence of points in R2:

[
0
0

]
⇝

[
−0.2
−0.5

]
⇝

[
−0.51
−0.76

]
⇝

[
−0.836
−0.957

]
⇝ . . .

1

-1

-1.5

1•
•••

a0

a1a2a3

The first three steps of gradient descent for f .
The starting point is a0 = (0, 0).
The point an is determined by the rule:

an = an−1 − (0.1)∇f(an−1).

FIGURE 11.3.1. Initial steps of gradient descent may wander around
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Nothing interesting is happening here: we seem to be just wandering around, as shown in Figure

11.3.1. But if we do it 10 times we get to the vector
[
−7.768
−4.674

]
; if we do it 100 times we get

[
−8.835
−5.245

]
,

and if we do it 1000 times we get
[
−8.999 . . .
−5.333

]
. It certainly looks like this is getting close to a specific

point: b =

[
−9
−51

3

]
.

To verify this b is a special point of interest for the behavior of f , let us find the critical points
symbolically. We must solve ∇f = 0, or in other words

[
2x− 3y + 2
−3x+ 6y + 5

]
=

[
0
0

]
.

The first equation tells us that x = (3/2)y − 1, and substituting this into the second equation gives

3

2
y + 8 = 0,

so y = −16/3 = −51
3

and hence x = (3/2)y − 1 = −9.

2

-16

-10

-2

-9

-5-1
3

•
The point (−9,−51

3
)

appears to be a minimum of f

FIGURE 11.3.2. A possible local minimum found via gradient descent

So far, this only says that (−9,−51
3
) is a critical point. You can convince yourself that it is a local

minimum by checking a few values of (x, y) nearby, or by looking at Figure 11.3.2. In Chapter 26 we
will do this more systematically (and give a genuine justification) via the “multivariable second derivative
test”; see Example 26.4.2. ■

Example 11.3.6. Now let us try a somewhat more ambitious example, which would be much harder to
solve by hand: let’s find a local minimum of the function

f(x, y) = x+ y − (0.1)(ln(x) + ln(y) + ln(2x+ 3y − 1) + ln(3x+ y − 1))

near (x, y) = (1, 1). This might look like a big unmotivated mess, but actually it belongs to a class
of functions that arise often in realistic optimization problems; we will come back to it from a broader
perspective in Example 12.4.4 (with ε there equal to 0.1) and with another method in Example I.2.2.

The gradient of f is given by

∇f =

[
1− (0.1) (1/x+ 2/(2x+ 3y − 1) + 3/(3x+ y − 1))
1− (0.1) (1/y + 3/(2x+ 3y − 1) + 1/(3x+ y − 1))

]
.

Again, we will use the following algorithm:
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for some negative t near 0, start at
[
1
1

]
and at each stage replace a by a+ t(∇f)(a).

We again choose t = −(0.1). (In a real application one would use much care in choosing a good value of
the “learning rate” |t|, possibly trying several different values and searching for the best one.)

So we start replacing a by a− (0.1)(∇f)(a) repeatedly. To three decimal digits, it looks like this:
[
1
1

]
⇝

[
0.925
0.921

]
⇝

[
0.852
0.844

]
⇝ . . . .

If you do this 10 times, you arrive at b ≈
[
0.445
0.370

]
with (∇f)(b) ≈

[
0.150
0.287

]
, which isn’t all that much

like
[
0
0

]
. If we do the same iteration 100 times, we arrive at c ≈

[
0.455
0.254

]
, for which both coordinates of

(∇f)(c) vanish to at least three decimal places. (And if you do 1000 iterations, you arrive at a vector that
agrees with c to six decimal places, so there’s not much gain for the additional effort.)

In summary, (0.455, 0.254) is (to good approximation) a critical point, which we found not by any
symbolic computation but rather by the numerical method of repeatedly moving in the direction of the
negative of the gradient.

What if we had started closer to the critical point, say at a =

[
0.5
0.3

]
? In this case the process works

a bit better: after 9 iterations it arrives at
[
0.4554573 . . .
0.2542429 . . .

]
, where ∇f vanishes to three decimal places,

and another iteration yields
[
0.4554417 . . .
0.2542224 . . .

]
that is essentially the same point (and at which ∇f is even

a bit closer to 0). So with this new choice of a, we reach the (approximate) critical point to three digits’
accuracy after approximately 10 iterations rather than 100 iterations as above. ■

11.4. Explanation of properties of gradients. We now explain informally why the linear ap-
proximation (11.1.3) holds and why Theorem 11.2.1 holds. One can walk from (a, b) to (x, y) in two
steps: first go along a path from (a, b) to (x, b) horizontally, and then go to (x, y) by moving vertically.

• In the first step we increase the x-coordinate from a to x holding y fixed, so

change in f in first step ≈ fx(a, b)× (x− a). (11.4.1)

• Next, we move the y-coordinate from b to y holding x fixed, so

change in f in second step ≈ fy(x, b)× (y − b).

Since (x, b) is very close to (a, b) (as x ≈ a), we may expect that fy(x, b) and fy(a, b) are
very close. Make the further approximation fy(x, b) ≈ fy(a, b), yielding

change in f in second step ≈ fy(a, b)× (y − b). (11.4.2)

Now add (11.4.1) to (11.4.2) to get (11.1.3). By moving in more coordinate directions, this same
reasoning explains the version for any number of variables in (11.1.2).

Next, let’s turn our attention to explaining Theorem 11.2.1. Start at (a, b) and then move a little
bit to a point (x, y) further along on the contour curve of f through (a, b). By definition of the contour
curve as a locus “f(x, y) = c” for some fixed value of c, such as c = f(a, b), f does not change at
all: f(x, y) = f(a, b).
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Now recall the local approximation f ≈ f(a, b) + (∇f)(a, b) ·
[
x− a
y − b

]
from (11.1.3). Applying

this at the point (x, y) near (a, b) on the contour curve at which f has the value f(a, b), we conclude
that

(∇f)(a, b) ·
[
x− a
y − b

]
= 0 (11.4.3)

(i.e., the approximate deviation from f(a, b) of the value f at (x, y) vanishes).
So near (a, b) the contour curve looks just like the line with equation (11.4.3). In other words,

(11.4.3) must be the equation of the tangent line! But – as we just saw in Example 11.2.3 – (11.4.3)
describes a line through (a, b) perpendicular to the vector (∇f)(a, b). Therefore, the vector (∇f)(a, b)
is perpendicular to the contour curve of f through (a, b).
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Chapter 11 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
∇f for f : Rn → R, it is the vector-valued function Rn → Rn

whose jth component function is ∂f/∂xj
Definition 11.1.1

Concept Meaning Location in text

gradient for f : Rn → R at a ∈ Rn the n-vector whose jth entry is (∂f/∂xj)(a) Definition 11.1.1

linear approximation to f : Rn → R
at a ∈ Rn

the approximation f(a) + ((∇f)(a)) · (x − a)
to f(x) for x near a

(11.1.2), (11.1.3)

gradient descent iterative process that moves in direction of neg-
ative gradient with the aim of reaching a (local)
minimum

Section 11.3

Result Meaning Location in text
(∇f)(a) is a normal vector to
the level set of f through a

for f : Rn → R with n = 2, 3, if (∇f)(a) ̸= 0 it is
a normal vector to the tangent line/plane of the level
curve/surface of f through a

Thms 11.2.1, 11.2.2

directions of ±(∇f)(a) are di-
rections of greatest increase and
decrease for f : Rn → R at
a ∈ Rn

if (∇f)(a) ̸= 0, unit vectors ±(∇f)(a)/∥(∇f)(a)∥
point in the directions emanating from a in which f
has the greatest increase (+) and decrease (−)

Theorem 11.3.2

Skill Location in text
compute linear approximation to f(a + h) for small h using dot product
against gradient vector (∇f)(a)

Examples 11.1.2, 11.1.3

compute equation of tangent line/plane to level set using (nonzero) gradient Examples 11.2.3–11.2.7

carry out 1 or 2 steps of gradient descent in concrete situations (with simple
numbers)

Example 11.3.5
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11.5. Exercises. (links to exercises in previous and next chapters)

Exercise 11.1. Calculate the gradient of the following functions at the indicated point.

(a) f(x, y) = xy at (2, 3).
(b) g(x, y, z) =

√
x2 + y2 + z2 at (−1, 2,−2).

(c) h(x, y, z) = esin(x) cos(yz) at (0, π, 24).

Exercise 11.2. Assume that we have two functions f, g : R2 → R. Let h : R2 → R be given by
h(x, y) = f(x, y)g(x, y).

(a) Show that
∂h

∂x
(x, y) =

∂f

∂x
(x, y)g(x, y) + f(x, y)

∂g

∂x
(x, y).

(b) Use this to show

(∇h)(x, y) = ((∇f)(x, y))g(x, y) + f(x, y)((∇g)(x, y)).
(c) Calculate (∇h)(0, 1) for

h(x, y) = (sin2(xy) + ln(x+ y) + y)(exy + cosx3y)

Exercise 11.3. For f(x, y) =
√
1 + xy, use linear approximation to estimate the value of f(0.9, 0.2).

Exercise 11.4. You ordered a large block of wood with length 5, width 2, and height 1 (each in feet).
Unfortunately, the manufacturer can only guarantee to meet these measurements up to an error of 0.1
excess feet in each dimension. Use a suitable gradient to approximate the most total excess volume that
may occur. Compute the exact maximal excess volume.

Exercise 11.5. Consider the contour map shown in Figure 11.5.1 below.

(a) For every indicated point draw an approximate unit vector in the direction of the negative gradient
when nonzero, or indicate when it vanishes.

(b) For each indicated point, where on the map will the gradient descent from there likely end?
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•
Q

•R
•S

•T

FIGURE 11.5.1. A contour map with five labeled points P,Q,R, S, T .

Exercise 11.6. Consider the function f : R2 → R given by f(x, y) = x2 − y2.
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(a) As in Example 11.3.6, calculate the first two steps of gradient descent using t = −(0.1) and

starting at
[
1
0

]
, as well as starting at

[
1
0.3

]
. Plot these; do you notice any difference?

(b) For general a =

[
a
b

]
, where do we wind up after a step of gradient descent with t = −(0.1)

starting at a? Your answer should be a vector whose entries are expressed in terms of a and b.

(c) Using your formula in (b), if you start at a general a =

[
a
b

]
, feed the procedure into itself

repeatedly to say where one winds up after 2 steps and after 3 steps (in terms of a and b).
(d) Explain why iterating gradient descent repeatedly will converge to 0 (not a local minimum for

f(x, y), but rather a saddle point) when we start at any point a with b = 0, but will always diverge
when b ̸= 0. (Hint: for any number 0 < c < 1, the powers cn converge to 0 as n grows. Use this
with c = 0.8.)

The lesson is that sometimes “most” a can fail to give anything useful under gradient descent! (It is
not surprising here, since x2 − y2 has no local minimum; see Figure 10.2.3.) An atypical aspect of this
example is to have a clean formula as in (b) that allows one to see directly what gradient descent is doing.

Exercise 11.7. You might wonder about modifying gradient descent to move by a fixed multiple of the uni-
tized gradient vector (∇f)(a)/∥(∇f)(a)∥ (rather than by a fixed multiple of the gradient vector (∇f)(a)).
Let’s call this modified process unitized gradient descent. This exercise illustrates a pitfall of unitized gra-
dient descent.

Consider the function f : R2 → R given by f(x, y) = x2 + y2, so 0 is the only local minimum for
f (and in fact is a global minimum). Choose t = −(0.1). Let a be a nonzero point in R2, with length
ℓ = ∥a∥, so a = ℓu for the unit vector u = a/∥a∥ = a/ℓ in the direction of a.

(a) Show that one step of unitized gradient descent beginning at a yields (ℓ + t)u = (ℓ − (0.1))u.
(Hint: verify that (∇f)(a) = 2a.) In particular, this lies along the same line through the origin
as a, but with length |ℓ− (0.1)|.

(b) Suppose 0 < ∥a∥ < 0.1, so by (a) one step of unitized gradient descent yields (ℓ − (0.1))u =
((0.1) − ℓ)(−u) pointing in the direction opposite to a (since (0.1) − ℓ > 0). Check that after
a second step of unitized gradient descent we return to the original a (so the process bounces
forever between these two points, never converging)!

(c) Suppose 0.1 < ∥a∥ < 0.2. Explain why after one step of unitized gradient descent we wind up at
a point as at the start in (b), so unitized gradient descent again gets caught in an endless bounce
(between what we reach after 2 steps and 3 steps).

(d) Suppose 0.2 < ∥a∥ < 0.3. Explain why after one step of unitized gradient descent we wind up at
a point as at the start in (c), so unitized gradient descent again gets caught in an endless bounce
(between what we reach after 3 steps and 4 steps).

One can continue this pattern of argument to show (which we are not asking you to do, but you might
enjoy to think about it visually) that as long as ∥a∥ is not an integer multiple of 0.1 then unitized gradient
descent beginning at a gets caught in an endless bounce between two steps. Even with usual gradient
descent, it turns out that in practice one should use a “step size” t depending on the point one is at rather
than a single uniform choice of t. This is addressed in Appendix I, which discusses Newton’s method for
optimization.

Exercise 11.8. Consider the surface

S = {x2 + 2y2 + 3z2 = 5}
in R3. Describe the tangent plane to S at (0, 1, 1) in each of two ways:
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(a) equation form,
(b) parametric form (multiple answers are possible for this).

Exercise 11.9. Find all points P on the curve C = {(x, y) ∈ R2 : 3yx2 + 3xy2 + y3 + 2x3 = 27} for
which the tangent of C at P is parallel to the y-axis.

Exercise 11.10. Figure 11.5.2 shows a yellow ellipsoid 2x2 + 3y2 + z2 = 9 and blue “2-sheeted” hyper-
boloid −3x2 + 6y2 + z2 = 7 meeting along a curve C consisting of 2 parts (one per “sheet”); zoom in
to see the 2 parts of the blue surface. The point P = (1,−1, 2) is on both surfaces (i.e., it satisfies the
equation defining each), so it lies on the curve C along which they meet.

•

L

P

FIGURE 11.5.2. Two surfaces 2x2 + 3y2 + z2 = 9 and −3x2 + 6y2 + z2 = 7 meet along
a curve C which contains a point P . The line L is the tangent line to C at P .

It is a plausible-sounding fact (which you do not need to justify) that the tangent line L to C at P is
the overlap of the tangent planes to the surfaces at P . (That fact is not specific to this point and these
surfaces.)

(a) Compute a normal vector to the tangent plane at P for each surface.
(b) Find a nonzero vector orthogonal to both normal vectors you found in (a), and use it to give a

parametric form for L.

Exercise 11.11. Consider the circles

C = {x2 + y2 = 1}, C ′ = {(x− 1)2 + y2 = 1}
with radius 1 and respective centers (0, 0) and (1, 0).

(a) Use algebra to compute the two points where these meet, and draw a picture to show why your
answer is reasonable.

(b) Use gradient vectors to compute the (acute) angle at which the tangent vectors to C and C ′ meet
at both of these points. (Informally, one may regard this as the angle at which the curves meet
at P .) Hint: explain why it is the same as to find the acute angle between the gradient vectors at
those points.

The problem in (b) can be done directly via Euclidean geometry without recourse to gradient vectors
because of the special angles involved. The point of the exercise is to work out a special case of a general
method (applicable in settings which Euclidean geometry cannot handle).
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Exercise 11.12. For f(x, y, z) = x2 + y2 + z2, consider points P ̸= (0, 0, 1) that lie on the surface
S = {g(x, y, z) = 1} for g(x, y, z) = x2+y2+z and have the tangent plane to S at P equal to the tangent
plane to the level set of f through P .

Show that all such P lie on the level set f = 3/4, and that the collection of such P is a circle in the
plane z = 1/2. Hint: two planes through a common point coincide exactly when normal directions to the
plane coincide. (Be attentive to the possibility of vanishing for various coordinates at such a P .)

Exercise 11.13. Give an estimate for
√

(4.2)2 + (2.9)2 by considering the linear approximation to f(x, y) =√
x2 + y2 at a suitable point. (There is no need to use a calculator for this.)

Exercise 11.14. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) For f(x, y) = x3+xy−y2, an equation of the line tangent to the 1-level curve of f(x, y) at (1, 1)
is 4x− y = 3.

(b) For f(x, y) = x3 + xy − y2, the direction of the steepest descent at (1, 1) is
[
4
−1

]
.
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12. Constrained optimization via Lagrange multipliers

The problem of finding the largest or smallest value of a function occurs across many fields. You have
seen many examples of this with single-variable functions. However, modeling real-world problems often
requires functions involving several variables; e.g., “minimize the function x2 − 3x+ y2 +4y+2 over all
(x, y) ∈ R2.” A new feature in the multivariable case is that it is often necessary to maximize or minimize
subject to a constraint; e.g., “minimize x3 + 2xy2 subject to the constraint 3x2 + 4y2 = 1.”

Examples of this problem arise in many situations, such as:

• in economics, to maximize profits subjects to a budgetary constraint (or maximize expected in-
vestment return subject to a given initial wealth to be spread across a portfolio);

• in natural sciences, to maximize the outcome of a physical process (distance, heat produced, etc.)
subject to a given amount of energy available;

• in drug design, to maximize binding affinity for the molecular structure subject to constraints
expressing desired chemical properties (e.g., [KP, Sec. 5.4] has such examples in R256!).

A basic 2-variable version of the problem (which moreover contains many of the essential mathemati-
cal issues of the general multivariable case) is this:

find the maximum of f(x, y) subject to the constraint g(x, y) = c (for a specific c ∈ R)

where g is some auxiliary function of prior interest (i.e., the constraint g(x, y) = c expresses some real-
world condition on the points (x, y) of interest for the optimization problem). Geometrically, this means
that we are trying to maximize f but restricting (x, y) to a certain curve – a level curve of g. For example,
it could be: “find the extrema of x2 − y subject to the constraint x3 + x+ y3 + y = 1.”

Alternatively, we might want to work with a constraint of the form

find the maximum of f(x, y) subject to the constraint g(x, y) ≤ c (for a specific c ∈ R)

An example of why we might want to do this is in Example 12.4.2. Such inequality constraints also show
up in machine learning algorithms to make classifiers, in work with support vector machines.

One approach is to try to solve for y in terms of x under the constraint: that is, we start with g(x, y) = c,
try to solve for y in terms of x, substitute it into f(x, y), and apply single-variable calculus to f(x, y(x)).
This doesn’t work well when g is complicated (it is often impossible to explicitly solve for y in terms of
x on the constraint curve g(x, y) = c, and even when possible typically f(x, y(x)) is a mess). A better
method, developed in this chapter, is called Lagrange14 multipliers.

By the end of this chapter, you should be able to:

• set up an equation for a constrained optimization problem in any number of variables by
using Lagrange multipliers;

• solve the “Lagrange multiplier” equations in examples in 2 or 3 variables.

12.1. Motivation. Here are two important examples of optimization subject to a constraint.

Example 12.1.1 (Maximizing utility). Suppose a consumer with an amount w (“wealth”) to spend
wants to buy some of each of n commodities. If pi is the price (say in dollars) of 1 unit of the ith
commodity and xi is the amount of the ith commodity that is purchased then the total amount spent

14Joseph-Louis Lagrange (1736-1813) was an Italian-French mathematician who made fundamental contributions in both
mathematical physics and number theory. The Euler–Lagrange equations in the calculus of variations and Lagrangian mechan-
ics (a powerful reformulation of Newtonian mechanics avoiding preferred coordinates) are named in his honor.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 227



by the consumer is p1x1 + p2x2 + · · · + pnxn. In economics, one measures the value of such a
purchasing decision in terms of a “utility function” U(x1, . . . , xn) whose meaning and mathematical
form can vary depending on the circumstances. The goal is always to maximize U(x1, . . . , xn) subject
to wealth or budgetary constraints. The constraint is typically

∑n
i=1 pixi ≤ w (can’t spend more than

one’s wealth), or
∑n

i=1 pixi = w. (The latter can handle the general case: one commodity could be
“cash reserves” for the money not spent on these goods.)

The Cobb–Douglas model (due to the mathematician Charles Cobb and economist/politician Paul
Douglas in the first half of the 20th century, and used for comparing production costs against output
value for companies) takes U to have the form Axa11 x

a2
2 · · ·xann for a coefficient A > 0 and fractional

exponents a1, . . . , an > 0 (typically determined through a least-squares fitting process against data).
We’ll treat a situation with a specific U in Example 12.2.7 after we have introduced the necessary
mathematical techniques. ■

Example 12.1.2. In numerous machine learning applications (as varied as computational biology,
image classification, and text classification), a key problem is for a machine to “learn” how to classify
n-vector data points (e.g., genomic sequences, images, text, etc.) into one of two types (e.g. cancerous
or not, face or not, political ad or not). This can be formulated as a constrained optimization problem
in n variables, with n typically very large. The algorithms that solve it are referred to by the awful
name “support vector machines” (SVM). SVM’s involve multiple constraints at once, which requires
more linear algebra, so we’ll come back to it in Example 19.4.4. ■

In single-variable calculus, we solve for local extrema of a function f(x) on an interval [a, b] by
searching among the values x = c for which f ′(c) = 0, along with the endpoints of the interval (where
f ′ may not vanish, but which could nonetheless be a local extremum for f on [a, b]). In the multivariable
setting, the method we introduce below will likewise identify two types of candidates for local extrema
under a constraint: one type satisfying an analogue of the equation f ′ = 0 in the single-variable case, and
one type satisfying an analogue of the “endpoint” condition in the single-variable case.

As a warm-up, we first consider an example for which we can easily find the solutions to a constrained
optimization problem by inspection yet can also see an essential geometric property of such solutions that
illustrates the method to be used in the general case.

Example 12.1.3. Consider the unit sphere S centered at the origin 0 in R3, and f(x, y, z) = z. The sphere
S is defined by x2 + y2 + z2 = 1, so for g(x, y, z) = x2 + y2 + z2 finding the extrema for z on the sphere
S is the same as finding the points in the region g = 1 at which f attains maximal or minimal values.

By staring at the sphere S, we see by inspection that f attains its maximal value on S at the north pole
p = (0, 0, 1) and attains its minimal value on S at the south pole −p = (0, 0,−1). We emphasize that
these two points on S are not local extrema for f on the ambient R3: for tiny t > 0, at points (0, 0, 1 + t)
close to p the value 1 + t of f there is bigger than the maximal value f(p) = z(p) = 1 for f = z on
S, and similarly at points (0, 0,−1 − t) close to −p the value −1 − t of f there is less than the minimal
value f(−p) = z(−p) = −1 on S. Such points (0, 0,±(1 + t)) are not in S and so are irrelevant for the
purpose of optimizing f subject to the constraint g = 1 that defines S.

We have just observed a very important point, so make sure you understand it: a solution to a con-
strained optimization problem on Rn of the form “optimize F (x) subject to the condition G(x) = c”
is typically not a local extremum for F on the ambient Rn. Hence, there is no reason for it to be a
critical point of F ; i.e., no reason for ∇F to vanish there! Indeed, in our situation above with the

sphere S and f(x, y, z) = z, the gradient (∇f)(x) is equal to the nonzero vector



0
0
1


 for all x ∈ R3.
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But there is nevertheless something special about the behavior of ∇f at the points ±p where f has
its extreme values on the region S defined by g = 1. To explain it, we will work with the gradient ∇g
at points of the constraint region S. For any point x = (x, y, z) ∈ R3 (which may or may not lie in

S) we have (∇g)(x) =



2x
2y
2z


 = 2x. In Figure 12.1.1 we show S = {x ∈ R3 : g(x) = 1} with the

corresponding gradient vector (∇g)(x) = 2x drawn in at every point x ∈ S: this is a vector perpendicular
to the tangent plane of S at x, pointing outward from the sphere at x with length 2 (the lengths don’t all
look the same in the Figure 12.1.1 due to the effect of perspective). The non-negative coordinate axes are
also drawn, in light blue, but that is irrelevant in what follows.

•

•
• •

•
•

•

•
•

•

•

z

p

FIGURE 12.1.1. A sphere S with radial vectors of length 2 emanating from every point.

Here is the key observation: for each x ∈ S, compare the “radial” line through x along the direction

of (∇g)(x) and the vertical line through x along the direction of (∇f)(x) =



0
0
1


. The points a ∈ S for

which these two lines through a coincide are exactly the north pole p and south pole −p (indicated by
the red radial vectors in Figure 12.1.1)! The equality of such lines associated with some point a ∈ S –
equality of the line spanned by (∇f)(a) and the line spanned by (∇g)(a) – says exactly that (∇f)(a) is a
scalar multiple of the nonzero gradient vector (∇g)(a) (with scalar multiplier equal to 1/2 in this situation,
but the specific scalar isn’t essential). This special property at the constrained extrema, that the vector
(∇f)(a) is a scalar multiple of the vector (∇g)(a), will turn out to be a general feature of solutions to all
constrained extremum problems, as Theorem 12.2.1 below makes precise. Such a relation among gradient
vectors will play the role for constrained optimization that the first derivative test does in single-variable
calculus (and that the vanishing of the gradient does for unconstrained optimization on Rn). ■

Next we consider an example in which we can’t compute the constrained extrema by inspection as
with the sphere in Example 12.1.3, but for which we can visualize a relationship among gradients at the
constrained extrema similar to what we observed in Example 12.1.3 at the poles of the unit sphere.

Example 12.1.4. For g(x, y) = x4+x3y+y2, let’s find the local extrema of f(x, y) = x3+xy2 subject to
the constraint g(x, y) = 1; this is studying the behavior of f(x, y) on the curve C defined by g(x, y) = 1
that is shown in Figure 12.1.2. By “local” extrema of f(x, y) on C we mean points P on C for which
the points (x, y) ∈ C near P all satisfy f(P ) ≥ f(x, y) (constrained local maximum at P ) or all satisfy
f(P ) ≤ f(x, y) (constrained local minimum at P ).
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FIGURE 12.1.2. Constraint curve C defined by x4 + x3y + y2 = 1.

To visualize the task of finding local extrema for f(x, y) on C, we shall consider the level curves
f(x, y) = m and allow m to vary. For some values of m the curve f(x, y) = m does not touch C, so f
never attains the value m on C. For other values of m, the curve f(x, y) = m touches C; the points where
this happens are where f has value m on C.

The utility of this is illustrated in Figure 12.1.3 which shows a blue level curve f(x, y) = m0 for a
specific m0 ≈ 2.056 and black level curves f(x, y) = m for m near m0. (The contour labels show that
the value of f changes rapidly!) For m near m0, if m > m0 then the curve f(x, y) = m does not touch
C whereas if m < m0 then the curve f(x, y) = m touches C at a couple of points and finally the curve
f(x, y) = m0 touches C at exactly one point P0 (black dot), moreover in a “tangential” manner (i.e., the
tangent lines at P0 to the blue curve f(x, y) = m0 and the red curve C coincide). To summarize:

(i) for Q ∈ C near P0 we have f(Q) ≤ m0 = f(P0), so f(x, y) on C has a local maximum at P0;
(ii) the curve f(x, y) = m0 through the constrained local extremum P0 is “tangent” to C at P0;

(iii) the curve f(x, y) = m for nearby m < m0 is not tangent to C at the points Q near P0 where this
level curve of f meets C.
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FIGURE 12.1.3. Red constraint curveC and level curves f(x, y) = m form near a specific
m0 ≈ 2.056. The blue curve f(x, y) = m0 is tangent to C at a point P0 (black dot on the
left) that is a constrained local maximum for f on C. At points of C near P0 on level curves
of f , compare ∇g (red) and ∇f (black or blue) on the right: they’re aligned only at P0!
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The key is to reinterpret (ii) and (iii) in terms of gradient vectors. For the tangent line to a level curve
at a point, the perpendicular direction is that of the gradient vector at that point (Theorem 11.2.1!). The
equality of two lines through a point in R2 (such as tangent lines to curves at a common point, as above)
is the same as equality of their perpendicular directions through the point, so we can restate (ii) and (iii):

(ii′) (∇f)(P0) and (∇g)(P0) span the same line;
(iii′) for points Q ∈ C near P0 but distinct from P0, the vectors (∇f)(Q) and (∇g)(Q) do not point

along the same line.

Hence, for points (a, b) ∈ C near P0, the condition

(∇f)(a, b) is a scalar multiple of (∇g)(a, b)

(reminiscent of Example 12.1.3 at the north and south poles) holds at P0 and not anywhere else nearby on
C! We haven’t said what the scalar multiplier is, but the fact that such a relationship holds between the two
gradients at a point of C (regardless of the value of the scalar multiplier!) is a very restrictive condition
that picks out P0 from all other nearby points of C. This will lead to an analogue for constrained local
extrema of the first derivative test in single-variable calculus (a criterion for finding candidates for local
extrema; such candidates can fail to be local extrema when a second derivative vanishes). We will revisit
this constrained optimization problem in Example 12.2.13. ■

12.2. The method of Lagrange multipliers.

Theorem 12.2.1. Suppose f : Rn → R and g : Rn → R are functions, and consider the problem of
finding a local maximum (or local minimum) of f on the region where g(x) = c. If a local extremum
for f on the constraint region (i.e., the region of x satisfying g(x) = c) occurs at a then either

(∇g)(a) = 0 or (∇f)(a) = λ (∇g)(a) (12.2.1)

for some scalar λ (called the “Lagrange multiplier”) that may depend on a.
Warning: We do not know λ; we (often) need to solve for it! The equations ∇f = λ∇g in Rn

and g(x) = c in R amount to n + 1 scalar equations in n + 1 variables x1, . . . , xn, λ, and we often
need to solve for them all. (Sometimes we’re lucky and λ cancels out in the calculations, so we don’t
need to find λ.) In real-world problems, λ can have a useful interpretation; see Remark 12.2.14.

This theorem requires practice to digest, since it involves an auxiliary quantity λ that isn’t part of
the initial problem we have been trying to solve. The existence of λ expresses a substantial geometric
condition at constrained local extrema a (which we observed in Figure 12.1.3 at P0): the vector (∇f)(a)
lies in the line spanned by (∇g)(a) when this latter gradient vector is nonzero. We are going to use
this “multiplier equation” (or really both options in (12.2.1)) as a technique to solve constrained extrema
problems. This should be regarded as an analogue to solving extrema problems in single-variable calculus
by using the vanishing condition in the first derivative test (and solving unconstrained extrema problems
in multivariable calculus by using the vanishing of the gradient; i.e., testing critical points).

To summarize: any solution to an optimization problem must satisfy some auxiliary equation (vanish-
ing of gradient in the unconstrained case, one of the options in (12.2.1) in the constrained setting), and we
will solve this equation to arrive at candidates for solutions to the original optimization problem. We can
compare values at those candidate points to see what are the biggest and smallest, just as we do with the
first derivative test in single-variable calculus. A wrinkle with the multiplier equation in (12.2.1) is that it
involves the existence of an additional unknown scalar λ, so “solving” (12.2.1) is a new kind of problem.
The many worked examples below show that there are systematic ways to handle this.

It is a pleasant fact of experience, as we will see in the examples below, that usually (∇g)(x) is
non-vanishing on the entire constraint region defined by g(x) = c. In such happy situations the case
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(∇g)(a) = 0 in (12.2.1) is impossible, so we can then ignore it and focus on the multiplier equation
(∇f)(a) = λ (∇g)(a). Complementing Example 12.1.4, here is another visualization of the multiplier
equation:

Example 12.2.2. Let f(x, y) = 2x3y − xy5, and let g(x, y) = x2 + y2. For c > 0, the constraint curve
g(x, y) = c is x2 + y2 = c, which we recognize as the circle of radius

√
c centered at 0. Note that

∇g =

[
2x
2y

]
is non-vanishing on g = c, so by Theorem 12.2.1 any local extremum a for f along g = c

must satisfy the multiplier equation (∇f)(a) = λ (∇g)(a) for some scalar λ (typically depending on

a). With a bit of algebra one finds that (∇f)(x, y) =

[
6x2y − y5

2x3 − 5xy4

]
is nonzero for (x, y) ̸= 0, so the

relation (∇f)(a) = λ (∇g)(a) among nonzero gradients says that they point along the same (or opposite)
directions (depending on whether λ is positive or negative). This visual interpretation is insensitive to the
specific value of λ, which is good since we don’t know (yet) what λ means. We push the visualization
further via Figure 12.2.1 that shows (in green/yellow, red, and blue) the contour plot of f for positive
values of f , with the level curves f = b for b > 0 having one part in each quadrant, and superimposed on
a contour plot for g whose level curves are the circles centered at 0 (just some of which are shown).
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FIGURE 12.2.1. Contour plot of f = 2x3y− xy5 showing the multi-part curves f = b for
b ≥ 0: orange for b = 0, blue for 0 < b < 1, red for b = 1, green/yellow for b > 1. The
curve f = 0 consists of x = 0, y = 0, and horizontal parabolas x = ±y2/

√
2, dividing

the plane into 8 regions with f positive on 4 of them as shown. As b > 0 grows, the curve
f = bmoves “outward”; black dots are local maxima of f on a constraint curve x2+y2 = c.

On the level curves of g (the circles) we have drawn a small vector in the direction of ∇g at many
points, and likewise with ∇f ’s on the red level curve f = 1 and at black dots on some green level curves
f = b with b > 1 (we draw small vectors since direction is all that matters for interpreting when (∇f)(a)
and (∇g)(a) point along the same line). As b > 0 grows, the curve f = b moves outward, corresponding
to ∇f ’s pointing to the “outward” side of the curve f = b (relative to 0).

On each circle g = c, there are marked points (black dots). These are where f attains a local maximum
along the circle g = c. If you look closely, you’ll see such points are exactly where the short vectors along
the level curves of f and g through a common point are aligned (pointing along the same direction, in
fact)! This is most visible on the red level curve f = 1 for which we have drawn in the direction of many
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of the gradient vectors ∇f along the curve, though it is also visible at the black dots on some other level
curves f = b since as b increases the level curves f = b are “moving outwards” (ensuring that on a given
circle g = c, the “last” b for which the circle touches a level curve f = b is a local maximum for f on the
circle, and ∇f there is in the direction of ∇g there).

If you think of b > 0 as corresponding to “time” and f = b as a shape of a curve at time b, then as b
grows we can imagine the curves f = b evolving outwards. For increasing time b, look at where and how
each part of f = b crosses a chosen circle g = c. The “last time” that part of the contour plot of f touches
a chosen circle g = c is a local maximum on that circle, and the touching is tangential there (meaning
that the curves have the same tangent line at such a point). This tangential property corresponds to the
Lagrange multiplier equation for local extrema of f on g = c, for reasons we encountered in Example
12.1.4 and will discuss in Remark 12.2.5 (it amounts to using Theorem 11.2.1).

What about the local minima for f on a chosen circle g = c? In the spaces “between” the 4 shown
parts of the contour plot of f for positive f -values in Figure 12.2.1 is where the level curves f = b for
b < 0 would appear if we had drawn them. For b < 0 increasing towards 0, those (not drawn) parts of the
contour plot are “moving inwards” toward 0. Thinking about b < 0 as “time in the past”, in any of the 4
parts of the plot where f < 0 the “first time” a chosen circle g = c is touched by a level curve for f is a
(negative) local minimum for f on that circle. Alignment of gradients (and tangential behavior) happens
at these constrained local minima, just as we saw above at the constrained local maxima, completing our
visualization of the multiplier equation at constrained local extrema. ■

Remark 12.2.3. As with the first derivative test, (12.2.1) identifies candidates for constrained local ex-
trema. It can happen there are no constrained global extrema! For instance, the function xy on the parabola
y = x2− 3 has a local minimum at (1,−2) but no global minimum: plugging y = x2− 3 into the function
xy yields x3 − 3x that we can analyze via single-variable calculus to see that it has a local minimum at
x = 1, but x3 − 3x has arbitrarily negative values as x → −∞ and so there is no global minimum. For
applications in economics, physics, biology, etc., we usually have non-mathematical reasons to know there
is a maximum or minimum on the constraint region, so we won’t dwell on this issue (but it is important
for a complete mathematical treatment, which involves additional ideas).

In Examples 12.1.4 and 12.2.2 we gave visual evidence for why Theorem 12.2.1 holds, and a more
precise argument is given in Section 12.5. There is a generalization of Theorem 12.2.1 for r constraints
g1(x) = c1, . . . , gr(x) = cr with any r ≥ 1; this arises in economics and many scientific (and mathemati-
cal) problems. The result for more than one constraint requires a concept that has not yet been introduced
(“linear independence”), so we will come back to it later (in Section 19.4).

We now illustrate Theorem 12.2.1 in numerical examples. The first one below can also be done by
single-variable calculus: try that way and compare the answers via both methods. The subsequent exam-
ples are unpleasant or hopeless to solve using single-variable calculus.

Example 12.2.4. Let’s find the points on the line x+2y = 20 that are extrema of xy (as a function on this
line). Here, f(x, y) = xy, g(x, y) = x+ 2y, and c = 20.

We compute that (∇f)(x, y) =
[
y
x

]
, and the gradient (∇g)(x, y) is equal to the vector

[
1
2

]
everywhere,

so ∇g never vanishes. Thus, the first possibility in (12.2.1) cannot happen, so (12.2.1) becomes just the
Lagrange multiplier condition [

y
x

]
= λ

[
1
2

]

for some λ we don’t yet know. Thus, y = λ and x = 2λ. But what are the possibilities for λ? Now
remember we have the constraint

g(x, y) = x+ 2y = 20.
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So we plug “(x, y) = (2λ, λ)” into that to get 4λ = 20, so λ = 5 and hence x = 10, y = 5. Therefore, the
only possible extremal value is at (10, 5); the value f(10, 5) = 50 is in fact a maximum on g = 20.
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The line x+ 2y = 20 and
a contour plot of f(x, y) = xy.
Observe that the line is tangent to the f = 50 contour.

FIGURE 12.2.2. An extremum for f(x, y) under a linear constraint is at a point where a
level set for f is tangent to that linear constraint.

■

Remark 12.2.5. Let’s see why it is no coincidence that at the constrained extremum a = (10, 5) for xy
under the linear constraint in Figure 12.2.2, the constraint line g = 20 is tangent to the level set for xy
through that point; i.e., the line is tangent to the hyperbola xy = f(x, y) = f(a) = 50 passing through a.

More broadly, consider the general setting of the theorem on Lagrange multipliers with n = 2 (with
any f and g, so in particular not just g in the special form c1x + c2y as above). If ∇f and ∇g are both
non-vanishing on the constraint region (as often happens) – so the first option in (12.2.1) does not occur
– then we claim that for any local extremum a of f along g(x, y) = c, the level curve f(x, y) = f(a) for
f through a and the level curve g = c through a touch tangentially at the common point a. This means
(by definition of “touch tangentially”) that the tangent lines at a to the level curves for f and g through
a coincide. In concrete terms, it says that as we visualize the level curves f = b for varying b, we seek
those that touch the constraint curve g = c tangentially, with such points a of tangential contact being the
points produced by the method of Lagrange multipliers. This is the tangential observation that we made
in Examples 12.1.4 and 12.2.2 and saw illustrated in Figures 12.1.3 and 12.2.1.

The key to understanding such tangency at constrained extrema is the fact from Theorem 11.2.1 that
nonzero gradient vectors for f and g at any point b are perpendicular to the tangent line to the respective
level sets for f and g passing through b. Equivalently, the tangent line directions at b on the level sets
f = f(b) and g = g(b) are perpendicular to (∇f)(b) and (∇g)(b) respectively. Why is this relevant?

The reason is that, as we discussed and visualized in Examples 12.1.4 and 12.2.2, at a constrained
extremum a these nonzero gradient vectors point along the same or opposite direction (by the theorem
on Lagrange multipliers!), so they span the same line through 0 and hence the directions perpendicular
to these gradients coincide. This common direction orthogonal to the gradients is parallel to the tangent
lines at a on each of the level curves f(x, y) = f(a) and g(x, y) = g(a) = c through a (again by Theorem
11.2.1). Since these two tangent lines are each parallel to the same direction, they are parallel to each
other. These tangent lines both pass through the point a, and if two parallel lines share a common point
then they must be the same line! Hence, the tangent lines at a on the level curves coincide, as we claimed.
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Remark 12.2.6. The tangential perspective on solving Lagrange multiplier problems visually in the
2-variable case as in Remark 12.2.5 comes up in economics in two different ways: one with linear g
and non-linear f (as in Example 12.2.4), and another with linear f and non-linear g (Example 12.2.12
will give a 3-variable analogue, phrased in a geometric context).

In consumer theory, one maximizes a non-linear utility function f subject to a linear constraint
g = c that encodes a fixed budget. The level sets of f are then called “indifference curves”, so solving
the Lagrange multiplier problem visually amounts to looking at the indifference curves f = b for
various b and seeking those that touch the line g = c at a point of tangency to that line. This is exactly
what happens in Figure 12.2.2 (where b = 50 is the one magic number).

In producer theory, a linear cost function f is minimized subject to a given level of output that is a
non-linear function g of variables x and y corresponding to labor and capital inputs. The level set for
g = c is called an “isoquant” (presumably for “same quantity of output”), and the level sets f = b for
varying b constitute a collection of parallel lines. The corresponding visual approach to the Lagrange
multiplier method is to look among those parallel lines to find any that cross the given isoquant g = c
tangentially. The points of tangential contact are the points a that are sought.

Example 12.2.7. Here is an instance of Example 12.1.1, but phrased in mathematical form to avoid as-
suming familiarity with specialized economics terminology. Consider the function

u(x1, x2) = x
1/3
1 x

2/3
2

for x1, x2 > 0. For a fixed w > 0 (“wealth”) and p1, p2 > 0 (“prices”), we want to maximize u subject to
the constraint p1x1 + p2x2 = w. One might imagine this with explicit numbers in the roles of p1, p2, w,
but it is much better for us to work out the answer as a general formula in terms of p1, p2, w since (i) this
makes the algebraic work cleaner, (ii) this is the form of such answers that is actually used in practice.

Letting g(x1, x2) = p1x1 + p2x2, the constraint is g(x1, x2) = w. Note that at every (x1, x2) the

gradient of g is the same vector
[
p1
p2

]
that is nonzero (just as in Example 12.2.4). The gradient of u is

∇u =

[
(1/3)x

−2/3
1 x

2/3
2

(2/3)x
1/3
1 x

−1/3
2

]
,

and at a point (x1, x2) where a maximum occurs on the constraint curve g = w, we have ∇u = λ∇g for
some scalar λ. This says [

(1/3)x
−2/3
1 x

2/3
2

(2/3)x
1/3
1 x

−1/3
2

]
= λ

[
p1
p2

]
=

[
λp1
λp2

]
.

Equating corresponding vector entries and remembering the constraint equation, we arrive at 3 equa-
tions in 3 unknowns:

1

3
x
−2/3
1 x

2/3
2 = λp1,

2

3
x
1/3
1 x

−1/3
2 = λp2, p1x1 + p2x2 = w. (12.2.2)

This is probably not a type of system of equations you have worked with before, but because the exponents
2/3 and 1/3 in u(x1, x2) = x

1/3
1 x

2/3
2 sum to 1 it will turn out that the algebra to be done is not too bad.

A useful rule of thumb is to try to “solve for λ” using as many expressions as possible, and then by
equating all of those to each other we may make some progress. In both the first and second equations in
(12.2.2) we “solve for λ” to get the chain of equalities

1

3p1
x
−2/3
1 x

2/3
2 = λ =

2

3p2
x
1/3
1 x

−1/3
2 .
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Equating the first and third expressions and moving denominators and factors with negative exponents
over to the other side yields

p2x2 = 2p1x1.

Thus, the third equation in (12.2.2) becomes

w = p1x1 + p2x2 = 3p1x1,

so x1 = w/(3p1). Likewise, w = p1x1 + p2x2 = (1/2)p2x2 + p2x2 = (3/2)p2x2, so x2 = 2w/(3p2).
Hence, the extremum (which happens to be a maximum, as desired) occurs at

(
w

3p1
,
2w

3p2

)
. (12.2.3)

■

Remark 12.2.8. In Example 12.2.7, it was very convenient for algebraic purposes that the exponents
1/3 and 2/3 add up to 1. The general Cobb–Douglas economic model for two production costs x1 and
x2 (of which Example 12.2.7 is a very specific instance) involves maximizing a function of the form
U(x1, x2) = Axa11 x

a2
2 for some A > 0 and some exponents a1, a2 > 0 with a1 + a2 generally not equal to

1. But there is a trick: since raising to a positive exponent preserves the direction of inequalities among
positive numbers, maximizing U is the same as maximizing U1/(a1+a2) = A1/(a1+a2)x

a1/(a1+a2)
1 x

a2/(a1+a2)
2 .

The gain is that this latter function has exponents a1/(a1 + a2) and a2/(a1 + a2) that do sum to 1! The
general Cobb–Douglas model is discussed at length in Econ 50.

Example 12.2.9. Let’s find the point(s) on the curve {(x, y) ∈ R2 : 8y2−4x3+x4 = 0} closest to the point
P = (3, 0), and compute that minimal distance. The quantity to minimize is

√
(x− 3)2 + y2, the distance

between (x, y) and P = (3, 0). It is the same as minimizing the quantity inside the square root, so we focus
on minimizing f(x, y) = (x− 3)2 + y2 subject to the constraint g(x, y) = 0 for g(x, y) = 8y2 − 4x3 + x4.

By the Lagrange multiplier method, any point (x, y) at which f attains a local extremum on g = 0
(either local maximum or local minimum, though we are seeking the global minimum) either makes ∇g
vanish or ∇f a scalar multiple of ∇g.

Let’s first figure out where (if anywhere!) ∇g vanishes on the constraint curve g = 0, so such “bad”
points (corresponding to the first option in (12.2.1)) can be treated separately. We calculate

∇g =
[
−12x2 + 4x3

16y

]
,

so for this to equal 0 says −12x2+4x3 = 0 and 16y = 0, so y = 0 and 0 = −12x2+4x3 = 4x2(−3+x).
This happens at the points (0, 0) and (3, 0) = P . But P isn’t on the constraint curve g = 0 (indeed,
g(P ) = g(3, 0) = −4 · 27 + 81 = −108 + 81 = −27 ̸= 0), so really only (0, 0) occurs in this case (and
g(0, 0) = 0).

At any other point on the constraint curve we must be in the second option of (12.2.1):

∇f(x, y) = λ∇g(x, y) (12.2.4)

for some unknown scalar λ. We have computed the gradient of g above, and ∇f =

[
2(x− 3)

2y

]
, so the

Lagrange multiplier condition (12.2.4) becomes
[
2(x− 3)

2y

]
= λ

[
−12x2 + 4x3

16y

]
= λ

[
4x2(−3 + x)

16y

]
.
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Equating corresponding vector entries and remembering the constraint equation, we want to find solutions
to the combined system

2x− 6 = λ(4x2(−3 + x)), 2y = λ(16y), 8y2 − 4x3 + x4 = 0. (12.2.5)

At this point we carry out a very useful general technique: use each of the conditions other than the
constraint equation to obtain different expressions for λ which we then equate to get new conditions on
the variables without involving λ. An extremely important point that one must always keep in mind to be
systematic about this step is that one must always be careful about division by zero (i.e., avoid it!). To be
more specific, the first and second equations in our combined system give expressions

2x− 6

4x2(x− 3)
= λ =

2y

16y
=

1

8
(12.2.6)

assuming the denominators 4x2(x− 3) and 16y are both nonzero. The left side is 1/(2x2) upon cancelling
x− 3 provided that x ̸= 3, as is necessary for the original fraction makes sense.

It is always good to first determine when one of those denominators vanishes. (In some such cases
there might not be a λ satisfying all conditions in (12.2.5), but don’t worry about it.) We handle that now:

Case 1. The case 4x2(x − 3) = 0 turns the first equation in our combined system (12.2.5) into
2x − 6 = 0, which is to say x = 3. Then the constraint g(x, y) = 0 becomes g(3, y) = 0, which says
8y2 − 27 = 0. Hence, these problematic points are (3,±

√
27/8).

Case 2. The case 16y = 0 or equivalently y = 0 makes the second equation in (12.2.5) tell us
nothing, but the constraint g(x, y) = 0 says g(x, 0) = 0, or in other words −4x3 + x4 = 0. Since
−4x3 + x4 = x3(x− 4), this makes x = 0 or x = 4, yielding (0, 0) and (4, 0).

To summarize, so far we have obtained the points (0, 0), (4, 0), and (3,±
√

27/8) that merit separate
treatment, and otherwise we have the two expressions 1/(2x2) and 1/8 for λ as obtained in (12.2.6)
(assuming the non-vanishing of the denominators). Equating these two fractional expressions 1/(2x2) and
1/8 for λ gives x2 = 4, which is to say x = ±2. The constraint curve g(x, y) = 0 says g(2, y) = 0
when x = 2 and g(−2, y) = 0 when x = −2. Since g(2, y) = 8y2 − 4(2)3 + 24 = 8y2 − 16 and
g(−2, y) = 8y2 − 4(−2)3 + (−2)4 = 8y2 + 48, the latter never vanishes (so the case x = −2 doesn’t
occur!) and the former vanishes when y2 = 2, which is to say y = ±

√
2. Hence, we obtain the additional

candidate points (2,±
√
2) for local extrema of f on the constraint curve.

Putting it all together, we have six points to examine: (2,±
√
2), (3,±

√
27/8), (0, 0), (4, 0).

Evaluating the function f at these points, we get f(2,±
√
2) = (2 − 3)2 + (±

√
2)2 = 1 + 2 = 3,

f(3,±
√

27/8) = 02 + (±
√

27/8)2 = 27/8, f(0, 0) = 9, and f(4, 0) = 1. The smallest of these values
is 1 attained at (4, 0), and the biggest is 9 attained at (0, 0). So the closest point to P = (3, 0) on the
constraint curve g = 0 is (4, 0) with distance

√
1 = 1, and the farthest point to P on the constraint curve

is (0, 0) with distance
√
9 = 3. ■

Remark 12.2.10. In the preceding example, although we were seeking point(s) on a curve g(x, y) = 0
closest to a given point P not on the curve, the method also yielded a unique point on the curve at a largest
distance from P . The notable feature is that this point at maximal distance was the point (0, 0) which

emerged in our analysis in the situation ∇g = 0, and at this point ∇f is equal to
[
−6
0

]
̸= 0, so there is no

scalar λ making (∇f)(0, 0) = λ(∇g)(0, 0)!
This illustrates the first case in (12.2.1) really can occur at a solution to a constrained optimization

problem (such as a point at maximal distance): in the Lagrange multiplier theorem, the solution might be
completely missed by the multiplier condition “∇f = λ(∇g)” and only captured by the other possibility
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∇g = 0 in (12.2.1). Hence, the first option in (12.2.1) really must never be disregarded; it could be the
only part of the method that actually finds the solution!

•P

0 1 2 3 4

−2

−1

0

1

2

FIGURE 12.2.3. The curve g(x, y) = 8y2 − 4x3 + x4 = 0 and the point P = (3, 0).

Figure 12.2.3 shows what the constraint curve g = 0 in Example 12.2.9 looks like, and this makes
rather visible that (4, 0) is the point on this curve nearest to (3, 0), and that (0, 0) is the point on this curve
farthest from (3, 0) (the pinching of the curve g = 0 at (0, 0) is related to the fact that ∇g vanishes there).
But please don’t conclude that working out Example 12.2.9 was a waste of time, on the grounds that we
could have solved it by “looking at a picture”. The point of this and the other worked examples is to give
you practice with a general technique. We work out examples in 2-variable (and 3-variable) settings to
give experience, but the importance of the method is that it is systematic and applicable to constrained
optimization problems in any number of unknowns (where one generally can’t draw any picture).

Many constrained optimization problems in economics, natural sciences, and computer science involve
far more than 3 unknowns. Moreover, even in situations with 2 unknowns it might be impractical or
impossible to solve such a problem by looking at a picture: the region might be too large, or there may
be auxiliary parameters in a problem and we need a solution in terms of those parameters for applications
to a wide array of parameter values (and hence it is impossible to proceed by drawing a picture, since a
picture only treats specific parameter values and we can’t look at infinitely many pictures).

Example 12.2.11. Suppose we want to make an open-topped rectangular cardboard box with volume 4,
using as little material as possible. In other words, among rectangular boxes with volume 4, for what side
lengths is the total area of the sides and the bottom (ignoring the top!) as small as possible?

x

yz
A box with no lid.

Denote the side-lengths of the (rectangular) base of the box by x and y and the height of the box by z.
The area of the base is xy. The front and back each have area xz, and the other two sides each have area
yz. So the total area is

A(x, y, z) = xy + 2xz + 2yz

(we don’t have 2xy since the top face is missing: it is an open box). The volume of the box is V (x, y, z) =
xyz that we are constraining to equal 4. We want to minimize A(x, y, z) subject to this constraint (that
xyz = 4).
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We calculate that

∇A =



y + 2z
x+ 2z
2x+ 2y


 , ∇V =



yz
xz
xy


 .

By the theorem on Lagrange multipliers, at a minimum either ∇V = 0 or ∇A = λ∇V for some λ. Since
xyz = 4, none of x, y, or z can be zero. Consequently (from the expression for ∇V ), we see that ∇V ̸= 0
on the entire constraint region. So ∇A = λ∇V for some unknown scalar λ:



y + 2z
x+ 2z
2x+ 2y


 = λ



yz
xz
xy


 .

In other words, for some number λ necessarily the following must all hold:

y + 2z = λyz, x+ 2z = λxz, 2x+ 2y = λxy. (12.2.7)

Now it is again time to use the same handy technique as in Example 12.2.9: we “solve for λ” in each
of the scalar equations in (12.2.7) arising from the Lagrange multiplier condition, and then equate those
expressions to each other (to obtain new relations among x, y, z without reference to λ). We emphasize
once more that in all such calculations, one must be vigilant about accounting for situations where we
might divide by 0. Namely, solving each of the equations in (12.2.7) for λ gives

λ =
y + 2z

yz
, λ =

x+ 2z

xz
, λ =

2x+ 2y

xy

provided of course that the denominators are all nonzero. In our situation we know from the constraint
equation xyz = 4 that each of x, y, z is nonzero, so indeed the denominators are all nonzero. Hence, the
three expressions for λ are all legitimate, and equating them all to each other gives a triple equality

y + 2z

yz
=
x+ 2z

xz
=

2x+ 2y

xy
.

In the first equality, cancelling z from the denominator on both sides leaves us with 1 + 2(z/y) =
1 + 2(z/x), so after a tiny bit of algebra we get x = y. Similarly, the second equality yields (after
cancelling x from the denominator on both sides) that x/z + 2 = 2(x/y) + 2, which after a tiny bit of
algebra yields y = 2z. Thus x = y = 2z,

Having whittled down the three variables x, y, z to all be expressed in terms of one of them (namely,
z), we get control on the remaining free variable by remembering the constraint: plugging all of this into
the constraint equation gives 4 = xyz = (2z)(2z)z = 4z3, so z = 1 and thus x = y = 2. In other words,
the open box of volume 4 and minimal surface area has height 1 unit and length and width of 2 units each.
(We have actually shown just that (x, y, z) = (2, 2, 1) is the only candidate for a constrained minimum. If
we believe that a constrained minimum really exists – as seems “physically plausible” – then it must be this
unique candidate (2,2,1). A complete mathematical justification that (2,2,1) is the constrained minimum
involves more work.) ■

Example 12.2.12. Let’s find the largest and smallest values taken by 2x+3y+5z, when (x, y, z) belongs
to the sphere x2 + y2 + z2 = 1. Here f(x, y, z) = 2x+ 3y + 5z and g(x, y, z) = x2 + y2 + z2.
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x

y

z

•

f = −5
3

√
38

f = −
√
38

f = −1
3

√
38

f = 1
3

√
38

f =
√
38

f = 5
3

√
38

FIGURE 12.2.4. Six level sets for a linear function f ; the yellow and purple ones (f =
±
√
38) tangent to the blue sphere g = 1 touch it at points found by Lagrange multipliers.

The gradient ∇g is equal to



2x
2y
2z


 that only vanishes at the origin, which is not a point on the constraint

region g = 1. So the first option in (12.2.1) cannot occur, and the Lagrange multiplier condition says

2
3
5


 = λ



2x
2y
2z


 for some unknown scalar λ. In particular, necessarily λ ̸= 0 (since the left side is

nonzero), so it makes sense to divide both sides by 2λ; this shows that



x
y
z


 is a multiple of



2
3
5


 (with the

multiplier 1/(2λ)), or in other words



x
y
z


 lies on the span ℓ of



2
3
5


.

But since (x, y, z) lies on the unit sphere, the vector



x
y
z


 has unit length, and on any line through

the origin there are exactly two unit vectors (pointing in opposite directions). Hence, up to a sign



x
y
z


 is

obtained from



2
3
5


 by dividing by its length:



x
y
z


 = ± 1√

4 + 9 + 25



2
3
5


 = ± 1√

38



2
3
5


 . By evaluating
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f at these two points and checking which is larger, we see that (1/
√
38)



2
3
5


 corresponds to the maximum

(where f =
√
38) and −1/(

√
38)



2
3
5


 corresponds to the minimum (where f = −

√
38). The level sets for

f through these constrained extrema are tangent to the constraint sphere g = 1 at those points, as shown
in Figure 12.2.4, illustrating a higher-dimensional version of the tangency in Remark 12.2.5.

We could have done this problem in another way: f is the dot product



2
3
5


 ·



x
y
z


, and the dot product

of two vectors is the product of their lengths times the cosine of the angle between them. So if we fix the

length of



x
y
z


 to be 1, the dot product is maximized when the angle between them is 0; i.e.,



x
y
z


 = a



2
3
5




for some scalar a, as we found above (using the unit-vector condition on (x, y, z) to determine a up to a
sign). ■

Example 12.2.13. In real-world constrained optimization, one can’t solve the Lagrange multiplier equa-
tions explicitly as we have been able to do in the preceding examples (and as will happen in most home-
work and all exams in this course). Instead, software is used to find (approximate) solutions. The same
is true of realistic unconstrained optimization even in single-variable calculus: the examples in calculus
courses are specially designed to make the algebra work out nicely (to give you hands-on experience).

For a more realistic scenario where one doesn’t solve the Lagrange multiplier equation by hand, let’s
revisit the constrained optimization problem from Example 12.1.4: for g(x, y) = x4 + x3y + y2, we seek
local extrema for f(x, y) = x3 + xy2 subject to the constraint g(x, y) = 1. First, let’s check that ∇g is

non-vanishing at all points of the curve g = 1. Since (∇g)(x, y) =
[
4x3 + 3x2y
x3 + 2y

]
=

[
x2(4x+ 3y)
x3 + 2y

]
, a bit

of algebra shows that this vanishes only at (0, 0), (±
√
8/3,∓(4/3)

√
8/3), none of which lie on g = 1.

Hence, at any local extremum a of f(x, y) subject to g(x, y) = 1 we have (∇f)(a) = λ(∇g)(a) for some
(unknown) scalar λ (which may depend on a). Writing a = (a, b), this says

[
3a2 + b2

2ab

]
= λ

[
4a3 + 3a2b
a3 + 2b

]
,

so for the 3 unknowns a, b, λ we have the simultaneous scalar equations

3a2 + b2 = λ(4a3 + 3a2b), 2ab = λ(a3 + 2b), a4 + a3b+ b2 = 1 (12.2.8)

(the final equation is the constraint equation, which we must never forget!).
As usual, we can rewrite the first two as the combined conditions

3a2 + b2

4a3 + 3a2b
= λ =

2ab

a3 + 2b

provided that the denominators are both nonzero. Let’s show such vanishing can’t occur. If the first
denominator were to vanish then the first equation in (12.2.8) would force 3a2 + b2 = 0, so a = 0 and
b = 0, but the constraint equation at the end of (12.2.8) rules out the possibility (a, b) = (0, 0). If the
second denominator were to vanish then the second equation in (12.2.8) would force 2ab = 0, so either
a = 0 or b = 0. But the assumed vanishing of the denominator a3+2b along with the vanishing of at least
one of a or b would then force the vanishing of both a and b, which we have already noted is ruled out by
the constraint g(a, b) = 1.
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So the two fractional expressions for λ are legitimate, and by equating them and cross-multiplying we
obtain (after a bit of algebra) 3a5 − 8a4b− 5a3b2 + 6a2b+ 2b3 = 0. Together with the constraint equation
g(a, b) = 1, we conclude that (a, b) satisfies both conditions

3x5 − 8x4y − 5x3y2 + 6x2y + 2y3 = 0, x4 + x3y + y2 = 1. (12.2.9)

Using the WolframAlpha command NSolve (“numerically solve”), there are 4 solutions (a, b) to the si-
multaneous equations in (12.2.9) and approximations to them are in the table below that also gives the
quadrant in which each lies; the bottom row gives the approximate value of f at each such point.

a 1.04679 2.00793 −1.04679 −2.00793
b −0.931593 −2.98514 0.931593 2.98514

Quadrant IV IV II II
f(a, b) 2.056 25.988 −2.056 −25.988

As a visualization, in Figure 12.2.5 we draw in various colors the level curves f(x, y) = m through
each of these points found by the Lagrange multiplier method. The tangency of the red constraint curve
g(x, y) = 1 and the level curve of f through the point is quite visible in all cases. The values of f increase
from very negative in the upper left to very positive in the lower right, so for the level curve f = m0

through the tangency point on the yellow curve (m0 ≈ −25.988) or green curve (m0 ≈ 2.056) the values
m nearm0 for which the curve f = m touches the red constraint curve are only form ≤ m0. Hence, those
two points of tangency are constrained local maxima of f . For similar reasons, the points of tangency on
the orange and blue level curves of f are constrained local minima of f .
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FIGURE 12.2.5. Red constraint curve C = {x4+x3y+ y2 = 1} and various colored level
curves of f(x, y) = x3 + xy2 having a point (black dot) of tangential contact with C. Such
points of contact with the yellow and green curves are constrained local maxima for f , and
the ones on the orange and blue curves are constrained local minima for f .

■

Remark 12.2.14. The multiplier λ often has an interpretation in specific applications. Example 12.2.16 is
an economics application where it corresponds to what economists call “marginal cost”, and in Example
19.4.3 – a 3-constraint situation in chemistry with 3 multipliers – two of the multipliers encode temperature
and pressure. The economist Paul Samuelson (1968 Nobel Prize) wrote that “market prices, regarded as
parameters by perfect competitors, are nothing more nor less than Lagrange multipliers” [Sam, p. 231].

In the single-constraint setting we have been studying, there is a perspective on the meaning of λ that
unifies all interpretations. To explain this, imagine allowing the constraint value c to vary; this is natural
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to do because in practice one needs to solve constrained optimization problems for all possible c since we
may need to be ready to implement the solution for a variety of values of c (because at the outset we don’t
yet know what the specific value is). For instance, c may be the energy in a physical system, or the wealth
in an investment portfolio.

As c varies, we expect the location a where f attains its maximum (or minimum) along the constraint
region g(x) = c to move, and hence we expect the Lagrange multiplier λ to possibly change too (assuming
we are not in the special case where (∇g)(a) = 0, a case we will ignore here since it generally doesn’t
arise in practice). That is, we may regard a as a vector-valued function a(c) of the choice of c, and λ as a
scalar-valued function λ(c) of the choice of c. In particular, the maximal (or minimal) value f(a) subject
to the constraint region g(x) = c may be regarded as a function Mf (c) of c.

The universal interpretation of the Lagrange multiplier in the single-constraint setting is this:

λ(c) =
d

dc
(Mf (c)). (12.2.10)

In words, this says that the Lagrange multiplier is the rate of change with respect to c of the maximal (or
minimal) value of f along the constraint region g(x) = c when we allow the choice of c to vary. The
derivation of this formula rests on the “multivariable Chain Rule”, which we will introduce in Chapter 17,
so we will take up the justification of this formula there (see Example 17.1.3).

We now verify (12.2.10) directly in two situations.

Example 12.2.15. In the setting of Example 12.2.7 we were maximizing a specific function u(x1, x2)
subject to a specific constraint g(x1, x2) = w, and we found a unique point at which the maximum occurs.
Plugging this point into u gives that the maximal value Mu(w) for u under the constraint g = w is

Mu(w) = u(w/3p1, 2w/3p2) = (w/3p1)
1/3(2w/3p2)

2/3 =
22/3

3

w

p
1/3
1 p

2/3
2

. (12.2.11)

The multiplier λ can also be computed, by combining our expressions for λ using the first or second
equation in (12.2.2) with the determination of (x1, x2) via (12.2.3):

λ =
1

3p1

(
w

3p1

)−2/3(
2w

3p2

)2/3

=
22/3

3

1

p
1/3
1 p

2/3
2

.

This expression coincides with
d

dw
Mu(w), as we see by inspecting the explicit formula (12.2.11). ■

Example 12.2.16. To give another context in which (12.2.10) is illustrated, for given numbers p1, p2 > 0
(“prices”) let’s minimize a linear function f(x1, x2) = p1x1 + p2x2 subject to the constraint g(x1, x2) =
x
1/4
1 x

1/4
2 = q > 0 (with x1, x2 > 0). In applications, x1 and x2 are quantities of two inputs (such as labor

and capital), with respective prices of p1 and p2 dollars per unit of input, and g is the quantity of some
product (“output”) made from the inputs; here, q is a desired quantity of output for which we want to
minimize the input cost f(x1, x2). Since

∇g =
[
(1/4)x

−3/4
1 x

1/4
2

(1/4)x
1/4
1 x

−3/4
2

]

is nonzero everywhere (ruling out the first option in (12.2.1)) and ∇f =

[
p1
p2

]
(a constant function), the

Lagrange multiplier condition ∇f = λ∇g at a minimum says that for some unknown scalar λ,
[
p1
p2

]
=
λ

4

[
x
−3/4
1 x

1/4
2

x
1/4
1 x

−3/4
2

]
.
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Once again “solving for λ” via the equalities among corresponding vector entries, we get

4p1x
3/4
1 x

−1/4
2 = λ = 4p2x

−1/4
1 x

3/4
2 .

Equating left and right sides, we get
p1
p2

=
x
3/4
2

x
1/4
1

x
1/4
2

x
3/4
1

=
x2
x1
.

Hence, p1x1 = p2x2, so x2 = (p1/p2)x1. Having solved for x2 in terms of x1, we need to figure out
the possible values for x1. What to do? Always remember the constraint! We have q = x

1/4
1 x

1/4
2 =

x
1/4
1 ((p1/p2)x1)

1/4 = (p1/p2)
1/4x

1/2
1 , so x1 = q2

√
p2/p1 and hence x2 = (p1/p2)x1 = q2

√
p1/p2. Thus,

the minimum for f under the constraint g = q occurs at the point(
q2
√
p2/p1, q

2
√
p1/p2

)
.

At this point the minimal value for f is

Mf (q) = p1x1 + p2x2 = 2q2
√
p1p2,

and the multiplier λ is 4p1(q2
√
p2/p1)

3/4(q2
√
p1/p2)

−1/4 = 4p1q
3/2−1/2(p2/p1)

3/8+1/8 = 4p1q
√
p2/p1 =

4q
√
p1p2. This latter expression coincides with

d

dq
Mf (q) by inspection. Roughly speaking, an increase

in one unit of the output (i.e., an increase in q by 1 unit) causes the minimal price Mf (q) to increase

approximately by
d

dq
Mf (q) = λ(q); economists call this latter increase the “marginal cost”, and we have

seen that it is identified with a Lagrange multiplier. ■

Example 12.2.17. Here is an example that is more of a consistency check with things we already know
than something to which we would apply the method of Lagrange multipliers in practice. For a single-
variable function F (x), define f(x, y) = y and g(x, y) = y−F (x). Then the constraint curve g(x, y) = 0
is the graph y = F (x), so seeking local extrema for f(x, y) on this curve is the problem of seeking local
extrema for F (x). We know that the vanishing of F ′ is a way to identify candidates x for such local
extrema. Let’s see that the method of Lagrange multipliers applied in this case yields the same criterion.

We compute (∇g)(x, y) =

[
−F ′(x)

1

]
, which is non-vanishing everywhere since its second entry is

the constant function 1 (this rules out the first option in (12.2.1)), and ∇f =

[
0
1

]
everywhere. Hence, a

local extremum point (a, b) for f on g = 0 must be a point of the form (a, F (a)) for which (∇f)(a, b) =
λ(∇g)(a, b) for some unknown scalar λ. This says

[
0
1

]
= λ

[
−F ′(a)

1

]
=

[
−λF ′(a)

λ

]
,

so comparing corresponding entries says 0 = −λF ′(a) and 1 = λ. Plugging the second of these into
the first then yields “F ′(a) = 0” as the way to pick out candidates a for local extrema of F , exactly the
condition we know from single-variable calculus. ■

Remark 12.2.18. When seeking local extrema for f : Rn → R, we have introduced the concept of
“critical point” and in Chapter 26 we will introduce a multivariable second derivative test that gives a way
to check if a critical point is a local maximum or local minimum. Since the Lagrange multiplier equation
is the substitute for the notion of critical point in the context of constrained optimization, it is natural to
wonder if there is a version of the multivariable second derivative test that can be used to check if a solution
to the Lagrange multiplier equation is a local maximum or local minimum on the constraint region. There
is indeed such a result, but its formulation and intuitive explanation are beyond the scope of this book.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 244



12.3. Lagrange multipliers as prices. In the economy, one way that constraints are enforced is
through extra charges. Cell phone companies constrain data usage by charging extra once the user
goes above their limit; airlines charge extra when a customer goes over the luggage limit.

For example, suppose you are running an airline. You would like to enforce that the average
amount of check-in luggage, per passenger, is no more than 30 pounds; otherwise you run out of
space. To arrange this, you charge passengers for check-in luggage, and then you adjust the price
until the passengers average 30 pounds each.

We can think of Lagrange multipliers as a mathematical formulation of exactly this: enforce a
constraint by charging for its failure, and adjusting the price. (You will find this topic discussed
in more detail in the economics literature under the name of shadow prices.)

Namely, suppose we want to find an extremum of f subject to the constraint g = c. We will
“charge” g for going above c by maximizing not f , but instead

F (x, y) = f(x, y)− λ(g(x, y)− c)

where λ is the extra charge for excess g. (Warning: λ can actually be negative too, and this corresponds
to penalizing g for going below c. Don’t worry about it: this possibility will just come out of the final
equations.) To find extremum points of F (x, y), we set its gradient to be 0 to obtain

(∇F )(x, y) = ∇f − λ∇g = 0, or equivalently (∇f)(x, y) = λ(∇g)(x, y).
For any given value of λ, we can solve this equation to find the critical points (x, y) (these will

generally depend on λ in some way). These critical points usually will not satisfy our original con-
straint g(x, y) = c. To force them to satisfy the constraint – just like the airline – we need to adjust λ.
So in summary, we want to find a value of λ for which the pair of conditions

(∇f)(x, y) = λ(∇g)(x, y) and g(x, y) = c

on (x, y, λ) can be both solved at the same time. This is exactly the same system of equations we found
earlier, with Lagrange multipliers (except that the option ∇g = 0 is avoided; in such applications ∇g
is generally non-vanishing on the constraint region g = c)!

Example 12.3.1. Let’s maximize x1/4y1/2 subject to the constraint x+ y = 3/4 with x, y > 0. This is
an instance of the Cobb–Douglas model from economics (discussed in Remark 12.2.8).

According to the recipe we just discussed (with f(x, y) = x1/4y1/2, g(x, y) = x+ y), we want to
find the point(s) where

P (x, y) = x1/4y1/2 − λ(x+ y − 3/4)

attains an extremum on the region x, y > 0 and then choose λ so that such point(s) lie on x+y = 3/4.
The local extrema are attained at points where ∇P = 0, or upon working out the algebra:[

(1/4)x−3/4y1/2 − λ
(1/2)x1/4y−1/2 − λ

]
=

[
0
0

]
.

This forces λ > 0, and by solving we get

(x, y) = (1/(64λ4), 1/(32λ4)).

Of course, all we really know is that this is a critical point of P (in fact, the only one), not that it is a
local extremum of P . It turns out that this is a local maximum, and even an overall maximum.

There is a graphical method that can be used to affirm that this is an overall maximum, similar
to the pictures illustrating Examples 12.2.4 and 12.2.12, but we won’t get into that approach here

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 245



since it doesn’t help for problems involving more than 3 variables. In single-variable calculus, to
systematically determine when a critical point is a local extremum and more specifically is a local
maximum or local minimum, we generally use a version of the second derivative test. In Chapter
26 we will develop a version of the second derivative test that works for optimization problems in
any number of unknowns, and in Example 26.2.5 we will revisit the present situation to affirm the
maximum property via those systematic techniques.

Finally, we choose the “price” λ to enforce the constraint x+ y = 3/4. This says
1

32λ4
+

1

64λ4
=

3

4
.

Solving for λ4 yields λ4 = 1/16, so (x, y) = (1/4, 1/2). ■

Now let’s go through why Example 12.3.1 worked: why is (1/4, 1/2) really a maximum of f
subject to the constraint x+ y = 3/4? Suppose there were some other point – (a, b) say – on the line
x+y = 3/4 (so a+b = 3/4) but with f(a, b) > f(1/4, 1/2).At the points (a, b) and (1/4, 1/2) where
the constraint x+ y = 3/4 holds, so the term x+ y − 3/4 vanishes, this says P (a, b) > P (1/4, 1/2).
But that can’t be, because (1/4, 1/2) is the point at which P takes its maximal value. This type of
reasoning always works:

if (a(λ), b(λ)) is an unconstrained extremum of f(x, y) − λ(g(x, y) − c) for some
value of λ then it is also a constrained extremum of f on the level set of g through
(a(λ), b(λ)).

We then choose the value of λ to make sure that g(a(λ), b(λ)) = c! To summarize:
Alternative way to think about Lagrange multipliers: to find constrained maxima (resp. minima)

of f subject to g = c, do the following:

• Introduce an extra variable λ and maximize (resp. minimize) the function

F (x, y) = f(x, y)− λ(g(x, y)− c)

in x, y; note that F = f on the curve g(x, y) = c. This maximum (resp. minimum) will
generally depend on λ. Think of λ as the price of g exceeding c (resp. falling short of c).

• Finally, choose a value of λ for which the maximum lies on the desired level set g = c.

In words, to enforce g = c, charge a price λ per unit of g, and adjust the price suitably.

The idea behind this alternative viewpoint is really very important. It is this:
Optimization Principle. Rather than solve a constrained problem, penalize deviations from the
constraint via a related function (involving a parameter – such as λ above) that you maximize or
minimize without constraints.

12.4. Two more advanced contexts. We now consider two topics whose proper development
entails a more advanced use of the methods we have been discussing.

Context I: multiple constraints. In realistic problems, one often encounters multiple constraints. For
two constraints we use two Lagrange multipliers instead of one, and similarly for more constraints.
We now work through a typical two-constraint example using the Optimization Principle from the
end of Section 12.3. (The method with any number of constraints requires more linear algebra, so
we postpone it to Section 19.4 and illustrate it in Example 19.4.3 with three Lagrange multipliers that
arise in chemistry and Example 19.4.4 with building a linear classifier in machine learning.)
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Example 12.4.1. Suppose we want to maximize f(p, q, r) = −p ln(p) − q ln(q) − r ln(r) subject to
the constraints p+ q + r = 1 and 2p+ 3q + 5r = 4 with p, q, r > 0.

This type of extremum problem arises in thermodynamics (when maximizing entropy, in accor-
dance with the Principle of Maximum Entropy) and, done in general, it leads to the Boltzmann
distribution which describes the statistical behavior of a physical system whose microscopic parts
can switch between different states (such as a molecule that can switch between configurations, or
a molecule that can rotate around different axes). The function f as above arises when modeling
a system with three states having respective energies 2, 3, 5 (in some units), and the values p, q, r
are the probabilities of the system being in each of the three respective states. The constraint
p+ q + r = 1 expresses that the system must be in one of the three states (total probability is 1),
and the constraint 2p+ 3q + 5r = 4 encodes conservation of energy.

To do this, we introduce the new function

F (p, q, r) = (−p ln(p)− q ln(q)− r ln(r))− λ(p+ q + r − 1)− λ′(2p+ 3q + 5r − 4)

with λ and λ′ serving as the two Lagrange multipliers. Now we get
∂F

∂p
= − ln(p)− 1− λ− 2λ′,

∂F

∂q
= − ln(q)− 1− λ− 3λ′,

∂F

∂r
= − ln(r)− 1− λ− 5λ′

We set each partial derivative equal to 0 and thereby get

p = e−(λ+1)e−2λ′
, q = e−(λ+1)e−3λ′

, r = e−(λ+1)e−5λ′
. (12.4.1)

This has solved the extremum problem in terms of the “Lagrange multipliers” λ and λ′.
Our first constraint “p+ q + r = 1” says e−(λ+1)(e−2λ′

+ e−3λ′
+ e−5λ′

) = 1, or equivalently

e−(λ+1) =
1

e−2λ′ + e−3λ′ + e−5λ′ .

Plugging this into (12.4.1) therefore yields

p =
e−2λ′

e−2λ′ + e−3λ′ + e−5λ′ , q =
e−3λ′

e−2λ′ + e−3λ′ + e−5λ′ , r =
e−5λ′

e−2λ′ + e−3λ′ + e−5λ′ . (12.4.2)

This has removed the role of the “Lagrange multiplier” λ, but λ′ remains. The constraint 2p+3q+5r =
4 will allow us to find the “right” value of λ′. It tells us (after adding fractions) that

2e−2λ′
+ 3e−3λ′

+ 5e−5λ′

e−2λ′ + e−3λ′ + e−5λ′ = 4.

This expands to
2e−2λ′

+ 3e−3λ′
+ 5e−5λ′

= 4e−2λ′
+ 4e−3λ′

+ 4e−5λ′
,

or equivalently 2e−2λ′
+ e−3λ′ − e−5λ′

= 0 (note the minus sign). Entering this into WolframAlpha
yields λ′ ≈ −0.4196, and plugging that back into (12.4.2) gives the (approximate) solution

p ≈ 0.1655, q ≈ 0.2517, r ≈ 0.5827. (12.4.3)

The physical context explains that this has to be a maximum, but mathematically we haven’t
actually justified that this really is a maximum (rather than a minimum or a saddle point, for example).
To do so mathematically requires a multivariable version of the second derivative test, much as in
single-variable calculus one generally has to use the second derivative test to distinguish local maxima
from local minima. We will come back to this example to apply the multivariable second derivative
test in Example 26.2.4. ■
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Context II: linear programming, interior-point methods.
Businesses routinely face complicated optimization problems that go beyond the setting of Exam-

ple 12.1.1 due to having rather more involved constraint conditions. This leads to questions addressed
by a huge field of applied mathematics called linear programming; it arises in economics, the the-
ory of scheduling (such as for airlines, traveling salespeople, etc.), various parts of engineering, and
elsewhere. Linear programming tackles optimizing linear functions, such as

f(x1, . . . , xn) = 3x1 − 7x2 + · · ·+ 8xn, (12.4.4)

on special types of regions in Rn, typically with large n. Here is an example of how a linear program-
ming problem arises.

Example 12.4.2. Suppose your company builds a certain product at several locations (A, B, C), and
needs to deliver the product to some other locations (D, E). You must determine how much of the
product to ship along each of the routes AD, BD, CD, AE, BE, CE. The transportation costs along
each route will be different, and the supply at each of A, B, C may also differ.

To formulate this mathematically, let us choose some numbers. Suppose the cost of shipping
along routes AD,BD,CD,AE,BE,CE is (respectively) 2, 2, 3, 3, 4, 4 dollars per unit of product.
Suppose that you produce 10 units of the product at A, 20 units at B, and 40 units at C, and from
those 70 units of product you need to deliver 35 units to each of D and E. Write xAD for the amount
of product shipped from A to D, and so on. Our constraints are then as follows:

xAD + xBD + xCD = 35 (deliver 35 units to D), xAE + xBE + xCE = 35 (deliver 35 units to E),

xAD + xAE = 10, xBD + xBE = 20, xCD + xCE = 40 (# units produced at A,B,C),
xAD, xBD, xCD, xAE, xBE, xCE ≥ 0 (e.g., can only deliver from A to E, not vice versa)

Subject to all of these constraints – which involve both linear equations and inequalities – we want to
minimize the transportation cost, which is 2xAD + 2xBD + 3xCD + 3xAE + 4xBE + 4xCE. ■

If we take the approach of solving a linear programming problem by seeking critical points then
we don’t get very far since any partial derivative of a linear function is constant (and usually not
0)! For example, with the function f in (12.4.4) we have fx2 = −7. Thus, if we try to solve the
simultaneous conditions

fx1 = 0, fx2 = 0, . . . , fxn = 0

we will typically find no simultaneous solutions at all. This seems to indicate that linear functions
of n variables have no local maxima or local minima. Indeed, that is the case if you look at such a
function on the entirety of Rn (or at interior points of any region D in Rn). For example, with n = 1
consider the function f(x) = 3x: its graph has no peaks or valleys!

The role of linear programming, however, is to study linear functions on regions D defined by
“linear inequalities” (i.e., inequalities involving linear functions), and for this restricted optimization
problem the situation is more interesting.

Example 12.4.3. Consider the function f(x, y) = 3x+ 2y on the region

D = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x+ y ≥ 1}
in the plane R2. This is illustrated in Figure 12.4.1.

Does f attain a global maximum or minimum on this region? It should be plausible that f(x, y) =
3x + 2y gets arbitrarily large as we move out toward “infinity” in D; i.e., as we let |x| or |y| become
arbitrarily large). On the other hand, because x and y are bounded below on D (each is ≥ 0 on D,
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for example) and the coefficients are ≥ 0, f is bounded below on D (in fact ≥ 0); theoretical reasons
then ensure that minimum exists; how do we find it?
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The function f(x, y) = 3x+ 2y

achieves a minimum value of 2
at the point P on the boundary of D.

FIGURE 12.4.1. The region D (shown in blue) and a contour plot of f(x, y) = 3x+ 2y.

If we follow our standard procedure, we first compute the partial derivatives. As we have observed
above, these never vanish in the interior of D. So there are no interior critical points. This implies that
a global minimum must be on the boundary. Now restrict f to any one of the three boundary curves:
the two half-lines

{(0, y) : y ≥ 1}, {(x, 0) : x ≥ 1}
and the line segment

{(x, y) : x+ y = 1, x, y ≥ 0} = {(x, 1− x) : 0 ≤ x ≤ 1}.
We claim that the linear f(x, y) = 3x + 2y cannot attain an extremum in the interior of any of

these boundary curves (i.e., away from their endpoints). The reason is that the restriction of f to each
of these boundary curves is a linear function (of the type at+ b for some a, b ∈ R, with t a parameter
along the boundary curve) of 1 variable: on the two half-lines we get f(0, y) = 2y and f(x, 0) = 3x,
and on x+ y = 1 we have f(x, 1− x) = 3x+ 2(1− x) = 2 + x.

This leaves as the only possible place where f can attain a global minimum the two corner points
(1, 0) and (0, 1) where boundary curves meet. We compute f(1, 0) = 3 and f(0, 1) = 2. Based on
all that we have done, we conclude that the global minimum of f on D is the value 2, attained at the
corner point P = (0, 1) on the boundary of D, as shown in Figure 12.4.1. ■

Remarkably, many algorithms to solve linear programming problems use the linear algebra and
optimization ideas and concepts from this course (such as gradient descent), as we now illustrate.

Example 12.4.4. Suppose that we wish to minimize x+ y subject to the simultaneous constraints

2x+ 3y ≥ 1, 3x+ y ≥ 1, x ≥ 0, y ≥ 0. (12.4.5)

Try to solve this by hand first by drawing a picture of the region defined by (12.4.5) and seeing which
among the level curves x+ y = a (parallel lines!) touch the region (12.4.5); the smallest such a is the
desired minimal value. You should be able to see by such drawing that the minimum value is attained
at the corner (x, y) = (2/7, 1/7), where the minimal value is 3/7. But we shall now discuss another
method that is far more robust.
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Drawing pictures does not work for the far more complicated linear programming problems that
are often encountered in practice, with enormous numbers of variables and constraints. So here
is another technique, using gradient descent and the Optimization Principle at the end of Section
12.3: rather than try to grapple with x+ y directly subject to the constraints (12.4.5), we will try
to “penalize” any (x, y) not satisfying those constraints. More precisely, rather than working with
the function x+ y, we will work with

f(x, y) = x+ y + εG(x, y)

where G is a “cost function” to be defined and ε is a (small positive) parameter to be chosen.
The great idea is to choose G(x, y) that is “small” on most of the region (12.4.5), so on most

of that region we have f(x, y) ≈ x+ y, but to ensure G(x, y) “gets large” when we approach the
boundary of the region (so if we try to run gradient descent beginning at a point deep within the
constraint region, we won’t leave the constraint region). This will be made quantitatively precise
via ε. A convenient choice of G(x, y) is

G(x, y) = − ln(x)− ln(y)− ln(2x+ 3y − 1)− ln(3x+ y − 1),

using negatives of logarithms of the expressions whose non-negativity defines the constraint re-
gion since − ln(t) is very large for positive t close to 0. For example, when x approaches 0 from
above, the term − ln(x) becomes large, and so G(x, y) becomes large. (We do not go into the
general theory of how to select such a function G which will behave well for computational pur-
poses; for our current problem this particularG turns out to be a good choice from the perspective
of the general theory.)

Of course, we are now minimizing a different function f(x, y) rather than the original x+ y,
but if we choose ε very small then we should expect that the minimum of f(x, y) will approximate
the true solution to our problem. (The general theory that we are not getting into addresses this
issue in a systematic way.)

For any fixed value of ε we can minimize the resulting function f(x, y) (that depends on ε) using
gradient descent. We have done this for ε = 0.1 in Example 11.3.6! Starting with ε = 0.1 and (x, y) =
(1, 1), we ran the gradient descent in Example 11.3.6, arriving at the minimizer (0.455, 0.254).

We now want to do this again with ε smaller. Let’s try ε = 0.05. One of the problems with
gradient descent is that we don’t always have a good guess for a starting point. But in this case
we take the solution we just found (0.455, 0.254) in the previous step as our starting point! Repeat
gradient descent, but now for the function

x+ y + (0.05)G(x, y)

We also need to choose a “step size” for the gradient descent (i.e., a value for t < 0 as in Example
11.3.5); for this computation and the ones below, we use t = −(0.1)(ε). After 1000 iterations we get
to the point (0.374, 0.175). This minimizes the function x+y+(0.05)G(x, y), but that’s still not what
we want.

Now reduce ε again and repeat (always using the minimizer of the previous step as the starting
point for the next step). The results are as follows:

• ε = 0.1: (0.455, 0.254) – minimizes x+ y + (0.1)G(x, y).
• ε = 0.05: (0.374, 0.175) – minimizes x+ y + (0.05)G(x, y).
• ε = 0.02: (0.328, 0.143) – minimizes x+ y + (0.02)G(x, y).
• ε = 0.01: (0.309, 0.140) – similar.
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• ε = 0.005: (0.298, 0.141).
• ε = 0.002: (0.291, 0.142).
• ε = 0.001: (0.288, 0.142).
• ε = 0.0005: (0.287, 0.143).
• ε = 0.0002: (0.286, 0.143) – minimizes x+ y + (0.0002)G(x, y).

It is clear that the answer is getting closer and closer to a limiting value, and the function being
minimized is becoming closer and closer to x + y. In fact, the answer at the final step above agrees,
to three decimal places, with the true solution (2/7, 1/7)!

This kind of technique is very powerful in practice. But we emphasize that our example above
(to minimize x + y on a region) involved a very simple initial function (before we brought out the
negative logarithms), and we have not grappled with the details needed to make it work in more
realistic settings. In practice, a lot of attention needs to be paid to these details (where to start, how to
choose G, how to reduce ε, to use gradient descent or a more sophisticated technique, etc.). ■

(The simplex algorithm). Example 12.4.3 illustrates a beautiful and remarkable principle: when
we seek extrema of a linear function f on a region D that is bounded by pieces of lines, planes,
etc., then away from exceptional circumstances (such as when an extremum is attained along an
entire boundary line segment, for example), the extrema are either not attained (e.g., the function
may go to ±∞ in various directions) or are attained at the corners of the boundary of D.

Thus, in such cases we do not need to go through any work computing partial derivatives of
f and then looking at the restrictions of f to the various boundary lines, planes, etc. Instead,
we can immediately jump to computing the values of f at the corners of the boundary of D and
deciding which of these is the largest or smallest (and confirming f doesn’t tend to ±∞ along
some direction in D). This is typically a comparison of values of the linear f at finitely many
points.

This sounds so simple that it might seem bizarre that linear programming is a serious area
of study. However, the linear programming extrema problems encountered in real-world ap-
plications such as in optimal transportation scheduling (“traveling salesman problem” or airline
scheduling), energy distribution across a power grid, or the routing of telecommunications often
involve tens or hundreds of thousands or even millions of independent variables (so working in
Rn with rather gigantic n), and the region D defined by linear inequalities tends to have a truly
huge number of corners on the boundary (for a concept of “corner on the boundary” in Rn that
one has to define for general n!).

Although we could (in principle) evaluate the linear f at all of the boundary corners and
compare those finitely many values, in practice this is prohibitive and usually impossible in any
reasonable amount of time. What can we do instead? There are multiple approaches. One
algorithm is called the simplex method and works very effectively without using any calculus.
Though it is very successful, it doesn’t have much in common with the mathematics of this course.
Another useful class of methods, called interior point methods, uses ideas from multivariable
calculus. Although the details of such methods are beyond the scope of this course, an instance of
interior point methods was given in Example 12.4.4 to illustrate how it relates to the optimization
methods we are discussing.

12.5. Why does the method of Lagrange multipliers work? To explain the key idea behind
Theorem 12.2.1, we first note that if (∇g)(a) = 0 then there is nothing to do. Hence, we may and

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 251



do now focus on the case (∇g)(a) ̸= 0. We also focus on the case of local maxima; the case of local
minima goes the same way (or apply the case of local maxima to −f in place of f ).

To convey the main idea with a minimum of fuss, we shall consider the special case n = 2:
functions f and g on R2, so we may visualize the level set g(x) = c near a as a curve in R2. (The
reasoning for functions on Rn goes similarly when n > 2, but the geometry then becomes a bit more
involved since the level set g(x) = c in Rn near a is not a curve but rather is an (n− 1)-dimensional
“hypersurface”; e.g., for n = 3 it is a surface in R3.)

By assumption, the point a on the level set g(x) = c is one at which f attains a local maximum.
For instance, if we think of f(x) as the temperature at the point x then a is a point on the curve
g(x) = c where the temperature is at least as hot as at all nearby points on the curve.

Imagine an insect crawling along on the curve g(x) = c with nonzero velocity, and suppose that at

time t = 0 it is at the point a. If we let p(t) =
[
x(t)
y(t)

]
∈ R2 be the position of the insect at time t then

p(0) = a. Now f(p(t)) is the temperature of the insect’s location at time t, so at time 0 the insect is at
a point at least as hot as all nearby points (because that is when it is at a.) Since the function f(p(t))
therefore has a local maximum at t = 0, by single-variable calculus we know that

d

dt
f(p(t)) = 0 when t = 0. (12.5.1)

In single-variable calculus you learned how to compute the derivative of “composite functions”
of the form h(u(t)) for functions u : R → R and h : R → R via the “Chain Rule” formula
dh/dt = (dh/du)(du/dt). But f(p(t)) is a composition of functions p : R → R2 and f : R2 → R
where the intermediate step involves R2 rather than R, so it doesn’t fit that paradigm: the inner
function p is vector-valued rather than scalar-valued. This is a new situation that we have never
encountered before!

In Chapter 17 we will discuss a version of the Chain Rule adapted to the vector-valued setting. In
the special case of composing functions p : R → Rn and f : Rn → R, this yields a formula for the
calculus derivative (f ◦ p)′(t) in terms of a dot product of a gradient vector for f against a velocity
vector for p (see (17.1.2)):

d

dt
f(p(t)) = ((∇f)(p(t))) · p′(t),

where p′(t) denotes the velocity
[
x′(t)
y′(t)

]
of the insect at time t. Setting t to be 0 in this gives a

reformulation of (12.5.1) as:
(∇f)(a) · p′(0) = 0. (12.5.2)

The nonzero velocity p′(0) at time t = 0 is tangent to the level curve g(x) = c at p(0) = a since
the insect is crawling along this level curve (and the velocity of a moving particle or insect is always
tangent to the path of motion). Consequently, (12.5.2) means that (∇f)(a) is perpendicular to the
tangent line to the curve g(x) = c at the point a.

The gradient vector (∇g)(a) is also perpendicular to the same curve g(x) = c at the same point a
(by Theorem 11.2.1, applied to g). Since (∇g)(a) ̸= 0, it follows that the line L through the origin
that it spans is parallel to the direction perpendicular to the curve g(x) = c at a, or in other words that
it is perpendicular to the tangent line of the curve g(x) = c at a. Since (∇f)(a) is also perpendicular
to the same tangent direction, it lies in the line L through the origin that is perpendicular to that
tangent direction, and we have already argued that L is spanned by (∇g)(a). Being in that span says
(∇f)(a) = λ(∇g)(a) for some scalar λ.
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Chapter 12 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
λ Greek analogue of lower-case “el”; read as “lambda” Theorem 12.2.1

Concept Meaning Location in text
constrained optimization for f : Rn → R and g : Rn → R, this is the problem of

seeking (local) extrema for f(x) subject to the constraint
g(x) = c

Example 12.1.3, Ex-
ample 12.1.4

Lagrange multiplier when optimizing f : Rn → R subject to g = c, it is the
scalar λ for which (∇f)(a) = λ(∇g)(a) (for constrained
local extremum a ∈ Rn of f with (∇g)(a) ̸= 0)

Theorem 12.2.1, Fig-
ure 12.1.3

Result Meaning Location in text
method of Lagrange
multipliers

for f : Rn → R and g : Rn → R, when studying f(x) subject
to the constraint g(x) = c any constrained local extremum a
satisfies either (∇g)(a) = 0 or (∇f)(a) = λ (∇g)(a) for some
(unknown!) scalar λ

Theorem 12.2.1

tangential interpre-
tation of Lagrange
multiplier condition
when n = 2

for constrained local extrema a ∈ R2 of f : R2 → R at which
∇f and ∇g are nonzero, the level curves of f and g in R2

through a touch tangentially at a

Remark 12.2.5, Fig-
ure 12.2.5

Skill Location in text
visualize (∇f)(a) pointing along same line as (∇g)(a) for con-
strained local extremum a of f subject to g = c (with (∇g)(a) ̸= 0)

Figures 12.1.3, 12.2.1

use Lagrange multiplier method to solve constrained optimization in
2 or 3 variables

Examples 12.2.9, 12.2.11, 12.2.12

set up Lagrange multiplier equations for constrained extrema (maybe
too complicated to solve by hand)

Example 12.2.13 (especially (12.2.8))
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12.6. Exercises. (links to exercises in previous and next chapters)

Exercise 12.1. Using Lagrange multipliers, find the maximum value of the function f : R2 → R given
by f(x, y) = x+ y on the curve x2 + 3y2 = 4.

Exercise 12.2.

(a) Let c ∈ R be a constant. Use Lagrange multipliers to generate a list of candidate points to be
extrema of

h(x, y, z) =

√
x2 + y2 + z2

3
on the plane x+ y + z = 3c. (Hint: explain why squaring a non-negative function doesn’t affect
where it achieves its maximal and minimal values.)

(b) The facts that h(x, y, z) in (a) is non-negative on all inputs (so it is “bounded below”) and grows
large when ∥(x, y, z)∥ grows large can be used to show that h(x, y, z) must have a global min-
imum on the given plane. (You may accept this variant of the Extreme Value Theorem from
single-variable calculus; if you are interested, such arguments are taught in Math 115 and Math
171.) Use this and your result from part (a) to find the minimum value of h(x, y, z) on the plane
x+ y + z = 3c when c ≥ 0.

(c) Explain why your result from part (b) implies the inequality
√
x2 + y2 + z2

3
≥ x+ y + z

3

for all x, y, z ∈ R. (Hint: for any given v = (x, y, z), define c = (1/3)(x + y + z) so v lies in
the constraint plane in the preceding discussion, and compare h(v) to the minimal value of h on
the entire plane using your answer in (b) when c ≥ 0; the case c < 0 can be treated directly.) The
left side is known as the “root mean square” or “quadratic mean,” while the right side is the usual
or “arithmetic” mean. Both come up often in statistics.

Exercise 12.3. Let f(x, y, z) = xz + yz.

(a) Using the method of Lagrange multipliers, show that any global extrema for f on the surface
x2 + y2 − 4z2 = 1 (called a “hyperboloid” because it cuts each plane y = c in a hyperbola) must
be among two possible points. (Be careful about division by 0, and don’t forget to account for
the possibility of points where the constraint equation has vanishing gradient.)

(b) Evaluating f at both points you found in (a), exhibit a point on the hyperboloid where f has a
value larger than those two values, and another point where f has a value smaller than those two
values. Why does this imply that f has no global extrema on the hyperboloid?

Exercise 12.4. It is a fact (which you may accept) that the function e−x−2y restricted to the level set
x2− y2 = −3 in the region y < 0 (this is one “branch” of a hyperbola) attains a minimal value. Moreover,
the value is attained at exactly one point. Find that unique point and the value of f there by using Lagrange
multipliers in two ways:

(a) Work with f(x, y) = e−x−2y.
(b) Work with h(x, y) = −x − 2y and use the fact that an inequality ea ≤ eb holds for numbers a

and b precisely when a ≤ b (since exponentials and logarithms are each increasing functions).

Exercise 12.5. In single-variable calculus one learns the technique of “implicit differentiation”, when
there is a relation h(x, y) = 0 among two variables x and y for which it is difficult to explicitly solve for
y as a function of x along the constraint curve (but we can nonetheless compute dy/dx in terms of x and
y at such points). This exercise treats a multivariable analogue.
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Consider the equation 126z + 9yz3 − y2 + xy − 7x2 = 0. Solving for z is tantamount to expressing
z as a function for x and y, but it’s not clear how one would go about doing this (since terms with z3 and
z appear). Thus, one says that the equation gives z as an implicit (as opposed to explicit) function of x, y.
Use Lagrange multipliers to find all local extrema of z within the set of points satisfying the equation.
(Hint: it is a fact, which you may accept, that the candidate extrema produced by the Lagrange multiplier
method are indeed local extrema in this case. Apply this with f(x, y, z) = z.)

Exercise 12.6. You have $20 to buy some snacks at the on-campus market. Assume the market is so well-
stocked with various sizes of its items that you can essentially buy any quantity (not necessarily integral)
of your favorites, within budget of course. Among the choices are ice cream at $7 per 16 fl.oz. tub, chips
at $3 per 1.5 oz. bag, and candy at $4 per 3 oz. package. You want to get some of each of these, but you
prefer ice cream, candy, and chips (in that order) to everything else available.

Your overall satisfaction with your purchases is measured by the function U(x, y, z) = x4/7y1/7z2/7,
where x is the quantity (in fluid ounces) of ice cream you bought, y is the quantity (in ounces) of chips
you bought, and z is the quantity (in ounces) of candy you bought. Use Lagrange multipliers to set up
simultaneous equations (including any constraint equations!) whose solutions are the candidates to max-
imize your overall satisfaction, given your $20 budget. You are not being asked to solve these equations.
[You should assume x, y, z > 0, disregarding the cases x, y, z = 0 much as we are pretending that you
can make fractional purchase amounts. This is an instance of the “Cobb–Douglas model” mentioned in
Example 12.1.1.]

Remark: This is similar to Example 12.2.7, but with three products instead of two and explicit num-
bers for the prices/wealth. As mentioned in that example, the solution without explicit numbers is more
generally useful and not significantly more complicated (although here there are 3 variables rather than 2).
But for this problem we’re just setting up the equations, not solving them.

Exercise 12.7. Consider the functions f(x, y, z) = x ln y + 12x2z and g(x, y, z) = sin3 x+ cos y − z on
the domain of points (x, y, z) ∈ R3 with y > 0. Set up simultaneous equations (including any constraint
equations!) whose solutions are the candidate local extrema for the constrained optimization problem of
maximizing f on the region g = 1. You are not being asked to solve these equations.

Exercise 12.8. This exercise will maximize f(x, y, z) = 2x2+6xy+y2+2z on the solid region R shown
in Figure 12.6.1 defined by the combined inequalities x, y, z ≥ 0, x+ y + z ≤ 1 (it is a fact that f attains
a maximum on R). This region is a pyramid having 4 sides, all of which are triangles. One of these sides
is the triangle T in the plane x+ y+ z = 1 where x, y, z ≥ 0, and the other three sides are triangles in the
xy-plane, xz-plane, and yz-plane respectively; T is the “front side” of what you see in Figure 12.6.1.

x

y

z

R

FIGURE 12.6.1. The region R is a solid pyramid.

(a) On the interior of R (the region defined by x, y, z > 0 and x+ y+ z < 1), show f has no critical
points. (Thus, the maximum of f on R is attained on one of the 4 sides of R.)
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(b) Using Lagrange multipliers, find all candidate extrema on the “interior” of the triangle T : this is
the part of the plane x+ y + z = 1 where x, y, z > 0.

(c) The boundary of T consists of its three edges. One of edges is the line segment L consisting of
points (t, 1− t, 0) with 0 ≤ t ≤ 1. Express the restriction of f to this line segment as a function
of t, and then find the maximum value of f on this segment using single-variable calculus.

In order to completely solve this problem, one would have to also examine the other three sides and five
edges of R for possible maxima (or find a reason to rule them out), for example using the approaches in
parts (b) and (c).

(d) It turns out that the maximum value of f on R is attained in the interior of T from (b) or the edge
L from (c). Assuming this, find the maximum value of f on R. (Hint: compare the values of f at
all of the candidate points you’ve found in parts (b) and (c). You may use a calculator to compare
the fractional values if you wish, though this isn’t necessary.)

Exercise 12.9.
(a) Draw the region R consisting of points (x, y) ∈ R2 satisfying x ≥ 1, y ≥ 1, x+ y ≥ 3. Find the

point in R minimizing 4x+ 3y. Is there a point where it is maximized?

(b) Draw the parallelogram formed with vertices 0, v =

[
2
2

]
, w =

[
3
1

]
, and v +w. Identify where

4x+ 3y is maximized on this parallelogram, and compute its maximal value.
(c) Minimize −x+ 2y on the parallelogram in (b), and compute its minimal value.

Exercise 12.10. Find the maximum and minimum of f(x, y) = x + 2y on the circle x2 + y2 = 5, and
where they are attained.

Exercise 12.11. Use Lagrange multipliers to find the point on the line 3x+2y = 6 that is nearest to (0, 0)
(this amounts to minimizing f(x, y) = x2 + y2 on the line 3x + 2y = 6, since minimizing distance is the
same as minimizing squared distance).

Exercise 12.12. Find the maximum and minimum of f(x, y, z) = x−2y+2z on the sphere x2+y2+z2 =
9, and where they are attained.

Exercise 12.13. Use Lagrange multipliers to show that among all rectangular boxes with given volume
V > 0, the one with least surface area is the cube (so with sides of length V 1/3).

Exercise 12.14. Find the maximal and minimal values of f(x, y) = cos2 x+cos2 y on the line y−x = π/4.
(You may accept that such extreme values exist in this case.)

[Hint: you will find it convenient to use several trigonometric fact: (i) sin(θ1) = − sin(θ2) precisely
when θ2 = −θ1 +2kπ or θ2 = θ1 + (2k+1)π for an integer k, and sin(kπ) = 0 and cos(kπ) = (−1)k for
integers k, all of which are seen by visualizing with the unit circle; (ii) the double-angle and addition law
identities cos2(θ) = (1 + cos(2θ))/2 and cos(α + β) = cosα cos β − sinα sin β will also be useful.]

Exercise 12.15. Let P be a plane ax + by + cz = d containing the point (1, 2, 3) (so d = a + 2b + 3c).
Assume a, b, c ̸= 0.

(a) The plane P crosses the coordinate axes at (x0, 0, 0), (0, y0, 0), (0, 0, z0). Express x0, y0, z0 in
terms of a, b, c, d.

(b) Suppose x0, y0, z0 are all positive. It is a fact that the volume of the tetrahedron formed by the
four vertices (0, 0, 0), (x0, 0, 0), (0, y0, 0), (0, 0, z0) is x0y0z0/6. For which such plane P is the
volume minimized, and what is that minimal volume? (The minimal volume is an integer.)

Exercise 12.16. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):
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(a) If f(a) is a maximum of f(x) on the constraint g(x) = c, then f(a) + 51 is a maximum of
f(x) + 51 on the constraint g(x) = c.

(b) If f(a) is a maximum of f(x) on the constraint g(x) = c, then f(a) is the maximum value of
f(x) on the constraint g(x) = c+ 51.
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Part III

Geometry and algebra of matrices



“As long as algebra and geometry have been separated, their progress has been slow and their uses
limited; but when these two sciences have been united, they lent each other mutual forces, and have
marched together towards perfection.”

J-L. Lagrange
“The Matrix is everywhere. It is all around us.”

Morpheus
Overview of Part III

This Part of the book, comprising Chapters 13-18, introduces the notion of matrix in algebraic and
geometric ways and discusses initial applications (including to multivariable calculus). We introduce
the notions of linear transformation and matrix multiplication; these provide sophisticated ways to
extract information from matrices and are a ubiquitous tool in the modeling of many real-world situa-
tions (across economics, biology, computer science, physics, etc.). Much of data science requires the
systematic use of the properties of matrix multiplication (collectively known as “matrix algebra”), as
do many areas of probability and statistics as well as physics.

Chapter 13 introduces the fundamental concept of linear function Rn → Rm and related notion of
matrix, and describes a general object that deserves to be called the (total) derivative of a (typically non-
linear) function f : Rn → Rm. This (total) derivative is called the derivative matrix. The reasons why it
is the “right” general concept and what it is good for will be the focus of the rest of Part III.

In Chapter 14 we introduce linear transformations as a geometric way to think about matrices. The
visual idea of composing two linear transformations (i.e., applying one and then another, such as rotating
R2 around the origin by an angle and then shearing it in some direction) is calculated using a new algebraic
idea: “multiplying” matrices. In the context of rigid motions in 3-dimensional space (relevant in robotics,
video games, and computer vision) this yields a rich array of examples, applications, and insights.

An important feature of matrices is that the product AB of matrices A and B depends on the order of
multiplication; i.e., typicallyAB ̸= BA. This phenomenon is studied further in Chapter 15, where we also
introduce matrix addition and provide a list of familiar-looking properties of addition and multiplication
for matrices (explaining why matrix “multiplication” really deserves to be called “multiplication”).

A striking application of matrix algebra arises via powersM,M2,M3,M4, . . . of a singlem×mma-
trix M (with possibly huge m), discussed in Chapter 16. In contexts as diverse as Google’s PageRank
algorithm (where m is more than 1 billion), the Wright–Fisher model for genetic drift, and long-term
odds of winning for a casino game, the computation and/or properties of powers Mn for large n un-
derlies the mathematical analysis. A unifying theme here is the concept of Markov chain, wherein
there is a feedback loop sending each stage of a process into the next subject to a probabilistic rule. It
is a surprising (yet useful) fact that Mn for large n behaves in accordance with predictable patterns.

In Chapter 17 we introduce a multivariable analogue of the Chain Rule from single-variable calculus.
This is a formula in terms of matrix multiplication that reduces computing the derivative of a composition
of vector-valued functions to (i) computing many single-variable derivatives and (ii) combining those in an
appropriate manner. This “combining” step is clarified a lot by matrix algebra: it makes the multivariable
Chain Rule look intuitively reasonable (without matrices it looks strange). This Chain Rule pervades rates
of change in natural sciences, economics, machine learning algorithms, and artificial neural networks.

In Chapter 18 we introduce the idea of matrix inverse. There is no general “cancellation law” for
matrix multiplication (i.e., we cannot generally “divide” by a nonzero matrix), but there is a large class
of n × n matrices for which there is an analogue of division: this involves the concept of matrix inverse
(recovering “1/x” when n = 1). An important calculus application of inverses of derivative matrices is
the multivariable Newton’s method (used in GPS, robotics, etc.), discussed at the end of Chapter 18.



13. Linear functions, matrices, and the derivative matrix

A useful notion of “derivative” at a ∈ Rn for a scalar-valued function f : Rn → R is the gradient
(∇f)(a) ∈ Rn (e.g., the linear approximation (11.1.2) “justifies” this way of thinking about the gradient).

Seeking a suitable notion of “derivative” at a ∈ Rn for a vector-valued (rather than scalar-valued)
function f : Rn → Rm will lead us to an even more powerful concept: a derivative matrix.

By the end of this chapter, you should be able to:

• distinguish linear functions from more general functions;
• multiply matrices by vectors, and abbreviate a linear function using matrix-vector notation;
• compute the derivative matrix, and compute a local approximation from a derivative matrix.

13.1. The linear approximation to a vector-valued function. Suppose that f : Rn → Rm is a
vector-valued function, with component functions f1, f2, . . . , fm:

f(x) =




f1(x)
f2(x)

...
fm(x)




for x ∈ Rn. For an n-vector a, how can we approximate the m-vector f(x) when x is near a? To make
things easier to imagine, suppose m = n = 3. Let’s consider a specific example.

Example 13.1.1. Define g : R3 → R3 by g(x, y, z) = (ez(x − y)2, 2yz + x3, x2 − y3 + z), and let
a = (2, 1, 0). For the respective component functions g1(x, y, z) = ez(x − y)2, g2(x, y, z) = 2yz + x3,
and g3(x, y, z) = x2 − y3 + z, if (x, y, z) is near a then we have

g1(x, y, z) ≈ g1(a) + ((∇g1)(a)) · (x− 2, y − 1, z) = 1 + (2,−2, 1) · (x− 2, y − 1, z),

g2(x, y, z) ≈ g2(a) + ((∇g2)(a)) · (x− 2, y − 1, z) = 8 + (12, 0, 2) · (x− 2, y − 1, z),

g3(x, y, z) ≈ g3(a) + ((∇g3)(a)) · (x− 2, y − 1, z) = 3 + (4,−3, 1) · (x− 2, y − 1, z).

Putting these scalar approximations together yields a vector approximation

g(x, y, z) ≈



1 + (2,−2, 1) · (x− 2, y − 1, z)
8 + (12, 0, 2) · (x− 2, y − 1, z)
3 + (4,−3, 1) · (x− 2, y − 1, z)


 =



−1 + 2x− 2y + z
−16 + 12x+ 2z
−2 + 4x− 3y + z


 (13.1.1)

(the equality entailing working out the dot products and combining constant terms). The right side in
(13.1.1) involves a lot of numbers! ■

More generally, still with m = n = 3, we want to approximate the vector f(x, y, z) =



f1(x, y, z)
f2(x, y, z)
f3(x, y, z)




for (x, y, z) near a point (a, b, c) for any scalar-valued functions f1, f2, f3. We have

fi(x, y, z) ≈ fi(a, b, c) + ((∇fi)(a, b, c)) · (x− a, y − b, z − c)

= fi(a, b, c) +

(
∂fi
∂x

(a, b, c)

)
(x− a) +

(
∂fi
∂y

(a, b, c)

)
(y − b) +

(
∂fi
∂z

(a, b, c)

)
(z − c),
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so combining these for f1, f2, and f3 yields


f1(x, y, z)
f2(x, y, z)
f3(x, y, z)


 ≈ f(a, b, c) +




∂f1
∂x

(a, b, c)(x− a) + ∂f1
∂y

(a, b, c)(y − b) + ∂f1
∂z

(a, b, c)(z − c)
∂f2
∂x

(a, b, c)(x− a) + ∂f2
∂y

(a, b, c)(y − b) + ∂f2
∂z

(a, b, c)(z − c)
∂f3
∂x

(a, b, c)(x− a) + ∂f3
∂y

(a, b, c)(y − b) + ∂f3
∂z

(a, b, c)(z − c)


 . (13.1.2)

A special case of this is given in the middle of (13.1.1).
Alas, the right side of (13.1.2) is horrifying. We need a more compact and efficient way to work with

it. The way to handle it is provided by the language of matrices, to which we now turn.

13.2. Linear and affine functions. Functions on the right side of (13.1.1) and (13.1.2) have a name:

Definition 13.2.1. A scalar-valued function f : Rn → R is called

• affine if it has the form f(x1, . . . , xn) = a1x1 + a2x2 + · · · + anxn + b for some numbers
a1, . . . , an, b (so b = f(0)).

• linear if it has the form f(x1, . . . , xn) = a1x1 + a2x2 + · · · + anxn for some numbers
a1, . . . , an; i.e., it is affine with b = 0, or equivalently with f(0) = 0.

A vector-valued function f : Rn → Rm (so f(x) = (f1(x), . . . , fm(x))) is called

• affine if each of its component functions fi : Rn → R is affine.
• linear if each of its component functions fi : Rn → R is linear.

An example of an affine vector-valued function is the total right side of (13.1.1). Here are some more:

Example 13.2.2. The function f(x, y, z) =



x− y + z + 3

z − x
y + x+ 1


 =



x− y + z + 3
−x+ 0y + z
x+ y + 0z + 1


 from R3 to R3 is

affine. The function g(x, y, z) =



x− y + z
z − x
y + x


 from R3 to R3 is linear, and h(x, y, z) =



x− y + z
z − x

y + x+ z2


 is

neither affine nor linear (due to z2 in the third component function h3 = y + x+ z2). ■

Warning. In the case of a single variable (n = 1), the affine scalar-valued functions are those of the
form f(x) = ax + b and the linear ones are the affine ones with b = 0. This differs from what is done in
high school, where “linear” refers to ax+ b (allowing b ̸= 0), but in all uses of linear algebra the meaning
of “linear” for a function f : Rn → R is universally understood to be what we define above (with no
constant term). Although affine functions arise in some situations, it is the linear functions that play a
particularly big role in linear algebra, and so we shall focus more on them. For instance, in Example 8.1.4,
addition is linear but multiplication is not. The function in Example 8.1.5 is not linear, but both functions
in Example 8.1.6 are linear. Finally, the functions in Example 8.1.12 and Example 8.1.13 are both linear.

13.3. Matrices: a shorthand for linear functions. From now on, we denote vector-valued functions
with either of the fonts f or f ; context should make clear when “f” is vector-valued or scalar-valued. Let
us write out, in full glory, the definition of a linear function from R3 to R3. A function f : R3 → R3 is
linear “if each of its component functions is linear.” In other words, this means that

f





x
y
z




 =



ax+ by + cz
dx+ ey + fz
gx+ hy + iz


 , (13.3.1)
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where a, b, c, d, e, f, g, h, i are real numbers. For instance, with g as in Example 13.1.1 and (x, y, z) near
(2, 1, 0) we saw in (13.1.1) that

g





x
y
z




 ≈



−1 + 2x− 2y + z
−16 + 12x+ 2z
−2 + 4x− 3y + z


 =



−1
−16
−2


+




2x− 2y + z
12x+ 0y + 2z
4x− 3y + z


 .

This is an approximation with an affine function, the bulk of which is a linear function (disregarding the
addition against (−1,−16,−2)).

As you can see, there are a lot of numbers to keep track of! To organize such information, the following
notion will be very convenient.

Definition 13.3.1. An m× n matrix is a rectangular array A of numbers presented like this:



a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
... . . . ...

am,1 am,2 . . . am,n


 .

The collection of entries
[
ai,1 ai,2 . . . ai,n

]
along the ith horizontal layer (with i = 1 along the

top side) is called the ith row, and the collection of entries




a1,j
a2,j

...
am,j


 along the jth vertical layer (with

j = 1 along the left side) is called the jth column.
One way to remember which is a “row” and which is a “column” is that theaters and airplanes have

“rows” of seats arranged horizontally (left/right) whereas buildings in ancient Rome had “columns”
that are vertical (up/down). By visualizing the array of numbers, in an m× n matrix we see columns
have m entries and rows have n entries. Don’t memorize things like this; you’ll learn it via examples.

The entry at the crossing of the ith row from the top and jth column from the left is denoted aij (or
sometimes ai,j ); it is called the ij-entry or (i, j)-entry. (The convention that the first index i labels the
row position starting from the top and the second index j labels the column position starting from the
left is due to the historical origin of matrices in work with systems of linear equations and pervades
formulas for applications linear algebra in all fields.15 You will get accustomed to it with experience.)

Example 13.3.2. Some examples of matrices are

A =

[
6 11 −5
1 1 2

]
, B =



−2 0
3 1
7/2 −1


 , C =

[√
3/2 1/2

−1/2
√
3/2

]
.

The matrix A is a 2× 3 matrix, whereas B is a 3× 2 matrix, and C is a 2× 2 matrix. We have a13 = −5
and b31 = 7/2. (In Example 14.4.2 we will see that C naturally arises when describing rotation around the
origin by 30 degrees clockwise.)

Since we’ll use matrices throughout the rest of the book, look again at A and B to make sure you can
recognize what is meant by “2×3 matrix” (such as A) and what is meant by “3×2 matrix” (such asB), so
that when someone says “m × n matrix” you will remember it means m layers horizontally and n layers

15In computer graphics, Pixel(i,j) has the “flipped” meaning of referring to color intensity of the pixel in the ith
column from the left and jth row from the top in a rectangular array of pixels, where moreover i and j each begin at 0 rather
than at 1. But this has nothing to do with linear algebra; for all uses of linear algebra in computer science, economics, physics,
engineering, statistics, etc., our definition of ai,j is what is universally used. For an analogous oddity in economics, look here
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vertically. Make sure you recognize which is b12 and which is b21, and that for the specific B as above the
expression b32 makes sense but b23 does not (there is no 3rd entry in the 2nd row)! ■

Remark 13.3.3. In practice, one usually writes “ij-entry” rather than “(i, j)-entry”. The former may cause
confusion when specific numbers beyond single digits are used for i or j (as happens if m or n is at least
10), such as i = 37 and j = 4: what does “374-entry” mean? Row 37 and column 4, or row 3 and column
74? In situations where such confusion may arise, the notation “(i, j)-entry” is used instead (and we may
write a37,4 to distinguish it from a3,74, and speak of the (37, 4)-entry and the (3, 74)-entry).

Definition 13.3.4. If A is an m × n matrix, and x ∈ Rn, the matrix-vector product Ax ∈ Rm is
defined as 



a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn







x1
x2
...
xn


 =




a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


 .

In other words, if we write r1, . . . , rm for the rows of A (so these are n-vectors), then

Ax =




r1 · x
r2 · x

...
rm · x


 .

WARNING: if A is an m×n matrix and x is a d-vector with d ̸= n then the matrix-vector product
Ax is not defined. If you ever find yourself writing such a product with d ̸= n then you have made a
mistake; always check that your matrix-vector products make sense before computing anything.

Let’s use this notation in examples, to see that matrix-vector products encode linear functions.

Example 13.3.5. The linear function g : R3 → R3 from Example 13.2.2 is given by

g





x
y
z




 =




1 −1 1
−1 0 1
1 1 0





x
y
z


 .

Work out the matrix-vector product on the right side to check for yourself that this really holds. ■

Example 13.3.6. For f as in (13.3.1), we have

f





x
y
z




 =



a b c
d e f
g h i





x
y
z


 . ■

Example 13.3.7. For g as in Example 13.1.1 and (x, y, z) near (2, 1, 0) we have

g





x
y
z




 ≈



1
8
3


+



2 −2 1
12 0 2
4 −3 1





x− 2
y − 1
z


 =



−1
−16
−2


+



2 −2 1
12 0 2
4 −3 1





x
y
z




(the equality entails expanding out each entry of the first matrix-vector product to extract a total constant
term for each entry, as we did in (13.1.1)). ■

More generally, if you go back to the definitions, you’ll see:
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Proposition 13.3.8. A function f : Rn → Rm is linear precisely when f(x) = Ax for an m × n
matrix A.

This just rephrases the definition of “linear function”. In this way, anm×nmatrixA is a shorthand
way of encoding a linear function from Rn to Rm (not the other way around from Rm to Rn – when
m ̸= n – since Ax only makes sense for x ∈ Rn).

Example 13.3.9. In Example 8.1.12 we described a function that rotates vectors by 90 degrees counter-
clockwise, namely T : R2 → R2 given by

T

([
x
y

])
=

[
−y
x

]
.

This geometrically-defined function is given by a matrix-vector product too (so it is linear):

T

([
x
y

])
=

[
0 · x+ (−1) · y
1 · x+ 0 · y

]
=

[
0 −1
1 0

] [
x
y

]
.

Thus, T arises from the 2× 2 matrix
[
0 −1
1 0

]
. ■

Example 13.3.10. We can use matrix-vector products to encode systems of linear equations. In Example
10.3.1, we encountered the system of equations

−15m+ 5b = 0, 55m− 15b = 12.

In matrix notation, this becomes:
[
−15 5
55 −15

] [
m
b

]
=

[
0
12

]
. ■

Example 13.3.11. A graduate student realizes after several months of living on a diet of Ramen noodles
that this is not a way to get the recommended daily intake of vitamins. So the student decides to get daily
nutrition from two food sources rather than one! Say the two food sources are called F1 and F2, with F1

costing 70 cents per ounce and F2 costing 30 cents per ounce. One ounce of F1 has 200 units of vitamin
A and 120 units of vitamin D, and one ounce of F2 has 300 units of vitamin A and 40 units of vitamin D.

It is recommended by the Mayo Clinic that every day one should get at least 2700 units per day of
vitamin A (this is approximately the mean of the recommended intakes for men and for women) and 200
units per day of vitamin D (for adults up to age 50). How much of each food type should the graduate
student purchase to achieve the recommended daily intake of vitamins A and D at the least possible cost?

If xi is the number of ounces of Fi purchased each day, the daily cost in dollars is (0.7)x1 + (0.3)x2,
and the nutritional value of such a daily purchase is 200x1 + 300x2 for vitamin A and 120x1 + 40x2 for
vitamin D. Hence, the goal is to minimize (0.7)x1 + (0.3)x2 subject to the constraints

200x1 + 300x2 ≥ 2700, 120x1 + 40x2 ≥ 200, x1 ≥ 0, x2 ≥ 0

(the final two inequalities express that the amount purchased should not be negative).

In matrix-vector notation, it is this: for x =

[
x1
x2

]
∈ R2, minimize

[
7/10
3/10

]
·x subject to the constraints

[
200 300
120 40

]
x ≥

[
2700
200

]
,

where we use the notational convention for vectors v,w ∈ Rn that we write v ≥ w when vi ≥ wi for all
1 ≤ i ≤ n. (We won’t use this inequality notation with vectors again, but it is often used elsewhere.) This
is a linear programming problem (in the sense of Context II in Section 12.4); expressing such problems in
the language of matrices is an essential aspect of efficient solution algorithms for them.
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For the combined theme of linear algebra, linear programming, and diets, you may enjoy the Wikipedia
page on the Stigler diet and the article [Dan] linked at the bottom there.

■

Example 13.3.12. We can also use matrices to give a shorthand for affine functions. As an example, the

affine function f(x, y, z) =



x− y + z + 3

z − x
y + x+ 1


 from Example 13.2.2 can be expressed as

f





x
y
z




 =




1 −1 1
−1 0 1
1 1 0





x
y
z


+



3
0
1


 .

Much as inspection of definitions showed that linear functions Rn → Rm are exactly those of the
form f(x) = Ax for an m × n matrix A, affine functions f : Rn → Rm are exactly those of the form
f(x) = Ax + b, where A is an m × n matrix and b ∈ Rm is a vector. If you think about why this holds
for f : R3 → R3 from Example 13.2.2 that we just considered, the same reasoning works in general.

Affine functions pervade the Kalman filter that filters our noise to ensure accuracy in computer-guided
navigation systems as varied as GPS, submarine and aircraft navigation, and moon missions (we’ll
come back to this in Example 13.5.10). It is also used in econometrics and chemotherapy. For affine
functions Ax+ b that arise in this mathematical model, b corresponds to “random noise”.

■

13.4. Further viewpoints on matrix-vector products. Matrix-vector products are a piece of “alge-
bra”, but there is a useful geometric way to think about their meaning (which we will explore in many
ways throughout the rest of the book). The idea is that linear combinations of vectors suggest a certain
visualization in our head, and matrix-vector products can be reformulated in that geometric language:

Theorem 13.4.1. If c1, c2, . . . , cn are the columns of A (so viewed as vectors in Rm), which is to say

A =



| |
c1 c2 · · · cn
| |


, then A




x1
x2
...
xn


 = x1c1 + x2c2 + · · ·+ xncn ∈ Rm.

In particular, the matrix-vector product is a specific linear combination of the columns of the ma-
trix; the vector tells us which linear combination to take (i.e., it records the coefficients x1, x2, . . . , xn
in the linear combination).

As we write down the columns c1, c2, . . . , cn from left to right, each appears in the linear combi-
nation multiplied against a scalar that varies through the entries xi in the “vector” part of the matrix-
vector product read from top to bottom.

To understand why Theorem 13.4.1 holds, let’s look at some examples to see what is going on.

Example 13.4.2. For g : R3 → R3 as in Example 13.2.2, if we separate the contributions of x, y, and z in
its definition we get

g





x
y
z




 =



x
−x
x


+



−y
0
y


+



z
z
0


 = x




1
−1
1


+ y



−1
0
1


+ z



1
1
0


 .
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On the right side, we are forming linear combinations of vectors using x, y, z as the coefficients, and the
vectors in this linear combination are exactly the columns of the 3× 3 matrix

A =




1 −1 1
−1 0 1
1 1 0




that we found in Example 13.3.12 for which g(v) = Av for all v ∈ R3. The entries in v =



x
y
z


 appear

from top to bottom as x, y, z, and those are respectively the coefficients of the columns of A from left to
right: xmultiplies the first column, y multiplies the second column, and z multiplies the third column. ■

Example 13.4.3. Returning to the matrix-vector product in Example 13.3.10,
[
−15 5
55 −15

] [
m
b

]
=

[
−15m+ 5b
55m− 15b

]
=

[
−15m
55m

]
+

[
5b

−15b

]
= m

[
−15
55

]
+ b

[
5

−15

]
.

Now on the right side we have a linear combination of vectors that are indeed the columns of the given
2 × 2 matrix, and the coefficients in the linear combination are m and b: the coefficient m of the first

column is the top entry in
[
m
b

]
and the coefficient b of the second column is the bottom entry in

[
m
b

]
. ■

Example 13.4.4. In the analysis of many electrical networks, for suitable n (depending on the circuit
design) the voltage differences and currents at different parts of the circuit can be assembled into n-
vectors V and I that are related through a matrix-vector product V = ZI where Z is an n× n matrix
of “impedance parameters” (whose computation depends on the design of the circuit). ■

For the purpose of stating the next result, we introduce the following useful shorthand:

e1 =




1
0
...
0


 ∈ Rn, e2 =




0
1
...
0


 ∈ Rn, . . . , en =




0
0
...
1


 ∈ Rn. (13.4.1)

In other words, with n understood from the context, ei is the n-vector with a 1 in the ith entry and 0’s
elsewhere; these are sometimes called coordinate vectors or standard basis vectors in Rn.

Theorem 13.4.5. For a linear function f(x) = Ax, the matrix A has as its respective columns f(e1),
f(e2), . . . , f(en), where e1, e2, . . . , en are the “coordinate vectors” defined in (13.4.1). In other words:

the matrix-vector product Aej is the jth column of the matrix A. (13.4.2)

In particular, we can reconstruct the matrix A from the function f(x) = Ax.

The reason (13.4.2) holds in general will become apparent from computations in the examples below.

Example 13.4.6. For the matrix

A =

[
3 3/2
1 2

]
,

the linear function f(x) = Ax satisfies

f(e1) = Ae1 =

[
3 3/2
1 2

] [
1
0

]
=

[
3
1

]
, f(e2) = Ae2 =

[
3 3/2
1 2

] [
0
1

]
=

[
3/2
2

]
.
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Observe that in each case, the matrix-vector product evaluation in the final equality yields exactly the
corresponding column of A; this calculation explains why (13.4.2) holds. Figure 13.4.1 shows the effect
of f acting on the usual 2-dimensional unit square grid centered at the origin.

• •
•

0 e1

e2
f(x) =

[
3 3/2
1 2

]
x

•
•

•

f(e2)

f(e1)

FIGURE 13.4.1. The distorted (blue) grid obtained by applying a linear f to a (gray) square grid

If we consider the matrix B =

[
3/2 3
2 1

]
obtained by swapping the columns of A then the associated

linear function g(x) = Bx is obtained from f by swapping the placement of the coordinates of x =

[
x
y

]

in the output formulas:

g(x) =

[
3/2 3
2 1

] [
x
y

]
=

[
(3/2)x+ 3y

2x+ y

]
= x

[
3/2
2

]
+ y

[
3
1

]
= xf(e2) + yf(e1)

whereas f(x) = f(xe1 + ye2) = xf(e1) + yf(e2). In particular, g(e1) = f(e2) and g(e2) = f(e1). Figure
13.4.2 shows the effect of g on the unit square grid centered at the origin.

• •
•

0 e1

e2
g(x) =

[
3/2 3
2 1

]
x

•
•

•

g(e1)

g(e2)

FIGURE 13.4.2. The function g yields the same blue grid, with roles of f(e1) and f(e2) swapped

■

Example 13.4.7. Now consider the matrix

C =



1/
√
2 1/

√
2 0

−1/2 1/2 1/
√
2

1/2 −1/2 1/
√
2




and its associated linear function f : R3 → R3 defined by f(x) = Cx. In Section 14.5 we will see how C
arises in the context of a natural geometric question, but for now we’d like to see that the link between the

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 268



columns of C and the outputs f(ej) gives us a vivid way to visualize the effect of f . By direct computation
we see that

f(e1) = Ce1 =



1/
√
2 1/

√
2 0

−1/2 1/2 1/
√
2

1/2 −1/2 1/
√
2





1
0
0


 =



1/
√
2

−1/2
1/2




(check the final equality for yourself by hand); this is exactly the first column of C, in accordance with
(13.4.2). Similarly, one checks that

f(e2) = Ce2 =



1/
√
2 1/

√
2 0

−1/2 1/2 1/
√
2

1/2 −1/2 1/
√
2





0
1
0


 =



1/
√
2

1/2
−1/2




and

f(e3) = Ce3 =



1/
√
2 1/

√
2 0

−1/2 1/2 1/
√
2

1/2 −1/2 1/
√
2





0
0
1


 =




0

1/
√
2

1/
√
2


 ,

again affirming (13.4.2). By checking the final equalities for each of these computations of f(ej) (with
j = 1, 2, 3), you can see the pattern which makes (13.4.2) hold in general.

The interesting feature of this example is that the columns of C are pairwise orthogonal unit vectors.
This property of the columns is verified by a direct calculation: each column has length 1 and dot products
of distinct columns all vanish (compute for yourself). With this in hand, it follows that

the vectors f(e1), f(e2), f(e3) are pairwise orthogonal unit vectors

since the f(ej)’s are exactly the columns of C. In Section 20.4 we will see that this implies that f preserves
lengths and angles, so it is a rigid motion of space. We can thereby visualize the effect of f in terms of
carrying a “unit cube” with edges e1, e2, e3 to a “unit cube” with edges f(e1), f(e2), f(e3).

0

e1

e2

e3

f(e1)

f(e2)

f(e3)

■

You should memorize the formulas in Definition 13.3.4, Theorem 13.4.1, and Theorem 13.4.5 (hope-
fully made more feasible by working through the preceding examples). Matrix-vector products are just a
shorthand notation for a certain type of operation on vectors, but all work in linear algebra relies on it.

13.5. The derivative matrix. Now let us rewrite (13.1.2) using matrix shorthand:

f(x, y, z) ≈ f(a, b, c) +




∂f1
∂x

(a, b, c) ∂f1
∂y

(a, b, c) ∂f1
∂z

(a, b, c)
∂f2
∂x

(a, b, c) ∂f2
∂y

(a, b, c) ∂f2
∂z

(a, b, c)
∂f3
∂x

(a, b, c) ∂f3
∂y

(a, b, c) ∂f3
∂z

(a, b, c)






x− a

y − b

z − c


 .
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If we use the more efficient vector notation x =



x
y
z


 and a =



a
b
c


 then this can be written as:

f(x) ≈ f(a) +




∂f1
∂x

(a) ∂f1
∂y

(a) ∂f1
∂z

(a)
∂f2
∂x

(a) ∂f2
∂y

(a) ∂f2
∂z

(a)
∂f3
∂x

(a) ∂f3
∂y

(a) ∂f3
∂z

(a)


 (x− a). (13.5.1)

Example 13.3.7 illustrated this for g from Example 13.1.1: for (x, y, z) near (2, 1, 0) we have


ez(x− y)2

2yz + x3

x2 − y3 + z


 ≈



1
8
3


+



2 −2 1
12 0 2
4 −3 1





x− 2
y − 1
z


 .

Let’s understand what is going on in (13.5.1) from a broader perspective. For each component function
fi of f we have the linear approximation fi(x) ≈ fi(a) + ((∇fi)(a)) · (x − a) for x near a. Assemble
these scalar approximations into an approximation to the vector f(x). The scalars fi(x) and fi(a) are the
respective entries in the vectors f(x) and f(a), and (in accordance with the definition of matrix-vector
products in Definition 13.3.4) the dot products ((∇fi)(a)) · (x−a) are the entries in A(x−a) for the 3×3
matrix A with ith row (∇fi)(a). (More generally, if v is an n-vector then the function Rn → R defined
by T (x) = v · x =

∑
vixi is Mx for the 1× n “row” matrix M with ith entry vi.)

We repeat for emphasis: for x near a, when approximating f(x) by f(a)+A(x−a) for a 3× 3 matrix
A, the definition of matrix-vector products makes the gradients at a of the components fi naturally appear
as the rows (not as the columns!) of A, as in (13.5.1). This leads us to a general concept:

Definition 13.5.1. Let f : Rn → Rm be a vector-valued function f(x) =



f1(x)

...
fm(x)


 with scalar-valued

components f1, . . . , fm : Rn → R. The derivative matrix of f at a point a ∈ Rn is the m× n matrix

(Df)(a) =




∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) . . . ∂f2
∂xn

(a)
...

... . . . ...
∂fm
∂x1

(a) ∂fm
∂x2

(a) . . . ∂fm
∂xn

(a)




with all partial derivatives ∂fi/∂xj evaluated at the point a. (In other books or courses you may see
this denoted as Df(a) or called the “Jacobian matrix”; we will not use that notation and terminology.)

Warning: For a scalar-valued f : Rn → R (m = 1), the matrix (Df)(a) is a “flipped” gradient:

(Df)(a) =

[
∂f

∂x1
(a)

∂f

∂x2
(a) . . .

∂f

∂xn
(a)

]
, whereas (∇f)(a) =




∂f
∂x1

(a)
∂f
∂x2

(a)
...

∂f
∂xn

(a)



.

In general (any m), the ith row of (Df)(a) is “(∇fi)(a) written horizontally”; i.e., (Df)(a) is an
m × n matrix whose ith row encodes the n-vector gradient at a of the ith component function fi of
f . If you are bothered by this “flipping”, note that it appeared naturally in (13.5.1) as well as in the
discussion immediately after that as a consequence of how matrix-vector products are defined.
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Example 13.5.2. For g : R3 → R3 as in Example 13.1.1 and a = (2, 1, 0) we have

(Dg)(a) =



2 −2 1
12 0 2
4 −3 1


 .

For instance, the component function g1(x, y, z) = ez(x − y)2 has gradient at a = (2, 1, 0) equal to

(∇g1)(a) =




2
−2
1


, and correspondingly the first row of (Dg)(a) is the “flipped” version of this gradient

vector. ■

Example 13.5.3. Let f : R3 → R2 be defined by f(x, y, z) = (x2−y, z3+xy). Write f1(x, y, z) = x2−y
and f2(x, y, z) = z3 + xy. Then the derivative matrix is the 2× 3 matrix

(Df)(x, y, z) =

[
∂f1/∂x ∂f1/∂y ∂f1/∂z
∂f2/∂x ∂f2/∂y ∂f2/∂z

]
=

[
2x −1 0
y x 3z2

]
.

For example, the value of the derivative matrix at the point (1, 1, 1) is the matrix
[
2 −1 0
1 1 3

]
. ■

Example 13.5.4. Let f : R2 → R3 be defined by f(x1, x2) = (x32 − 4x1, x2e
−x1 , cos(x1x2)). Write

f1(x1, x2) = x32− 4x1, f2(x1, x2) = x2e
−x1 , and f3(x1, x2) = cos(x1x2). Then the derivative matrix is the

3× 2 matrix

(Df)(x1, x2) =



∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2
∂f3/∂x1 ∂f3/∂x2


 =




−4 3x22
−x2e−x1 e−x1

−x2 sin(x1x2) −x1 sin(x1x2)


 . ■

Example 13.5.5. Let f : R2 → R2 be defined by f(x, y) = (x3 + xy + 2y3 − 3, x2y + xy2 − y). Write
f1(x, y) = x3+xy+2y3− 3 and f2(x, y) = x2y+xy2− y. Then the derivative matrix is the 2× 2 matrix

(Df)(x, y) =

[
∂f1/∂x ∂f1/∂y
∂f2/∂x ∂f2/∂y

]
=

[
3x2 + y x+ 6y2

2xy + y2 x2 + 2xy − 1

]
.

We will come back to this f in Example 18.5.6. ■

Example 13.5.6. For a function f : Rn → R, its gradient is a function g = ∇f : Rn → Rn. For
a ∈ Rn, let’s work out the entries in the n×nmatrix (Dg)(a) in terms of f . By definition of g = ∇f ,
the ij-entry is (∂gi/∂xj)(a) with gi = ∂f/∂xi the ith component function of g.

In other words, the ij-entry is ((∂/∂xj)(∂f/∂xi))(a) = (∂2f/∂xj∂xi)(a). Thus, by equality of
mixed partials (Theorem 9.6.4) the ij-entry and the ji-entry of (D(∇f))(a) coincide. That property
of a square matrix (equality of the ij-entry and ji-entry for all i, j, to be called “symmetric”) will turn
out to have remarkable consequences (discussed in Section 24.1). If a is a critical point of f then the
n× n matrix (D(∇f))(a) = ((∂2f/∂xi∂xj)(a)) of second partial derivatives of f at a holds the key
to the multivariable second derivative test at a, as we will see in Chapter 26.

As a sample calculation, for F (x, y, z) = x2yz + cos(xy) + zey let’s compute (D(∇F ))(a) with
a = (−1, 0, 3). To do this, we will compute the first and then second partial derivatives symbolically,
and finally evaluate at the point of interest. The first partial derivatives are

Fx = 2xyz − y sin(xy), Fy = x2z − x sin(xy) + zey, Fz = x2y + ey,
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and from these we compute the second partial derivatives:

∂2F/∂x2 = 2yz − y2 cos(xy), ∂2F/∂y2 = −x2 cos(xy) + zey, ∂2F/∂z2 = 0,

∂2F/∂x∂y = ∂2F/∂y∂x = 2xz − sin(xy)− xy cos(xy), ∂2F/∂x∂z = ∂2F/∂z∂x = 2xy,

∂2F/∂y∂z = ∂2F/∂z∂y = x2 + ey.

Accordingly, (D(∇F ))(x, y, z) is equal to



2yz − y2 cos(xy) 2xz − sin(xy)− xy cos(xy) 2xy
2xz − sin(xy)− xy cos(xy) −x2 cos(xy) + zey x2 + ey

2xy x2 + ey 0


 , (13.5.2)

so

(D(∇F ))(−1, 0, 3) =




0 −6 0
−6 2 2
0 2 0


 .

By inspection, indeed the ij-entry and ji-entry coincide for any i, j (e.g., the (1, 2)-entry and (2, 1)-
entry both equal −6). ■

Example 13.5.7. Derivative matrices are a central tool in the study of deformations of solid bodies.
For a physical body B subjected to a deformation, the applied forces constitute the “stress” and the
resulting change in its shape is the “strain”. Contexts where such situations arise include the behavior
of components of the Golden Gate Bridge due to the wind and motion of vehicles, the shaking of
the ground during an earthquake (both pressure waves and shear waves), squeezing a piece of rubber,
compression springs in cars, changes in the optical properties of a crystal under pressure, and stuffing
a piece of cork into the top of a wine bottle.

Define f : B → R3 by letting f(b) be the point in space where a point b ∈ B winds up after the
deformation process. Engineers call the 3×3 matrix (Df)(b) for b ∈ B the deformation gradient at b
(and it has useful dynamical analogues in fluid mechanics by replacing f with a vector field expressing
the trajectory of fluid flow at all points at a given time). This use of the word “gradient” is unfortunate
since it is not a vector but rather is a matrix; the terminology “deformation matrix” is also used, but is
much less common.

The deformation f is called homogeneous when it is affine: f(b) = Mb + v for some v ∈ R3

and 3 × 3 matrix M that are independent of b (a 2-dimensional visualization with v = 0 is given
in Figure 14.1.5 with the unit square S of points (x, y) with 0 ≤ x, y ≤ 1 in the role of B). The
function g(x) = Mx + v has derivative matrix (Dg)(a) = M for all a, generalizing that functions
of the form g(x) = mx + c in single-variable calculus have constant derivative: g′(a) = m for all
a. Homogeneous deformations thereby correspond to the case that (Df)(b) is independent of b. The
utility of the deformation gradient rests on techniques from “matrix algebra”, as we will discuss later
(in Example 24.6.7). ■

The reason for the importance of the derivative matrix is that it encodes the idea of “best linear ap-
proximation” generalizing the “tangent line” interpretation of derivatives in single-variable calculus. To
explain this, recall that in single-variable calculus, for a function f : R → R the derivative f ′(a) at a point
a ∈ R is a number that gives the slope of the tangent line to the graph of y = f(x) at the point (a, f(a)).
In algebraic terms, approximating a tangent line by a secant line and then regarding the slope of the latter
as an approximation to the slope of the former can be written as

f ′(a) ≈ f(x)− f(a)

x− a
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for x near a. (This encodes the limit definition of f ′(a).) Written this way, there is no meaningful analogue
when the number x ∈ R is replaced by a vector x ∈ Rn for n > 1 (it makes no sense to “divide by x−a”).

But we can rewrite the approximation in another way that avoids division: for x near a we have
f(x) ≈ f(a) + f ′(a)(x− a), or equivalently for h near 0 we have

f(a+ h) ≈ f(a) + f ′(a)h

(the best way to think about the meaning of f ′(a)!). The right side arises in the equation of the tangent
line to the graph at x = a: y = f(a) + f ′(a)(x − a). In this latter formulation, the special property of
the number f ′(a) is that the number c ∈ R for which the line y = f(a) + c(x− a) best approximates the
graph to y = f(x) for x near a is c = f ′(a). This brings us to:

Informal Question. For f : Rn → Rm and a point a ∈ Rn, is there a linear function L : Rn → Rm

(depending on a) so that
f(x) ≈ f(a) + L(x− a)

for x near a? Or equivalently,
f(a+ h) ≈ f(a) + L(h)

for n-vectors h near 0?
If there is some L (depending on a) that makes the approximation “best possible” in the sense that

the size of the error decays to 0 more rapidly than ∥x − a∥ as x approaches a (or more rapidly than
∥h∥ as h approaches 0) then L is unique and we call it the best linear approximation to f at a.

The derivative matrix is the affirmative answer to this question, for reasons we saw immediately before
Definition 13.5.1 (namely, that its rows are the gradients of the component functions of f ):

Theorem 13.5.8. The best linear approximation to f : Rn → Rm at a ∈ Rn is given by the m × n
derivative matrix (Df)(a): we have the optimal approximation of m-vectors

f(x) ≈ f(a) + ((Df)(a))(x− a)︸ ︷︷ ︸
matrix-vector multiplication

(13.5.3)

for n-vectors x near a, or equivalently

f(a+ h) ≈ f(a) + ((Df)(a))h︸ ︷︷ ︸
matrix-vector multiplication

(13.5.4)

for n-vectors h near 0.

Example 13.5.9. For f : R3 → R2 defined by f(x, y, z) = (x2 − y, z3 + xy), let’s work out its best linear
approximations in the senses of (13.5.3) and (13.5.4) at the point (1, 1, 1). We computed the 2× 3 matrix
(Df)(x, y, z) symbolically in Example 13.5.3, from which we obtained

(Df)(1, 1, 1) =

[
2 −1 0
1 1 3

]
.

Hence, for (x, y, z) near (1, 1, 1) we have

f(x, y, z) ≈ f(1, 1, 1) +

[
2 −1 0
1 1 3

]

x− 1
y − 1
z − 1


 =

[
0
2

]
+

[
2(x− 1)− (y − 1)

(x− 1) + (y − 1) + 3(z − 1)

]

=

[
−1 + 2x− y

−3 + x+ y + 3z

]
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and for (h1, h2, h3) near 0 we have

f(1 + h1, 1 + h2, 1 + h3) ≈ f(1, 1, 1) +

[
2 −1 0
1 1 3

]

h1
h2
h3


 =

[
0
2

]
+

[
2h1 − h2

h1 + h2 + 3h3

]

=

[
2h1 − h2

2 + h1 + h2 + 3h3

]
.

In other words, for (x, y, z) near (1, 1, 1) we have (x2 − y, z3 + xy) ≈ (−1 + 2x− y,−3 + x + y + 3z)
and for (h1, h2, h3) near 0 we have f(1 + h1, 1 + h2, 1 + h3) ≈ (2h1 − h2, 2 + h1 + h2 + 3h3). ■

The role of the matrix (Df)(a) in expressing a “best linear approximation” for f near a is the key
to unlocking the powerful role of linear algebra in the study of general non-linear f in multivariable
calculus. In order to carry this out, we need to gain more experience with matrices and their role in
linear algebra (much as you spent a fair amount of time learning how to graph straight lines before
you learned the derivative aspects of calculus). The next few chapters are devoted to this task.

Example 13.5.10. At the end of Example 13.3.12 we mentioned that functions of the form f(x) =
Ax + b arise in an important statistical model (called the Kalman filter) for managing noise in nav-
igation systems. But for many applications, from the Apollo moon missions to GPS and beyond,
it is essential to incorporate non-linear phenomena and so the original Kalman filter cannot be ap-
plied. Approximating a non-linear function by a linear one via derivative matrices leads to a useful
alternative statistical model (called the extended Kalman filter) for non-linear settings. ■

Example 13.5.11. Derivative matrices show up everywhere in robotics (where they are usually called
by the name “Jacobian”). Consider a robotic system that moves within a plane: it consists of an arm
of length L1 that is fixed at one end to a point P (around which it rotates freely) and a second arm
of length L2 that is attached to the first arm at its other endpoint Q (at which the second arm rotates
freely). This has 2 degrees of freedom (corresponding to angles measured at P and Q), and we are
interested in the position (x, y) of the other endpoint R of the second arm (where it is not attached to
the first arm); this is the tip of the robot, where there may be a paintbrush, blade, etc.

?R

Q

P

L1

L2

θ1

θ2

FIGURE 13.5.1. A robotic system based at P with “elbow” at Q and tip at R

To describe the physical configuration at a given time, we set up a coordinate system in the plane
of motion with origin at P and measure two angles as shown in Figure 13.5.1: the angle θ1 that
the first arm makes at P relative to the x-axis, and the angle θ2 that the second arm makes at Q
relative to the line through the first arm. Since the second arm makes an angle θ1 + θ2 relative to
the x-axis, the point Q is located at (L1 cos(θ1), L1 sin(θ1)) and the displacement from Q to R is
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(L2 cos(θ1 + θ2), L2 sin(θ1 + θ2)). Hence, as a function of the angles, the position of the tip R of the
robotic arm is given by

p(θ1, θ2) =

[
x(θ1, θ2)
y(θ1, θ2)

]
=

[
L1 cos(θ1) + L2 cos(θ1 + θ2)
L1 sin(θ1) + L2 sin(θ1 + θ2)

]
. (13.5.5)

The linear approximation property of derivative matrices, applied to p(θ1, θ2), is used to compute
the approximate small change ∆θ⃗ in the 2-vector θ⃗ of angles achieving a desired small change ∆p in
the position of the tip R. We will work this out in Example 18.5.7 using more knowledge of matrices,
and apply it to compute the configurations where the robot gets stuck or behaves unpredictably. ■

Remark 13.5.12. The approximations on the right sides of (13.5.3) and (13.5.4) are affine functions of
x − a and h respectively, due to the addition of the vector f(a) that is usually nonzero. Nonetheless,
everyone refers to (13.5.3) and (13.5.4) as the “best linear approximation” (even though as a functions of
x− a and h they are typically just affine rather than linear). This informal terminology matches what we
say in single-variable calculus, calling the tangent-line expression f(a) + f ′(a)(x − a) for the graph of
f : R → R at the point (a, f(a)) the “best linear approximation” to f at x = a.

For a function h : R2 → R, the associated affine function R2 → R as on the right side of (13.5.3) for
the function h and a = (a, b) ∈ R2 is the approximation as in (11.1.3) that appears in an equation for the
tangent plane to the surface graph z = h(x, y) at (a, b, h(a, b)) (see (11.2.3)). Figures 11.1.2 and 11.2.3
illustrate such a tangent plane as an approximation to the surface graph at the chosen point a. This is a
2-dimensional analogue of the tangent line approximation to a graph in single-variable calculus.

Remark 13.5.13. Strictly speaking, Theorem 13.5.8 requires the assumption that f : Rn → Rm is
“differentiable”, so it gets involved with an issue swept under the rug in Remark 10.2.4 when m = 1:
we have not defined what “differentiable” means for a function of n variables when n > 1. We did
however mention there that for f : Rn → R, this concept (whatever it is to mean) is a consequence
of the existence and continuity of all partial derivatives ∂f/∂xj : Rn → R; the same holds for
f : Rn → Rm when all ∂fi/∂xj : Rn → R exist and are continuous (so in practice it is fulfilled).

In fact, Theorem 13.5.8 hints at the actual definition of differentiability for f : Rn → Rm at a point
a ∈ Rn for any n: the definition is that there should exist an m × n matrix La (depending on a) for
which f(a+ h) ≈ f(a) + Lah for all small h, with “≈” encoding that the error in the approximation
is “of smaller order than ∥h∥ as h approaches 0” (so for all small h the deviation of f(a + h) from
f(a) is well-approximated by the function of h given by the matrix-vector product Lah).

More precisely, the definition of differentiability of f : Rn → Rm at a ∈ Rn is that there is

an m × n matrix La so that as h approaches 0 we have
∥f(a+ h)− (f(a) + Lah)∥

∥h∥ → 0 (where

the left side is a ratio of numbers). Note that when m = n = 1 we recover the limit definition of
differentiability in single-variable calculus with La given by the 1 × 1 matrix [f ′(a)]. For general m
and n it is a theorem that when such an La exists for a given a then necessarily the partial derivatives
∂fi/∂xj exist at a (so (Df)(a) makes sense) and moreover La = (Df)(a).

That (Df)(a) is the “best linear approximation” to f at a when f is differentiable is not baked
into the definitions, but rather also has to be proved (i.e., Theorem 13.5.8 has not become an empty
assertion, though its proof turns out not to be difficult). A more difficult result to establish is that
existence and continuity of partial derivatives of the component functions fi ensures differentiability
in the sense just defined.
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Chapter 13 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
aij , ai,j entry in ith row from top and jth column from left in matrix A Definition 13.3.1
Ax matrix-vector product Definition 13.3.4
(Df)(a) m× n derivative matrix at a ∈ Rn for f : Rn → Rm Definition 13.5.1

Concept Meaning Location in text
linear function Rn → Rm function f : Rn → Rm whose component functions

fi : R
n → R have the form ai1x1 + · · ·+ ainxn

Definition 13.2.1

affine function Rn → Rm function f : Rn → Rm whose component functions
fi : R

n → R have the form ai1x1 + · · ·+ ainxn + bi

Definition 13.2.1

m× n matrix array of m horizontal rows and n vertical columns Def. 13.3.1, Ex. 13.3.2
ij-entry, (i, j)-entry entry in ith row from top and jth column from left in

a matrix
Definition 13.3.1

matrix-vector product for m×n matrix A and n-vector x, it is the m-vector
with ith entry

∑n
j=1 aijxj

Definition 13.3.4

derivative matrix for f : Rn → Rm and a ∈ Rn, (Df)(a) has ij-entry
(∂fi/∂xj)(a)

Definition 13.5.1

best linear approximation for f : Rn → Rm and a ∈ Rn, the affine function
Rn → Rm carrying x to f(a) + ((Df)(a))(x− a)

Theorem 13.5.8

Result Meaning Location in text

linear functions via matrix-
vector products

linear functions Rn → Rm are precisely those of the form
f(x) = Ax for an m×n matrix A (so matrices are exactly
a means of encoding linear functions; matrices as arrays of
scalars arise in many contexts, but the link to linear func-
tions will be the key to their utility)

Proposition 13.3.8

affine functions via matrix-
vector products

affine functions Rn → Rm are precisely those of the form
f(x) = Ax+ b for an m× n matrix A and m-vector b

end of Ex. 13.3.12

Ax is linear combination of
columns

for m×n matrix A and x ∈ Rn, Ax is linear combination
of columns with xj as scalar coefficient for jth column

Theorem 13.3.4

jth column of A is Aej matrix-vector products Ae1, . . . , Aen are columns of A Theorem 13.4.5
“symmetry” of (D(∇f))(a) ij-entry and ji-entry of (D(∇f))(a) coincide Example 13.5.6

Skill Location in text
express affine or linear function in terms of matrix-vector product Exs. 13.3.5, 13.3.7, 13.3.9, 13.3.12

for linear f : Rn → Rm, know that associated m × n matrix A has
jth column f(ej) (this is a very important fact!)

Theorem 13.4.5

compute derivative matrix symbolically and numerically Examples 13.5.2–13.5.5
compute best linear approximation to f : Rn → Rm at given a ∈ Rn Example 13.5.9
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13.6. Exercises. (links to exercises in previous and next chapters)

Exercise 13.1. Let f : R → R be a function, so the graph of f consists of points of the form (x, f(x)).

(a) Explain why the graph of 3f(x) is a 3-fold vertical expansion away from the x-axis of the graph
of f(x), the graph of h(x) = f(2x) is a 2-fold horizontal shrinking towards the y-axis of the
graph of f(x), and the graph of k(x) = f(−x/5) is a 5-fold horizontal expansion away from the
y-axis followed by reflection across the y-axis of the graph of f(x) (Hint: stare at the graphs of
sin(2x), sin(−x/5), and 3 sin(x) to get an idea about the general case.)

(b) Imagine the graph y = f(x) is made using some unit of distance along the x-axis and y-axis. If
we “change units” by using a new unit of measurement that is c > 0 times as long as the initial
one (e.g., for going from feet to meters we have c = 3.28084 whereas going from meters to
centimeters has c = 1/100), explain in words why when the graph of f(x) made in the old unit
of measurement is viewed in the new unit of measurement it is the graph of c−1f(cx).

(c) Applying (b) to the parabola y = x2, explain the following surprising fact: “all parabolas with
vertex at the origin and opening upwards are the same up to change of unit of distance”, or
equivalently: they are the same under zooming in near the origin under a microscope. (This is
not true for ellipses and hyperbolas.)

Exercise 13.2. Let Ta,b : R2 → R2 be the linear function given by Ta,b

([
x
y

])
=

[
ax
by

]
=

[
a 0
0 b

] [
x
y

]

with a, b > 0. This exercise uses such linear functions to relate the geometry of a large class of “ellipse”
equations to the unit circle.

(a) In terms of scaling, explain the geometric effect of applying T2,1/3 to a vector v ∈ R2. Check

that this agrees with the outcome of applying T2,1/3 to
[
−1
1

]
and to

[
1
2

]
by drawing some vectors.

Then describe in words the effect of Ta,b on R2 in general.
(b) Check that the composite functions T1/a,1/b ◦ Ta,b and Ta,b ◦ T1/a,1/b from R2 to itself are each

equal to the identity function that keeps each 2-vector in place. (In other words, evaluate each

composition on a general vector
[
x
y

]
and check the final output coincides with the input.) This

says that each of Ta,b and T1/a,1/b undoes the effect of the other; explain in words why this should
hold by using your answer to (a).

(c) Let C be the curve with equation x2 + y2 = 1 (unit circle with center at the origin), and for
a, b > 0 let Ea,b be the curve with equation x2/a2 + y2/b2 = 1 (an ellipse; the optional Appendix
C shows the equivalence with the ancient Greek definition, for those who are curious).

Check that if a point v =

[
v1
v2

]
lies on C then the point Ta,b(v) =

[
av1
bv2

]
lies on Ea,b. Also

check the reverse property that if Ta,b(v) ∈ Ea,b then v ∈ C. (Put together, these say Ea,b is
exactly the output of applying the linear function Ta,b to the circle C.)

(d) Using (c) and the effect of Ta,b as described in part (a), sketch the curves
x2

4
+
y2

9
= 1 (a = 2,

b = 3) and
x2

4
+ 4y2 = 1 (a = 2, b = 1/2). Indicate where each crosses the coordinate axes.

Exercise 13.3. This exercise uses algebra and thinking (more instructive than a computer) to determine
some geometry of an ellipse from its equation Ax2 + By2 = C. This will be useful later when relating
contour plots to the multivariable second derivative test. You do not need a calculator for this exercise;
human brainpower is sufficient!
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(a) For each ellipse in (i)-(iv) below, compute: where it crosses the x-axis (corresponding to y = 0),
where it crosses the y-axis (corresponding to x = 0), and which consecutive integers each axis
intercept lies between. (Note: if a number lies between consecutive squares n2 and (n+ 1)2 then
its square root lies between n and n+ 1.)

(i) x2 + 6y2 = 10
(ii) 3x2 + 5y2 = 13

(iii) 7x2 + 2y2 = 18
(iv) 5x2 + y2 = 21

(b) Use the information found in (a) to approximately draw each ellipse on a coordinate grid, indi-
cating along which coordinate axis (x or y) the ellipse is longer (a qualitatively correct picture is
sufficient).

(c) For a general ellipse Ax2 + By2 = C with A,B,C > 0, relate which is bigger among A or B
to the coordinate direction (x or y) along which the ellipse is longer. You are not asked to justify
the general pattern, but rather to find one consistent with your pictures in (b).

Exercise 13.4. For each of the following functions f : Rn → Rm, show it is linear or affine by writing it
as f(x) = Ax + b for some explicit m × n matrix A and (possibly zero) vector b ∈ Rm or explain why
it is neither.

(a)

f

([
x
y

])
=

[
3x− y + 1
4 + x+ 2y

]

(b)

f

([
x1
x2

])
=

[
3x1 + 2x2
x1x2

]

(c)

f

([
v
w

])
=

[
(1/2)v − (1/3)w

4v + 5w

]

Exercise 13.5. Consider the affine functions f : R2 → R3 and g : R3 → R2 defined by

f

([
x
y

])
=




2x− y
3y − 2x+ 7
x+ y − 3


 , g





x
y
z




 =

[
x+ 2y + 3z − 1
4x− y + 2z + 3

]
.

(a) Evaluate (f ◦ g)





x
y
z




 ∈ R3 by plugging g





x
y
z




 ∈ R2 into f , and write it in the usual

form Ax+ b for a 3× 3 matrix A and vector b (so f ◦ g is affine).
(b) Do the analogue of (a) for the composition g ◦ f : R2 → R2 in the other order (now A will be

2× 2 and b will be a 2-vector).

(c) Compute (f ◦ g)






1
−2
−1




 in two ways: directly computing the 2-vector g






1
−2
−1




 and plug-

ging that into f , and by plugging




1
−2
−1


 into the “Ax+ b” form that you determined for f ◦ g in

(a). Your two answers should agree!

Exercise 13.6. For each of the following functions f : Rn → Rm, compute (Df)(x) as an m× n matrix
whose entries are functions of x ∈ Rn.
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(a) f
([
x
y

])
=




xy
x+ y
xey + y




(b) f





x
y
z




 =

[
x sin(y) + zex

x2y + yz3 + z5x

]

(c) f
([
x
y

])
=

[
ln(x) + y3x
2y

√
x− exy

]
(with x > 0)

Exercise 13.7. For each of the following functions f : Rn → Rm, compute (Df)(x) as an m× n matrix
whose entries are functions of x ∈ Rn.

(a) f(
[
t
]
) =



cos(t)
sin(t)
t


.

(b) f
([
x
y

])
= h(xy) for a function h : R → R (your answer should involve h′).

(c) f
([
x
y

])
=

[
h(x− y)
14.6

]
for a function h : R → R (your answer should involve h′).

Exercise 13.8. For each function f below, compute its derivative matrix in general and then at the specified
point a. Use the latter to compute the best linear approximation to the function at a in at least one of two
forms: f(a+ h) for h near 0, and f(x) for x near a.

(a) f(x, y, z) =
[
xy + yz
xz + xyz

]
, a = (2, 3, 4).

(b) f(x, y) =
[
ex(x− y)2

3xy2

]
, a = (0, 1).

Exercise 13.9.

(a) Let f : R3 → R2 be the affine function f(x) = Ax + b for A =

[
−2 3 1
−4 0 2

]
and b =

[
5
−7

]
.

Verify the equality (Df)(c) = A for every c ∈ R3.

(b) For a general 2 × 2 matrix A =

[
a11 a12
a21 a22

]
and general 2-vector b =

[
b1
b2

]
, verify that the

function f(x) = Ax+b satisfies (Df)(c) = A for every c ∈ R2 by explicitly computing partial

derivatives of the component functions of f
([
x
y

])
.

(c) Adapt the procedure from (b) to the general case: for any m × n matrix A, m-vector b, and the
function f : Rn → Rm defined by f(x) = Ax + b, show that (Df)(c) = A for every c ∈ Rn

by explicitly computing the component functions of f





x1
...
xn




 and then its partial derivatives.

Exercise 13.10. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) If A and B are 3× 2 matrices satisfying A
[
1
0

]
= B

[
1
0

]
and A

[
0
1

]
= B

[
0
1

]
then A = B.

(b) Let A be an n× n matrix and 1 ∈ Rn the n-vector whose entries are all 1’s. The entries in each
row of A sum to 1 precisely when A1 = 1.
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(c) If (Df)(x) =

[
3 5 −2
−1 0 4

]
for all x ∈ R3 then f(x) is a linear function.
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14. Linear transformations and matrix multiplication

In this chapter, we will introduce a fundamental new idea: how to multiply matrices. This has some
unexpected features, such as AB ̸= BA, but it turns out to cleanly encode many interesting phenomena.

By the end of this chapter, you should be able to:

• characterize a linear function Rn → Rm in terms of its interaction with vector addition and
scalar multiplication;

• compute the matrix of a rotation in R2 and of a rotation around a coordinate axis in R3;
• compose two linear functions using matrix multiplication.

14.1. Rotations and linear functions. If you rotate a steering wheel by 30 degrees counterclockwise,
and then by 10 degrees clockwise (“counterclockwise by −10 degrees”), you have rotated the wheel by
30− 10 = 20 degrees counterclockwise.

In general, the overall effect of applying a counterclockwise rotation by an angle θ1 and then a coun-
terclockwise rotation by an angle θ2 is such a rotation: counterclockwise by the angle θ1 + θ2 (even if one
or both of the θj’s is “negative”). Note in particular that the order in which we apply the 2-dimensional
rotations doesn’t matter for the final outcome since the angle sums θ1 + θ2 and θ2 + θ1 are equal.

When we consider an analogue in 3 dimensions, the situation is more subtle (and so more interesting).
Think of the following operations you can do to the surface of a ball:

• operation R1: rotate the ball by −45 degrees around the vertical axis through its center;
• operation R2: rotate the ball by 45 degrees around a specified horizontal axis through its center.

These operations are shown in Figure 14.1.1 (where the specified horizontal axis for R2 is the y-axis); the
colors in the figure are included to illustrate how the rotation affects the ball.

A ball. The ball rotated by −45◦

around z-axis.

The ball rotated by 45◦

around y-axis.

Operation R1: Operation R2:

•

x

• y

•

z

•

x

• y

•

z

•

x

• y

•

z

FIGURE 14.1.1. Two different rotations of a ball

What if you do operation R1 first and then operation R2? What if you do operation R2 first and then
operation R1? As shown in Figure 14.1.2, the overall effect of these is not the same! (For the analogue
with 90-degree rotations, you may want to try it with an actual ball by marking points on the ball with a
pencil or some Hagoromo chalk.)
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Operation R1 followed by operation R2. Operation R2 followed by operation R1.

•

x

• y

•

z

•

x

• y

•

z

FIGURE 14.1.2. The order of operations makes a difference for 3-dimensional rotations

A good understanding of rotations is useful in many fields, such as robotics (how do you rotate a joint
to move an arm to the desired position?), computer graphics (how do you rotate a scene?), and biology
(how do you manipulate a computer model of the human brain?). The key to working with rotations is that
they are linear in the sense defined in Section 13.2. This linearity has to be explained. We will do this in
Section 14.4. To prepare for it, let’s revisit the definition of linear and affine functions.

Definition 14.1.1. A function f : Rn → Rm is called :

• a linear function, or a linear transformation, if there is an m× n matrix A for which f(x) =
Ax for all vectors x ∈ Rn (so the jth column of A is Aej = f(ej)),

• an affine function, or an affine transformation, if there is an m × n matrix A and a vector
b ∈ Rm for which f(x) = Ax+ b for all vectors x ∈ Rn.

This is the same as our old definitions from Section 13.2, recast using the language of matrices; see
Examples 13.2.2 and 13.3.12 for explicit examples. Before we give some more examples, including real-
world applications of affine transformations, we want to discuss how to visualize the effect of the linear

transformation f : R2 → R2 associated with a matrix A =

[
a b
c d

]
whose columns span different lines

through 0. Let S be the “unit square” {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1} (on the left in Figure 14.1.3), so R2

is tiled by copies of S laid out in all directions (like a bathroom floor). Let f(S) denote the output of f on
S (i.e., the collection of points f(s) for s ∈ S), also called the image of S under f . The image f(S) is a
parallelogram (on the right in Figure 14.1.3). This helps to visualize the effect of f on R2 due to two facts:

Linearity Principle: for c1, c2 ∈ R and v1,v2 ∈ R2 we have f(c1v1 + c2v2) = c1f(v1) + c2f(v2).
Tiling Principle: f transforms the tiling of R2 by copies of S into a tiling of R2 by copies of f(S).

[ 10 ]

[ 01 ] [ 11 ]

S

f

•
•s

x

y R
•

[ ac ]

[ bd ] [
a+b
c+d

]

f(S) = P

•
Q

f(s)

FIGURE 14.1.3. The linear transformation f takes the unit square S onto a parallelogram
P . The effect of f is shown on a typical point s = (x, y) inside S, and f(R) = Q.
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The Linearity Principle (which we’ll see in a wider context in Section 14.2) is a 1-line calculation:

f(c1v1 + c2v2) = A(c1v1 + c2v2) = A(c1v1) + A(c2v2) = c1(Av1) + c2(Av2) = c1f(v1) + c2f(v2).

This underlies why f(S) is the parallelogram with vertices as in Figure 14.1.3 (using the parallelogram
law for vector addition), as well as why f(R) = Q in the setting of that Figure. Proofs of these facts, as
well as a proof of the Tiling Principle, are in Section 14.6 for those who are interested. Let’s use this to
work out examples to visualize the linear transformations R2 → R2 associated with some 2× 2 matrices.

Example 14.1.2. Consider f : R2 → R2 given by the matrix A =

[
2 1
1 2

]
. By Figure 14.1.3, f(S) is the

parallelogram with edges f
([

1
0

])
=

[
2
1

]
(first column of A) and f

([
0
1

])
=

[
1
2

]
(second column of

A), as shown in Figure 14.1.4. By the Tiling Principle, f transforms the usual tiling of R2 by unit squares
into the tiling by copies of f(S) laid out in all directions parallel to the edges of f(S).

f(S ′)

f(S ′′)

f(S)

f(K)

f(L)

f

•

S ′

S ′′

S

K

L•

FIGURE 14.1.4. The image f(S) of the unit square S is a parallelogram, and the collection
of unit squares in the tiling on the left is carried by f to parallelograms that give a tiling on
the right, as illustrated with nearby unit squares S ′ and S ′′.

In Figure 14.1.4, the coordinate axes on the left are the black lines K and L through edges of the
orange unit square S which meet at the black dot that is the origin on the left, and f carries those onto the
black lines f(K) and f(L) through edges of the orange parallelogram f(S) on the right (meeting at the
black dot corresponding to the origin, since f carries the origin to the origin).

The tiling on the right in Figure 14.1.4 expresses the parametric form of R2 using the vectors e =

f

([
1
0

])
=

[
2
1

]
(first column of A) and e′ = f

([
0
1

])
=

[
1
2

]
(second column of A). In particular, the

Linearity Principle

te+ t′e′ = tf

([
1
0

])
+ t′f

([
0
1

])
= f

(
t

[
1
0

]
+ t′

[
0
1

])
= f

([
t
t′

])

says that the point in parametric form te + t′e′ is the output of f on
[
t
t′

]
. In the special case that t and

t′ are integers, which corresponds to the corners of the parallelograms in the tiling on the right side of
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Figure 14.1.4 (due to the geometric interpretation of vector addition and subtraction), this is telling us
algebraically the fact we can see visually that those corners are the output of f on the corners of the unit
square tiling on the left (as these latter corners are the points of R2 with integer coordinates). ■

Example 14.1.3. Let Tc : R2 → R2 be Tc(x) = Mx for M =

[
1 c
0 1

]
. The output Tc(S) of Tc on S is

the parallelogram with edges Tc(e1) = M

[
1
0

]
=

[
1
0

]
(first column of M ) and Tc(e2) = M

[
0
1

]
=

[
c
1

]

(second column of M ). This has the same base e1 as S and the same height (namely: 1) as S, but it has a
horizontal displacement by c units along the top; see Figure 14.1.5.

y

x

T1/2(S)

y

x

T1/3(S)

y

x

T−1(S)

FIGURE 14.1.5. The image of the unit square S under Tc for c = 1/2, 1/3,−1.

The transformations Tc are called shearing transformations: they distort shape, but they do not affect
area (think of pushing the side of a deck of cards, with more pushing near the top than the bottom). By
the Tiling Principle, Tc transforms the usual tiling of R2 by unit squares into the tiling by copies of Tc(S)
laid out in all directions parallel to the edges of Tc(S). This amounts to “pushing” the unit square tiling in
the horizontal direction to tilt it from being vertically upright without affecting area. ■

Example 14.1.4. When MRI is used to create a 3-dimensional image of someone’s brain and doctors use
the image for medical diagnosis, the computers use many affine transformations f(x) = Ax + b. The
matrix A accounts for rotation of the image in space, as well as dilation for “zooming in/out” on the
image, and the vector b is a displacement vector that accounts for spatial translation of the image. ■

Example 14.1.5. Consider the problem of an autonomous car correctly identifying and reading traffic signs
(such as stop signs, yield signs, speed limit signs, etc.) Typically the camera on the car will see the image
of such a sign in a manner that is distorted due to the viewing angle and environmental conditions (such as
how far the sign is from the road, etc.): a circular sign may appear as an ellipse, an equilateral triangle sign
may appear as a scalene triangle, and a rectangular sign may appear as a parallelepiped. Specific writing
(such as a speed limit, or an arrow pointing in some direction) is then similarly distorted.

By making visual measurements of the main geometric shapes in the image, a computer can produce
a 2× 2 matrix A that encodes shearing and rotations and a vector b ∈ R2 that encodes recentering so that
Ax + b undoes the distortion to compare the sign to a database of “standard” possibilities. This process
(which may also use color information) can then clarify specialized writing in the sign too. ■

Example 14.1.6. The same math problem as in Example 14.1.4 arises in image alignment: merging
multiple images of the same object (a building, skyline of a city, etc.) from different perspectives into
a single overall image. By identifying specific points c1, . . . , cm ∈ R2 in the first image with their
counterparts b1, . . . ,bm ∈ R2 in the second image, to merge the images we seek a 2 × 2 distortion
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matrix X and a displacement vector y so that bj = Xcj + y for all j. The affine transformation
f(v) = Xv + y can then be used to determine the “overlap” of the images and then merge them.

Due to rounding errors, there are typically no X and y that make the m conditions bj = Xcj + y
exactly hold for all j (and for large m, this system of conditions on the 4 entries of X and the 2 entries
of y is vastly “overdetermined”: far more than 6 conditions on these 6 parameters). So we seek X
and y that minimize the total error

∑
j ∥bj − (Xcj + y)∥2 in a “least squares” sense that generalizes

Chapter 7. The technique to solve many such problems will be given in Theorem 22.5.4. ■

Affine transformations are the multivariable analogues of the functions mx + b that you know from
tangent-line approximations in single-variable calculus. A fundamental idea of multivariable calculus is:

any function f : Rn → Rp is well-approximated near any a ∈ Rn by an affine function.

For n = p = 1 this says any f : R → R can be approximated near any a ∈ R by some mx+ b (an affine
function of 1 variable); it is the tangent-line approximation with the slope m taken to be f ′(a).

14.2. Linear functions are those which respect addition and scalar multiplication. We have de-
fined the concept of “linear function” by a type of formula. It is also useful to characterize them by some
properties. (Why? See Section 14.4.) This is accomplished by the following result, which says that linear
functions Rn → Rm are precisely the ones which respect scalar multiplication and vector addition.

Theorem 14.2.1. A function g : Rn → Rm is linear precisely when it respects the vector operations:

g(cx) = cg(x), g(x+ y) = g(x) + g(y) (14.2.1)

for all scalars c ∈ R and vectors x,y ∈ Rn.
If g : Rn → Rm and h : Rp → Rn are linear, then so is the composition g ◦ h : Rp → Rm.

The proof of Theorem 14.2.1 is given in Section 14.6, for those who are interested. Property (14.2.1) is
the crucial identifying feature of linear functions. Affine functions h(x) = Ax+b with b ̸= 0 do not satisfy
this property. For instance: h(5x) = A(5x) + b = 5(Ax) + b and 5h(x) = 5(Ax + b) = 5(Ax) + 5b,
so h(5x) ̸= 5h(x) because b ̸= 5b when b ̸= 0 (compare lengths of b and 5b for nonzero b). Likewise,

h(x+ y) = A(x+ y) + b = Ax+ Ay + b, h(x) + h(y) = (Ax+ b) + (Ay + b) = Ax+ Ay + 2b,

so h(x+ y) ̸= h(x) + h(y) when b is nonzero (since b ̸= 2b for such b).
The failure of (14.2.1) for general affine functions is one of the reasons why linear functions are more

fundamental than affine functions. Here is an interesting immediate application of Theorem 14.2.1:

Example 14.2.2. For any nonzero linear subspace V of Rn we claim that ProjV : Rn → Rn is linear (so
it is given by some n× n matrix!). This may be surprising since the geometric definition of ProjV (x) in
terms of distance minimization doesn’t help for understanding how ProjV interacts with vector addition
and scalar multiplication. There is another way to describe ProjV that makes more contact with vector
algebra: if {w1, . . . ,wk} is an orthogonal basis of V then formula (6.2.1) gives the explicit formula

ProjV (x) =
k∑

i=1

(
x ·wi

wi ·wi

)
wi.

So the linearity of ProjV can be rephrased as: does this summation expression behave well with respect
to addition and scalar multiplication in x?
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Yes: for all x,y ∈ Rn we have (x+ y) ·w = x ·w + y ·w for every w ∈ Rn, so

ProjV (x+ y) =
k∑

i=1

(
(x+ y) ·wi

wi ·wi

)
wi =

k∑

i=1

(
x ·wi + y ·wi

wi ·wi

)
wi

=
k∑

i=1

(
x ·wi

wi ·wi

)
wi +

k∑

i=1

(
y ·wi

wi ·wi

)
wi

= ProjV (x) +ProjV (y).

Likewise, for any x ∈ Rn and c ∈ R we have (cx) ·w = c(x ·w) for every w ∈ Rn, so

ProjV (cx) =
k∑

i=1

(
(cx) ·wi

wi ·wi

)
wi =

k∑

i=1

(
c(x ·wi)

wi ·wi

)
wi = c

k∑

i=1

(
x ·wi

wi ·wi

)
wi = cProjV (x).

This concludes the verification that ProjV is linear. Actually, not quite: we swept something under the
rug. Can you see the gap in our argument? The gap is that we took it for granted that V has an orthogonal
basis (so formula (6.2.1) is actually applicable to V !). Up to now we don’t know that linear subspaces V
always have orthogonal bases except when dimV = 1, 2. This hole in our knowledge will be filled in
Chapter 19, so at that time the above argument will be complete; let’s not worry about it for now.

What is the n× n matrix for ProjV ? As for any linear function Rn → Rn, its jth column is its effect
on ej , which is to say its jth column is

ProjV (ej) =
k∑

i=1

(
ej ·wi

wi ·wi

)
wi (14.2.2)

upon choosing an orthogonal basis {w1, . . . ,wk} of V (the choice of basis is a tool to compute ProjV (ej);
the output of the summation formula is independent of the choice!). To give a numerical example, consider
V defined in Example 5.2.3 as the span of specific v1,v2,v3 ∈ R5 in (5.2.1) whose entries are tiny
integers. In Example 5.2.3 we gave an explicit orthogonal triple of nonzero vectors in V ,

w1 =




1
0
3
2
1



, w2 =




1
3
0
−4
7



, w3 =




−33
201
−75
132
−6



, (14.2.3)

that we verified is an orthogonal basis of V (the wi’s are found using the Gram–Schmidt process to be
discussed in Chapter 19). Hence, the 5 × 5 matrix M of ProjV : R5 → R5 has jth column given by
(14.2.2) with k = 3 using (14.2.3).

Since w1 ·w1 = 15, w2 ·w2 = 75, w3 ·w3 = 64575 = 15× 4305 = 45× 1435, and ej ·w is the jth
entry of w for any w ∈ R5, the columns of M can be computed quickly on a computer, yielding

M =
1

1435




139 −90 342 18 234
−90 1070 −335 360 375
342 −335 986 354 297
18 360 354 1076 −362
234 325 297 −362 1034



. (14.2.4)

Thus, even for a subspace V defined as the span of vectors (such as v1,v2,v3 in (5.2.1)) whose entries are
tiny integers, the matrix for ProjV can be rather “complicated”! ■
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In Section 14.4 we will use Theorem 14.2.1 to see that rotations around the origin in R2 and R3 are
linear, so then it is meaningful to compute a matrix encoding the effect of such operations. This will enable
us to algebraically interpret the rotation behavior in Section 14.1.

Example 14.2.3. A “linear” circuit is one whose output (e.g., currents in various parts, which we
want to know) is a linear function of its input (e.g., voltage differences in various parts, which we
control). Concretely, these are the circuits involving only resistors, capacitors, and inductors; they
account for all of the circuits studied in introductory physics (whereas circuits involving components
such as transistors or diodes are not linear). The analysis of every linear circuit, no matter how big or
complicated, always can be done systematically via (possibly very high-dimensional!) linear algebra:
see item (2) in Section 21.1 for further discussion and precise references. ■

14.3. Composing linear transformations and matrix multiplication. Composing linear transfor-
mations brings us to one of the key operations of the course: matrix multiplication. The definition below
may initially look like a mouthful, but after we work out some examples we’ll see that it isn’t too bad.

Definition 14.3.1. Let A be an m× n matrix and B an n× p matrix as follows:

A =




a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn


 , B =




b11 b12 . . . b1p
b21 b22 . . . b2p
...

... . . . ...
bn1 bn2 . . . bnp




Let TA : Rn → Rm and TB : Rp → Rn be the linear transformations with respective matrices
A and B (i.e., TA(x) = Ax for x ∈ Rn, and TB(y) = By for y ∈ Rp), so the composition
TA ◦ TB : Rp → Rm is a linear transformation (by Theorem 14.2.1).

The m× p matrix of TA ◦ TB is called the matrix product of A and B, and is denoted AB.

Theorem 14.3.2. The entries of AB are the dot products of rows of A with columns of B: if we write

A =




a1

a2
...
am


 , B =




| |
b1 b2 · · · bp

| |




with rows ai ∈ Rn and columns bj ∈ Rn, then we have

AB =




a1 · b1 a1 · b2 . . . a1 · bp

a2 · b1 a2 · b2 . . . a2 · bp
...

... . . . ...
am · b1 am · b2 . . . am · bp


 =




| |
Ab1 Ab2 · · · Abp

| |


 .

Written out more explicitly,

ij-entry of AB =
n∑

k=1

aikbkj. (14.3.1)

A proof of (14.3.1) based on considerations with linearity is given in Section 14.6 for those who
are interested (ignore it if you prefer). In the next chapter we will investigate the properties of matrix
multiplication in detail, explaining in particular why this deserves the name “multiplication”. It only
makes sense to form AB when the number of columns of A is the same as the number of rows of B
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(so the dot product ai ·bj of a row ai of A and a column bj of B makes sense); this requirement expresses
the fact that it only makes sense to form TA ◦ TB when the output of TB is an input for TA.

To get a feeling for matrix multiplication, let’s work out some examples. We begin with some that get
us acclimated to the process, and in Sections 14.4 and 14.5 we discuss geometric examples. (As another
geometric example, in the setting of Example 14.2.2 necessarily ProjV ◦ProjV = ProjV [why?], so M
in (14.2.4) satisfies M2 =M !) In each case below, please check the calculations for yourself.

Example 14.3.3. For the matrices A =

[
2 5
1 1

]
and B =

[
3 1
0 −1

]
, computing dot products of rows of A

against columns of B yields that

AB =

[
2 5
1 1

] [
3 1
0 −1

]
=

[
6 −3
3 0

]
=

[
A

[
3
0

]
A

[
1
−1

]]

(e.g., the first row of A and second column of B have dot product −3 that is the (1,2)-entry in the output).
Here is an alternative way to write out the preceding calculation that takes up more space on the page

but is much more efficient in practice for visually organizing the work (and is nicely illustrated on the
Wikipedia page for matrix multiplication). To compute AB, we write out the task in the following way:[

3 1
0 −1

]

[
2 5
1 1

] [
∗ ∗
∗ ∗

]

with A on the left (just as it appears in “AB”), the other matrix B moved up, and the ∗’s as entries to
be determined to give AB. (We are writing ∗’s in this book for expository purposes; when you do this
yourself you should leave empty spaces in which you’ll soon fill in numbers.) The rule is this: to fill in a
specific entry ∗, form the dot product of the row (in the matrix to the left) on the same horizontal line as
the chosen ∗ and the column (in the matrix on top) on the same vertical line as the chosen ∗.

For example, the boldface asterisk is the dot product of the row and column (both in boldface) dis-
played in a visually appealing way relative to that asterisk (and likewise for the others)! We fill in the
entries essentially by inspection [

3 1
0 −1

]

[
2 5
1 1

] [
6 + 0 2− 5
3 + 0 1− 1

]
,

so the product is
[
6 −3
3 0

]
. See (14.3.2) for the analogous diagram to compute MN for a 2× 4 matrix M

and a 4× 3 matrix N .
Switching to dot products of rows of B against columns of A, the product BA in the other order is

obtained by filling in the array of ∗’s in accordance with the diagram[
2 5
1 1

]

[
3 1
0 −1

] [
∗ ∗
∗ ∗

]

Staring at this, we read off the number for each ∗:

BA =

[
6 + 1 15 + 1
0− 1 0− 1

]
=

[
7 16
−1 −1

]
=

[
B

[
2
1

]
B

[
5
1

]]
.
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So in particular, AB ̸= BA! ■

Example 14.3.4. Let A =

[
1 0
0 0

]
(so TA crushes the y-axis into 0 since TA(e2) = Ae2 is the second

column 0 of A, and TA has no effect on the x-axis since TA(e1) = Ae1 is the first column e1 of A), and

B =

[
0 0
2 −3

]
(so TB crushes R2 into the y-axis since the columns TB(e1) = Be1 and TB(e2) = Be2 of

B are both contained in the y-axis). To compute AB we form the diagram
[
0 0
2 −3

]

[
1 0
0 0

] [
∗ ∗
∗ ∗

]

We see that all ∗’s are equal to 0 + 0 = 0, which is to say AB =

[
0 0
0 0

]
. Such vanishing can also be seen

from the geometric descriptions of TA and TB since TAB = TA ◦ TB and applying TB sends everything
into the y-axis yet that line crushed to {0} by TA.

On the other hand, to compute BA we form the diagram
[
1 0
0 0

]

[
0 0
2 −3

] [
∗ ∗
∗ ∗

]

and thereby read off that BA =

[
0 + 0 0 + 0
2 + 0 0 + 0

]
=

[
0 0
2 0

]
, which is nonzero!

Since AB =

[
0 0
0 0

]
= A

[
0 0
4 −5

]
with nonzero A yet B ̸=

[
0 0
4 −5

]
(and similarly with (4,−5)

replaced by any ordered pair (u1, u2) different from the bottom row (2,−3) of B), we see that there is
generally no “cancellation law” for matrix multiplication! ■

Example 14.3.5. The matrixA =

[
3 0
0 −2

]
corresponds to stretching by 3 in the x-direction and stretching

by 2 along with a reflection in the y-direction since the respective columns Ae1 and Ae2 of A are 3e1 and

−2e2. The matrix B =

[
0 −1
1 0

]
corresponds to a 90-degree counterclockwise rotation (this will be

explained in Section 14.4). To compute AB, we write out the diagram
[
0 −1
1 0

]

[
3 0
0 −2

] [
∗ ∗
∗ ∗

]

and thereby read off AB =

[
0 + 0 −3 + 0
0− 2 0 + 0

]
=

[
0 −3
−2 0

]
.

Since the effect of B swaps the coordinate axes yet the effects of A along the coordinate axes are quite
different from each other, it is reasonable to expect that applying TB before or after TA yields different
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outcomes. And sure enough, we compute BA using the diagram
[
3 0
0 −2

]

[
0 −1
1 0

] [
∗ ∗
∗ ∗

]

which yields BA =

[
0 + 0 0 + 2
3 + 0 0 + 0

]
=

[
0 2
3 0

]
, so BA ̸= AB. ■

You might find it disturbing that often AB ̸= BA (and that nonzero matrices can have product equal
to a zero matrix, as in Example 14.3.4); we will see many more such examples below. However, this
should only be bothersome after you have learned why we call it “multiplication” (and so denote it as we
do); see (MM2) in Section 15.3. Since matrix multiplication is designed to express composition of linear
functions, its “non-commutativity” is just an instance of the concrete fact that composing two functions in
both possible orders (i.e., f(g(x)) and g(f(x))) often yields different outputs. For instance, in general:

(i) 2x+ 5 ̸= 2(x+ 5) (composing doubling and adding 5),
(ii) 1/(x+ 7) ̸= (1/x) + 7 (composing reciprocation and adding 7),

(iii) (2x)3 ̸= 2x3 (composing cubing and doubling),
(iv) ex/2 ̸= ex/2 (composing exponentiation and halving).

Remark 14.3.6. The non-commutativity of matrix multiplication pervades many phenomena: algo-
rithms for ranking webpages (see Remark D.2.1), computer vision, market risk analysis, and even the
foundations of quantum mechanics. It may initially sound surprising that such a concept would show
up anywhere, and it came as a huge surprise to physicists in the early 20th century to find that it is
absolutely central in quantum mechanics (upon which all modern electronics rests). Max Born won
the 1954 Nobel Prize for his work on the foundations of quantum mechanics, and in particular for a
formulation in which matrix multiplication plays a key role. In his Nobel Prize lecture he said this:

“I could not take my mind off Heisenberg’s multiplication rule, and after a week of
intensive thought and trial I suddenly remembered an algebraic theory which I had
learned from my teacher, Professor Rosanes, in Breslau. Such square arrays are
well known to mathematicians and, in conjunction with a specific rule for multipli-
cation, are called matrices. . . . I was as excited by this result as a sailor would be
who, after a long voyage, sees from afar, the longed-for land.”16

There is a special situation where matrix multiplication is commutative, and it is more widely important
than you might initially expect (as we’ll see in the optional Chapter 27):

Proposition 14.3.7. For n × n diagonal matrices A and B, the product matrix AB is also diagonal
and is obtained by multiplying the corresponding entries in A and B:




a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an







b1 0 · · · 0
0 b2 · · · 0
...

... . . . ...
0 0 · · · bn


 =




a1b1 0 · · · 0
0 a2b2 · · · 0
...

... . . . ...
0 0 · · · anbn


 .

In particular, AB = BA for diagonal A and B since aibi = biai for every i.

16Schrödinger was rather less excited by the link to matrices, writing in [Sch5] that he “was discouraged, if not repelled,
by what appeared to me as very difficult methods of transcendental algebra, and by the want of perspicuity.”
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Example 14.3.8. For the 3× 3 “upper triangular” matrices

A =



1 3 −5
0 −2 1
0 0 4


 , B =



2 1 1
0 −1 3
0 0 2


 ,

to compute AB (using dot products of rows of A against columns of B) we analyze the diagram:

2 1 1
0 −1 3
0 0 2






1 3 −5
0 −2 1
0 0 4






∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




This yields thatAB =



2 1− 3 1 + 9− 10
0 2 −6 + 2
0 0 8


 =



2 −2 0
0 2 −4
0 0 8


 (again upper triangular). Similarly one

finds (please check for yourself) BA =



2 4 −5
0 2 11
0 0 8


 ̸= AB. ■

Example 14.3.9. For the 2× 3 matrix A and 3× 2 matrix B defined by A =

[
1 2 3
4 5 6

]
and B =



1 2
3 4
5 6


,

to compute AB involves filling in the diagram 

1 2
3 4
5 6




[
1 2 3
4 5 6

] [
∗ ∗
∗ ∗

]

Observe how the visual nature of the method automatically sets up the sought-after product matrix to have
the correct size (2×2 forAB, in accordance with Definition 14.3.1). Filling in the ∗’s as the corresponding

dot products, one finds (please check!) AB =

[
1 + 6 + 15 2 + 8 + 18
4 + 15 + 30 8 + 20 + 36

]
=

[
22 28
49 64

]
. Likewise, to

compute BA involves filling in the diagram [
1 2 3
4 5 6

]



1 2
3 4
5 6





∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




where again the method automatically sets up the sought-after product matrix to have the correct size (3×3
for BA, in accordance with Definition 14.3.1). Filling in the ∗’s as the corresponding dot products, one
finds (please check!)

BA =



1 + 8 2 + 10 3 + 12
3 + 16 6 + 20 9 + 24
5 + 24 10 + 30 15 + 36


 =



9 12 15
19 26 33
29 40 51


 .

■
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We won’t write out the matrix multiplication diagrams anymore in this book, to save space; please feel
free to keep using them for your own manual work with matrices of small size. It works even when the
product matrix isn’t square, such as AB with a 2 × 4 matrix A and a 4 × 3 matrix B: this appears as a
2× 3 matrix (as it should):




b11 b12 b13
b21 b22 b23
b31 b32 b33
b41 b42 b43




[
a11 a12 a13 a14
a21 a22 a23 a24

] [
∗ ∗ ∗
∗ ∗ ∗

]
(14.3.2)

with entries that are dot products of 4-vectors. If one tries to write the corresponding diagram for the
meaningless BA

[
a11 a12 a13 a14
a21 a22 a23 a24

]




b11 b12 b13
b21 b22 b23
b31 b32 b33
b41 b42 b43







∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




then the required dot products don’t make sense (dot product of a 3-vector and a 2-vector), indicating that
something has gone wrong.

Remark 14.3.10. Although the formula for matrix multiplication initially looks complicated, it is a very
natural concept because it computes the composition of linear transformations (a fundamental operation
on such transformations). You may however wonder about a more naive notion: for two m × n matrices
A and B, we form the m× n matrix A ∗ B whose ij-entry is aijbij . This concept is called the Hadamard
product and satisfies A ∗B = B ∗ A; it only rarely arises in applications of linear algebra.

Remark 14.3.11. In applications to machine learning and many other mathematical models, multiplica-
tion of large matrices is an essential ingredient. In Section G.5 we discuss how knowledge of properties
of matrix multiplication (such as associativity) provides crucial time savings in practical algorithms at the
foundation of artificial intelligence. There are also some very clever algorithms for speeding up the com-
putation of products of large matrices in general (reducing the task to computing products of “smaller”
matrices), and special-purpose algorithms for quickly multiplying matrices that are “sparse”; i.e., have
many entries equal to 0. Efficiency with matrices on the computer is also relevant beyond artificial intelli-
gence problems, such as in the finite element method and weather forecasting.

14.4. Rotations revisited in R2. Imagine rotating R2 by some angle θ around the origin; let’s say we
do it counterclockwise. Mathematically speaking, this rotation describes a function Rθ : R

2 → R2 where

Rθ(v) = counterclockwise rotation of v by θ

(with the understanding that Rθ(0) = 0). The function Rθ is linear. The reason is that rotation respects
the parallelogram law for vector addition (see Figure 14.4.1) and respects scalar multiplication (changing
the unit of distance before or after a rotation makes no difference), so it is linear by Theorem 14.2.1!
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y

x

a

b

a+b

Rθ(a)

Rθ(b)Rθ(a+b)

FIGURE 14.4.1. Rotation of a parallelogram is a parallelogram, so Rθ(a+ b) = Rθ(a) +Rθ(b)

Note how important it was to have the characterization of linearity via properties in (14.2.1). You
cannot see by pure thought that Rθ has the right formula to be a linear function (we do not yet have any
formula for it!), but you can see that it has the right properties as in Theorem 14.2.1 and so must be linear.
The same reasoning applies to rotations of R3 around a line through the origin!

Since Rθ is now known to be a linear function, it must be given by some matrix Aθ; i.e., Rθ(v) = Aθv,
where the right side is a matrix-vector product. What is Aθ? By (13.4.2) we have a formula:

Aθ =

[
a b
c d

]
, where

[
a
c

]
= Aθ

[
1
0

]
= Rθ

([
1
0

])
and

[
b
d

]
= Aθ

[
0
1

]
= Rθ

([
0
1

])
.

You can work out what Rθ

([
1
0

])
and Rθ

([
0
1

])
are by staring at rotations of

[
1
0

]
and

[
0
1

]
: the result is

Rθ

([
1
0

])
=

[
cos θ
sin θ

]
, Rθ

([
0
1

])
=

[
− sin θ
cos θ

]

(the first by definition of cos θ and sin θ, the second since cos(θ + π/2) = − sin θ, sin(θ + π/2) = cos θ).

We have shown that the matrix of counterclockwise rotation of R2 around the origin by θ is

Aθ =

[
cos θ − sin θ
sin θ cos θ

]
. (14.4.1)

In words, if v ∈ R2, then Aθv is obtained by rotating v counterclockwise by θ around the origin.

Example 14.4.1. Consider a counterclockwise rotation by 45°; i.e., π/4 radians. Since sin(π/4) =
cos(π/4) = 1/

√
2 (think about an isosceles right triangle with hypotenuse of length 1), we see that

Aπ/4 =

[
1/
√
2 −1/

√
2

1/
√
2 1/

√
2

]
.

For a clockwise rotation by 45°, the effect is rotating by −45° counterclockwise, or in other words
−π/4 radians. Since sin(−x) = − sin(x) and cos(−x) = cos(x), we have sin(−π/4) = −1/

√
2 and

cos(−π/4) = 1/
√
2, so the corresponding rotation matrix is

A−π/4 =

[
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

]
.
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■

Example 14.4.2. If you go back to the rotations in Example 8.1.12, you can use (14.4.1) to check the
correctness of the formula given there for a counterclockwise rotation by 90°: it is given by the effect of
the matrix

Aπ/2 =

[
0 −1
1 0

]

as asserted there. The more complicated matrix given in Example 8.1.12, namely
[√

3/2 1/2

−1/2
√
3/2

]
,

is exactly Aθ with cos(θ) =
√
3/2 and sin(θ) = −1/2, which is to say θ = −30°; i.e., −π/6 radians. ■

Example 14.4.3. It is a familiar fact from experience with a steering wheel (in reality or virtual reality)
that composing rotations corresponds to adding angles. In symbols: Rθ1 ◦ Rθ2 = Rθ1+θ2 . Let’s see that
matrix multiplication gives the same conclusion: we compute the matrix product
[
cos θ1 − sin θ1
sin θ1 cos θ1

] [
cos θ2 − sin θ2
sin θ2 cos θ2

]
=

[
cos θ1 cos θ2 − sin θ1 sin θ2 −(cos θ1 sin θ2 + sin θ1 cos θ2)
sin θ1 cos θ2 + cos θ1 sin θ2 − sin θ1 sin θ2 + cos θ1 cos θ2

]

=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
.

The essential content of this calculation is the addition laws for sine and cosine. So we see that those
addition laws, which may have seemed complicated or bizarre when you encountered them when learning
trigonometry, are more intuitive than you thought them to be! ■

14.5. Rotations revisited in R3. Finally, we return to rotations in three dimensions, focusing mainly
on rotations around the x-, y- and z-axes. If you study more linear algebra then you will learn how
to analyze rotations around an arbitrary line passing through the origin (as arises in computer graphics,
robotics, video games, and so on).

z

y

x

θ

FIGURE 14.5.1. Rotation around the z-axis

What is the matrix for a rotation by an angle θ around the z-axis (as in Figure 14.5.1)? It leaves the
z-coordinate unchanged (so carries e3 to itself) and in the x and y coordinates it does just what we worked
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out for Rθ(e1) and Rθ(e2) in the xy-plane in Section 14.4, so once again using the fundamental principle
that the jth column of a matrix is the effect of the linear transformation on ej we obtain

matrix for rotation by angle θ counterclockwise around the z-axis is Rz(θ) =



cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1


 .

Here “counterclockwise” means that you follow the right-hand rule: place your thumb in the direction of
the positive z-axis, and rotate by θ in the direction that your fingers curl, as shown in Figure 14.5.1. The
columns from left to right are exactly the transformation applied to e1, e2, e3 (check!).

Replacing the z-axis and xy-plane with the x-axis and the yz-plane respectively yields (check!):

matrix for rotation by angle θ counterclockwise around the x-axis is Rx(θ) =



1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


 .

Likewise, for rotation by an angle θ counterclockwise around the y-axis, the matrix is

Ry(θ) =




cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)




(note the placement of sin(θ) in the upper-right and − sin(θ) in the lower-left!).

Remark 14.5.1. In aeronautics, the preceding three rotations have special names: Rx(φ) is a roll
(corresponding to a plane flying horizontally and due east tilting its wings by an angle φ relative to
the ground),Ry(θ) is a pitch (corresponding to a plane flying due east and diverting from level flight by
a vertical angle θ), andRz(ψ) is a yaw (corresponding to a plane flying horizontally and diverting from
the eastward direction by an angle ψ; this is an ancient nautical word related to “yacht”). Alternative
terms are bank, elevation, and heading respectively.

For a plane in flight, there is an associated triple of mutually perpendicular unit vectors: one point-
ing straight ahead along the line through the body of the plane, one pointing out along the left wing,
and one pointing through the top of the plane. The 3 × 3 matrix R whose columns are these respec-
tive vectors encodes the orientation of the plane in space. This matrix can be obtained by applying
pitch, yaw, and roll operations in a specific order: R = Rz(ψ)Ry(θ)Rx(φ) with −π < ψ, φ ≤ π
and −π/2 ≤ θ ≤ π/2. The angles (ψ, θ, φ) are called the Euler angles in the “zyx convention” or
“roll-pitch-yaw” convention (they are also called nautical angles or Tait-Bryan angles); this was the
convention used for Apollo 13 (beginning at 0:55 in that video; the first 8 seconds of the video are
shaky), and a visualization tool is given here. There are other conventions, depending on the order of
matrix multiplication; the convention used must always be specified to avoid errors.

The guidance systems on Apollo missions used Euler angles computed by mechanical gyroscopes.
The case θ ≈ ±π/2 had to be avoided because two of the three gimbals in the gyroscope would then
align, after which the gyroscope cannot recover 3 degrees of freedom (a circumstance called “gimbal
lock”, analogous to the ambiguity in telling someone to walk due south from the North Pole). This
caused serious concerns on Apollo 10 (which nearly crashed into the Moon), 11, and 13 (which nearly
gyrated out of control). Mathematically, when θ = ±π/2 for a fixed sign, the rotation matrix

Rz(ψ)Ry(±π/2)Rx(φ) =




0 ± sin(φ∓ ψ) ± cos(φ∓ ψ)
0 cos(φ∓ ψ) − sin(φ∓ ψ)
±1 0 0



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only “knows” the single angle φ∓ ψ (for a fixed sign); it does not determine the pair of angles ψ and
φ. More concretely, any change in the roll matrix Rz(ψ) has the same effect as a specific change in
the yaw matrix Rx(φ) (e.g., adding 30◦ to ψ corresponds to adding ∓30◦ to φ).

A modern method in aerospace and robotics to avoid gimbal lock is to use a more robust math-
ematical concept, called quaternions (nicely introduced in this video); e.g., the Space Shuttle was a
pioneer in the use of quaternion-based aerospace guidance systems. Unfortunately the Space Shuttle
software incorporated a non-standard step (essentially flipping the order of quaternion multiplication),
causing parts of the aerospace community to use quaternionic formulas that differ in crucial ways from
what is used throughout mathematics, physics, standard mathematical software, and most of robotics.
This created much confusion, such as for Space Shuttle docking with the International Space Station!

We are now equipped to analyze the question at the start of this chapter:

Rotate a sphere centered at the origin first by the counterclockwise rotation R1 around
the z-axis by −45°, and then by the counterclockwise rotation R2 around the y-axis by
45°. How does this compare with composing these rotations in the opposite order?

Before we do the mathematical analysis, you should first play with a ball to try to have a sense of what
is going on (looking at the effect on points marked on it with a pencil or Hagoromo chalk).

According to our preceding determination of general rotations around the coordinate axes, R1 and R2

have respective matrices

A =




1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

0 0 1


 , B =




1/
√
2 0 1/

√
2

0 1 0

−1/
√
2 0 1/

√
2


 . (14.5.1)

We have R1 = TA and R2 = TB, or in other words

R1





x
y
z




 =




(x/
√
2) + (y/

√
2)

−(x/
√
2) + (y/

√
2)

z


 , R2





x
y
z




 =




(x/
√
2) + (z/

√
2)

y

−(x/
√
2) + (z/

√
2)


 .

If we first apply R1 and then R2, we are forming the composition R2 ◦ R1 (make sure you understand
why this is correct, not R1 ◦ R2!). This composition is computed by the matrix product BA in the same
order, due to the definition of matrix multiplication. The matrix product

BA =




1/
√
2 0 1/

√
2

0 1 0

−1/
√
2 0 1/

√
2






1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

0 0 1




is the 3 × 3 matrix whose ij-entry is the dot product of the ith row of B and the jth column of A. For
example, the (3, 1)-entry is the dot product

(−1/
√
2, 0, 1/

√
2) · (1/

√
2,−1/

√
2, 0) = −1/2 + 0 + 0 = −1/2.

Proceeding similarly for each entry of BA, check that you get

BA =




1/2 1/2 1/
√
2

−1/
√
2 1/

√
2 0

−1/2 −1/2 1/
√
2


 .

How about the productAB in the other order, corresponding to the composition of rotations TA◦TB =
R1 ◦R2 in the opposite order? Once again using (14.3.1) and systematically computing many dot products
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(now for rows of A and columns of B), check that

AB =




1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

0 0 1






1/
√
2 0 1/

√
2

0 1 0

−1/
√
2 0 1/

√
2


 =




1/2 1/
√
2 1/2

−1/2 1/
√
2 −1/2

−1/
√
2 0 1/

√
2


 . (14.5.2)

Observe that AB is very different from BA, conveying algebraically what is also seen geometrically by
rotating an actual ball in accordance with R1 and R2.

Example 14.5.2. The three columns of A in (14.5.1) are orthonormal, and likewise for B in (14.5.1) and
for the 3× 3 matrices BA and AB that we have computed. You can verify this by direct computation for
each matrix (please do it yourself for at least one of them), but here is a more illuminating geometric way
to see such orthonormality without computation.

Each of these matrices computes a linear function that preserves lengths and angles. If T is any such

linear function then for the standard basis e1 =



1
0
0


 , e2 =



0
1
0


 , e3 =



0
0
1


 we know (as for any linear

transformation R3 → R3) that the columns of the matrix for T are T (e1), T (e2), T (e3). But the effect of
T preserves lengths of vectors and angles between vectors, so it carries a collection of pairwise orthogonal
unit vectors to a collection of pairwise orthogonal unit vectors. It follows that if i ̸= j then T (ei) and
T (ej) are perpendicular to each other (because ei, ej are perpendicular) and each T (ei) has length 1. This
expresses that the columns of T are orthonormal. To summarize:

Any 3× 3 matrix whose effect preserves lengths and angles has orthonormal columns.

In Chapter 20 we will study such matrices – and their n× n analogues – in more depth. ■

Remark 14.5.3 (online resource). The third, fourth, and fifth videos at “Essence of Linear Algebra”
give dynamic visualizations of linear transformations and matrix products. Some useful online matrix
calculators (for playing around and checking your work) are reshish, matrixcalc, and WolframAlpha.

14.6. Proofs involving linearity. Let’s justify the visualization in Figure 14.1.3 and the Tiling
Principle from Section 14.1, prove Theorem 14.2.1, and prove the formula (14.3.1) for a matrix prod-
uct. First we justify Figure 14.1.3, showing that f(S) is the parallelogram with vertices shown there:

PROOF. The key to describing f(S) is to express S in the language of linear algebra: the points of

S are s =
[
x
y

]
= x

[
1
0

]
+ y

[
0
1

]
= xe1 + ye2 for 0 ≤ x, y ≤ 1. Hence, by the Linearity Principle, the

output f(S) of f applied to points s ∈ S consists of the points

f(s) = f(xe1 + ye2) = xf(e1) + yf(e2) = x

[
a
c

]
+ y

[
b
d

]
(14.6.1)

for 0 ≤ x, y ≤ 1. We claim that these are exactly the points of the parallelogram P having a vertex

at 0 and edges along
[
a
c

]
and

[
b
d

]
(and so with far tip at the vector sum

[
a+ b
c+ d

]
by the parallelogram

law) as drawn on the right in Figure 14.1.3.
The way that the red regions in Figure 14.1.3 sit inside the larger green regions expresses a visual

interpretation of (14.6.1) and underlies why f(S) = P . We now explain this, since it conveys the
essence of linearity and how one should always visualize the effect of a “typical” linear transforma-
tion. This is the heart of how algebra and geometry interact in linear algebra.
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First, we work out what f does to the bottom and left edges of S (confirming what is suggested by

Figure 14.1.3). These edges are line segments joining 0 to
[
1
0

]
and

[
0
1

]
respectively. For any w ∈ R2

the line segment joining 0 to w consists of the points tw for 0 ≤ t ≤ 1, so since f(tw) = tf(w) by
the Linearity Principle we see that the output of f on the segment L joining 0 to any w is the segment
L′ joining 0 to f(w). The equation f(tw) = tf(w) can be interpreted as saying that for the point
v = tw ∈ L whose distance from 0 is a fraction t of the full length of L, f(v) = tf(w) is the point of
L′ whose distance from 0 is the same fraction t of the full length of L′ (e.g., f((1/3)w) = (1/3)f(w)
says that the point of L which is 1/3 of the way from 0 is carried to the point of L′ that is 1/3 of the
way from 0).

Applying this with w =

[
1
0

]
and w =

[
0
1

]
, the output of f on the bottom and left edges of S

is given by the edges of P joining 0 to f

([
1
0

])
=

[
a
c

]
(first column of A) and to f

([
0
1

])
=

[
b
d

]

(second column of A) respectively.

Now consider a general point s =
[
x
y

]
∈ S. As x, y vary between 0 and 1, s sweeps out all points

of S, with x and y respectively keeping track of how “far” into S the point s is relative to the bottom
and left edges of S as fractions of the entire edge lengths (which are 1, since S is the unit square).
This is visualized with the red rectangle R having opposite corners 0 and s and side lengths that, as
fractions of the full edge lengths of S, are x and y.

By (14.6.1), f(s) = x

[
a
c

]
+ y

[
b
d

]
. The visualization of scalar multiplication and vector addition

yields a geometric visualization of x
[
a
c

]
+ y

[
b
d

]
in terms of the parallelogram P whose edge lengths

are generally not 1: it is the point in P whose corresponding red parallelogram Q as in Figure 14.1.3
has edges whose lengths as fractions of the entire edge lengths of P are x and y respectively. So as
x, y vary between 0 and 1, these points sweep out exactly the entirety of P ! This shows that f(S) = P
(and moreover that f(R) = Q). □

Now that we know f(S) is a parallelogram (and even the parallelogram P with vertices as in Figure
14.1.3), so it makes sense to speak of tiling R2 by copies of f(S), let’s use the Linearity Principle to
show that f transforms the tiling by S into the tiling by P :

PROOF. The key point is to express the geometric property of “tiling” in terms of algebra. Just as

P consists of points x
[
a
c

]
+ y

[
b
d

]
for 0 ≤ x, y ≤ 1, when we tile R2 by copies of P then we claim

that each individual “tile” consists of points (m + x)

[
a
c

]
+ (n + y)

[
b
d

]
for 0 ≤ x, y ≤ 1 and some

fixed integers m and n. The corners of the tiling are reached by moving from 0 parallel to the edges
of P in units of full edge lengths, so by the parallelogram law for vector addition the corners of the

tiling are the points m
[
a
c

]
+ n

[
b
d

]
for integers m,n (think about this!). Each tile has a “lower left”
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corner v = m

[
a
c

]
+ n

[
b
d

]
with integers m and n, and for varying 0 ≤ x, y ≤ 1 the points

(m+ x)

[
a
c

]
+ (n+ y)

[
b
d

]
=

(
m

[
a
c

]
+ n

[
b
d

])
+

(
x

[
a
c

]
+ y

[
b
d

])
= v +

(
x

[
a
c

]
+ y

[
b
d

])

sweep out an entire copy of P with v as its lower-left corner. This describes the tiling by copies of P .

The same works for the easier tiling by S using
[
1
0

]
and

[
0
1

]
in place of

[
a
c

]
and

[
b
d

]
. By the

Linearity Principle, applying f to a constituent
(
m

[
1
0

]
+ n

[
0
1

])
+

(
x

[
1
0

]
+ y

[
0
1

])
of the tiling

by copies of S (for fixed integers m,n and varying 0 ≤ x, y ≤ 1) yields f

(
m

[
1
0

]
+ n

[
0
1

])
+

f

(
x

[
1
0

]
+ y

[
0
1

])
. By a further application of the Linearity Principle, this is equal to

(
mf

([
1
0

])
+ nf

([
0
1

]))
+

(
xf

([
1
0

])
+ yf

([
0
1

]))
= v +

(
x

[
a
c

]
+ y

[
b
d

])
.

By varying 0 ≤ x, y ≤ 1 with fixed integers m and n, we have obtained a constituent of the tiling by
copies of P . Hence, we have shown that f carries the tiling by copies of S over to the tiling by copies
of P , which is exactly the Tiling Principle. □

Next, we prove Theorem 14.2.1.

PROOF. First, we first check that any linear function f : Rn → Rm satisfies (14.2.1). By defini-
tion f(x) = Ax for some m× n matrix A = (aij), so we have to show the vector identities

A(cx) = cAx, A(x+ y) = Ax+ Ay.

We do this by comparing the ith component on both sides of each desired identity, for 1 ≤ i ≤ n. The
ith component of Ax is (Ax)i = ai1x1 + ai2x2 + · · · + ainxn, so likewise (A(cx))i is given by the
same formula with xj replaced by cxj for each j. But we can factor out c to get

ai1(cx1) + ai2(cx2) + · · ·+ ain(cxn) = c(ai1x1 + ai2x2 + · · ·+ ainxn) = c(Ax)i = (cAx)i.

This shows (A(cx))i = (cAx)i for all i, so A(cx) = cAx as desired. The case of vector addition
goes very similarly, and comes down to the identity

ai1(x1 + y1) + ai2(x2 + y2) + · · · = ai1x1 + ai1y1 + ai2x2 + ai2y2 + · · ·
= (ai1x1 + ai2x2 + · · · ) + (ai1y1 + ai2y2 + · · · );

we leave it to the interested reader to fill in the details for this part.
We next explain the more interesting feature of going the other way: why any function satisfying

(14.2.1) must be a linear function. For any vector



x1
...
xn


 ∈ Rn we may write:



x1
...
xn


 = x1e1 + · · ·+ xnen.
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If f : Rn → Rm satisfies (14.2.1), apply f to both sides to get

f







x1
x2
...
xn





 = f(x1e1) + f(x2e2) + · · ·+ f(xnen) = x1f(e1) + x2f(e2) + · · ·+ xnf(en),

where we used (14.2.1) for both equalities. We can rewrite this as

f







x1
x2
...
xn





 = A




x1
x2
...
xn




where A is the matrix
[
f(e1) f(e2) · · · f(en)

]
with jth column f(ej). Voila, f(x) = Ax for a

matrix A, so f is linear!
To show that for f(x) = Ax the jth column of A is f(ej) = Aej , we just directly compute

the matrix-vector product Aej to see that its ith entry is aij , so Aej is the column of numbers
a1j, a2j, . . . , amj (listed vertically in that order). This is the jth column of A, as desired.

Finally, suppose g : Rn → Rm and h : Rp → Rn are linear. To show that g ◦ h : Rp → Rm is
linear it is enough (by what has been shown above) to check that this interacts well with vector addition
and scalar multiplication. We will do this by using that both g and h have such good behavior (as we
are assuming each is linear!). For any x,y ∈ Rp we have

(g ◦ h)(x+ y) = g(h(x+ y)) = g(h(x) + h(y)) = g(h(x)) + g(h(y)) = (g ◦ h)(x) + (g ◦ h)(y)
and for any scalar c we have (g ◦ h)(cx) = g(h(cx)) = g(ch(x)) = cg(h(x)) = c (g ◦ h)(x). □

Finally, we establish (14.3.1) using the notation introduced there (such as A and B).

PROOF. We will write out the formula for TA ◦ TB to compute its matrix using some algebra,
and making free use of summation notation and its properties. (If you find this derivation confusing
because of the notation, please work through it yourself when both A and B are 2 × 2 matrices to
confirm (14.3.1) by direct substitution of the formula for TB(x) in terms of B into the formula for
TA(v) in terms of A to compute TA(TB(x)) explicitly without using summation notation.)

Suppose x =




x1
x2
...
xp


. Then the kth component of TB(x) is

∑p
j=1 bkjxj , so the ith component

of TA(TB(x))) is
∑n

k=1 aik
∑p

j=1 bkjxj =
∑n

k=1

∑p
j=1 aikbkjxj =

∑p
j=1 (

∑n
k=1 aikbkj)xj, where the

last step used the maneuver of swapping the order of summation. SinceAB is defined to be the matrix
that computes TA ◦ TB, so (AB)x = (TA ◦ TB)(x) = TA(TB(x)), we conclude that the ith entry of
(AB)x is given by the final double summation above. But by the meaning of matrix-vector products,
(AB)x has ith entry

∑p
j=1(AB)ijxj , where (AB)ij denotes the ij-entry of AB that we are seeking to

compute. Equating our two expressions for the ith entry of (AB)x yields
p∑

j=1

(AB)ijxj =

p∑

j=1

(
n∑

k=1

aikbkj

)
xj,

so equating coefficients of xj on the two sides gives (AB)ij =
∑n

k=1 aikbkj as desired. □
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Chapter 14 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
TA (for m× n matrix A) the function Rn → Rm carrying x ∈ Rn to Ax ∈ Rm Definition 14.3.1
AB (for matrices A,B) for m × n matrix A and n × p matrix B, the m × p

matrix computing effect of TA ◦ TB, given by (14.3.1)
Def. 14.3.1, Thm. 14.3.2

Rθ (for angle θ) the function R2 → R2 rotating counterclockwise
around 0 by the angle θ

start of Section 14.4

Concept Meaning Location in text
linear transformation a function Rn → Rm of the form f(x) = Ax for

an m × n matrix A (same as “linear function”; see
Prop. 13.3.8)

Definition 14.1.1

matrix multiplication matrix that computes the effect of the composition
(in a specified order) of linear transformations asso-
ciated to two given matrices

Definition 14.3.1

projection matrix for linear subspace V of Rn, the n × n matrix com-
puting the effective of ProjV : Rn → Rn

Example 14.2.2

rotation matrix (n = 2, 3) matrix computing effect of rotation (by some angle)
of R2 around 0 or of R3 around a coordinate axis

Sections 14.4, 14.5

Result Meaning Location in text
characterization of linear
functions via properties

a function f : Rn → Rm is linear precisely when it “inter-
acts well” with vector addition and scalar multiplication

Theorem 14.2.1

projections & rotations are
linear

the geometrically-defined concepts of projection to a lin-
ear subspace of Rn and rotation by some angle around the
origin in R2 or a coordinate axis in R3 interact well with
vector addition and scalar multiplication and so (as for
any linear functions) are computed as the matrix-vector
product against a specific matrix (found using Theorem
13.4.5!)

Ex. 14.2.2, Sec. 14.4

matrix multiplication “is”
linear composition

a composition of linear functions is linear, so composition
can be expressed in terms of matrices since linear func-
tions “correspond” to matrices

Theorem 14.3.2

matrix multiplication not
commutative, but com-
mutes in the diagonal case

the order of multiplication of two matrices typically has a
huge effect on their product (and on whether the product
makes sense), but is “easy” in the diagonal case

Exs. 14.3.3–14.3.5,
14.3.8, 14.3.9, Prop.
14.3.7

Skill Location in text
visualize linear T : R2 → R2 via tiling and effect on unit square Examples 14.1.2, 14.1.3
compute matrix products, be aware that order matters Examples 14.3.3–14.3.5, 14.3.8, 14.3.9
compute matrix for rotation of R2 around 0 by specified angle (14.4.1), Examples 14.4.1, 14.4.2
compute matrix for rotation of R3 around a coordinate axis by spec-
ified angle

Section 14.5
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14.7. Exercises. (links to exercises in previous and next chapters)

Exercise 14.1. For each of the following functions F , determine if it is linear by using the viewpoint of
behavior with respect to vector addition and scalar multiplication. If it is not linear, either find a pair of
vectors v,w for which F (v+w) ̸= F (v)+F (w) or find a vector v and scalar c for which F (cv) ̸= c F (v).

(a) f
([
x
y

])
=

[
2x− 3y

x

]

(b) g
([
x
y

])
= xy

(c) h





x
y
z




 =



z
x
y




Exercise 14.2. For the matrices A =



1 2
3 3
2 1


, B =

[
1 −1
−1 0

]
, C =

[
1 0 1
1 2 2

]
, compute the products:

(a) AB
(b) AC
(c) (BC)A and B(CA).

Exercise 14.3. The operation T : R2 → R2 which rotates vectors clockwise by 45◦ and then stretches by
2 along the x-direction (i.e., doubles the x-coordinate) carries parallelograms to parallelograms, or more
specifically is compatible with the parallelogram law, and it interacts equally well with scaling vectors by
any scalar, so T is linear. (This is the same as the reasoning in the main text for why any rotation around
the origin is linear and hence is given by a 2× 2 matrix.)

Compute in two ways the 2× 2 matrix A that corresponds to T :

(a) Find the columns of A directly by using that if f : R2 → R2 is linear then f(ei) is the ith column
of the corresponding matrix (Theorem 13.4.5), where {e1, e2} is the standard basis of R2.

(b) Compute the matrix R for the 45◦ clockwise rotation around the origin and the matrix M for
stretching by 2 along the x-direction, and then multiply R and M in the appropriate order. This
should agree with (a).

(c) Explain in words why composing the rotation and stretching operations in the other order should
give a different outcome. Multiply R and M in the other order to see what you get.

Exercise 14.4. Let v =



v1
...
vn


 ∈ Rn be a vector. This may be used to define a function fv : Rn → R

given by fv(x) = v · x.
(a) Show that fv is linear by checking that it interacts well with vector addition and scalar multipli-

cation. (This is an application of Theorem 14.2.1.)
(b) Find the 1× n matrix representation of fv (the matrix entries will be in terms of the vi’s).

Exercise 14.5. Let T : R3 → R3 be the rotation around the z-axis corresponding to a 90◦ counterclock-
wise rotation in the xy-plane, and T ′ : R3 → R3 the rotation around the x-axis corresponding to a 90◦

counterclockwise rotation in the yz-plane.

(a) Compute the 3 × 3 matrix A for T and A′ for T ′. (Hint: the columns are the effect of T and T ′

on the standard basis; think visually.)
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(b) Determine the 3×3 matrix for T ′ ◦T in two ways: matrix multiplication, and finding its columns
by evaluating (T ′◦T )(ej) = T ′(T (ej)) for each j via thinking in terms of rotations. Your answers
should agree!

[It turns out that T ′ ◦ T is a 120◦ rotation around the line spanned by (1,−1, 1) ∈ R3 (check
for yourself with an actual ball, and a pencil or chalk), so your matrix should carry (1,−1, 1) to
itself; we aren’t asking you to verify this, but that is a safety check on your work.]

(c) Determine the 3×3 matrix for T ◦T ′ in two ways: matrix multiplication, and finding its columns
by evaluating (T ◦T ′)(ej) = T (T ′(ej)) for each j via thinking in terms of rotations. Your answers
should agree!

[It turns out that T ◦T ′ is a 120◦ rotation around the line spanned by (1, 1, 1) ∈ R3 (check for
yourself with an actual ball, and a pencil or chalk), so your matrix should carry (1, 1, 1) to itself;
we aren’t asking you to verify this, but that is a safety check on your work.]

Exercise 14.6. Let p : R4 → R2 be the projection onto the last two components and i : R2 → R4 be the
inclusion into the first two components; in other words,

p







x1
x2
x3
x4





 =

[
x3
x4

]
, i

([
v
w

])
=




v
w
0
0


 .

(a) Calculate the matrix A representing p and the matrix B representing i.
(b) Calculate the product AB in two ways: first by figuring out what p ◦ i does to basis vectors to

find its matrix representation, then by computing the matrix product.
(c) Calculate the product BA in two ways: first by figuring out what i ◦ p does to basis vectors to

find its matrix representation, then by computing the matrix product.

Exercise 14.7. Consider the matrix A =



0 2 0
0 0 −3
0 0 0


 .

(a) Describe geometrically what A does to each of the coordinate axes.
(b) Calculate A3 in two ways: the geometric viewpoint of linear transformations (using that compo-

sition encodes matrix multiplication, and that the columns of a matrix encode the effect of the
corresponding linear transformation on the standard basis vectors) and algebraically by multiply-
ing matrices.

Exercise 14.8. Find a 3 × 3 matrix A for which A4 acts on R3 as the identity function (carrying each
3-vector to itself) but A,A2, A3 are not the identity function. (There are many possible answers.) Hint:
think geometrically, and try to solve the analogous problem on R2 for 2× 2 matrices first.

Exercise 14.9. This exercise uses a linear transformation to relate the curve H± defined by x2 − y2 = ±1
to the hyperbola defined by xy = ±1/2 (i.e., y = ±1/(2x)), with a single choice of sign (±) throughout.
Additional linear transformations are then used to work out the geometry of other specific equations of the
form Ax2 −By2 = ±1 with A,B > 0.

(a) Let R =

[
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

]
; the effect of TR : R2 → R2 is clockwise rotation by 45◦ around the

origin. For a point v =

[
v1
v2

]
, show that v lies on the hyperbola xy = 1/2 precisely when Rv

lies on the curve H+ defined by x2 − y2 = 1. Also show that v lies on the hyperbola xy = −1/2
precisely when Rv lies on the curve H− defined by x2 − y2 = −1. (Put together, these say H± is
exactly the output of applying the rotation TR to the graph of the function ±1/(2x).)
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(b) Use (a) to sketch H+ and H− on separate grids, indicating where each crosses the coordinate
axes. Also use that the coordinate axes are the asymptotes for the graphs of ±1/(2x) to explain
why the lines y = ±x are the asymptotes of H+ and also are the asymptotes of H−.

(c) Using considerations with Ta,b’s as in Exercise 13.2, sketch the graphs of
x2

4
− y2

9
= 1 (a = 2,

b = 3) and
x2

4
− 4y2 = −1 (a = 2, b = 1/2). Indicate where each crosses the coordinate axes by

applying suitable Ta,b’s to your sketches in (b) of H+ and H− respectively. Also determine and
draw the asymptotes for each. (Hint: Ta,b carries asymptotes to asymptotes.)

Remark. The same method shows that for any a, b > 0, the curve x2/a2 − y2/b2 = ±1 is
obtained from xy = ±1/2 via applying a 45◦ rotation and suitable scaling in the coordinate
directions. (These are hyperbolas in the sense of ancient Greek geometry; for those who are
curious, a proof is given in Appendix C.)

Exercise 14.10. Let T be the triangular region (including interior) with vertices u = (0, 0), v = (1, 0),
w = (1, 2) as shown in Figure 14.7.1.

x

y

0 1 2 3

0

1

2

3

u v

w

• •

•

T

FIGURE 14.7.1. The triangle T

For the linear transformations f : R2 → R2 defined by each of the following matrices, draw the
“image” f(T ) (meaning the collection of all points f(x) for x ∈ T ; it is the entire output of f on points
of the triangle and its interior).

(a)
[
2 0
0 2

]
(b)
[
3 0
0 −2

]
(c)
[
0 2
−2 0

]
(d)
[
3 −1
−1 −2

]
.

Hint: think about how edges and interior points are described via convex combinations of two or three
vertices, and then how linear transformations interact with convex combinations.

Exercise 14.11. This exercise explores the effect of linear transformations f : R2 → R2.

(a) For points v,w ∈ R2, let ℓ be the line segment joining them (i.e., ℓ consists of the convex linear
combinations tv + (1 − t)w with 0 ≤ t ≤ 1). Explain why the output f(ℓ) of applying f to all
points of ℓ is the line segment joining f(v) and f(w).

(b) If P is the midpoint of ℓ, explain why f(P ) is the midpoint of f(ℓ). (Hint: describe P as a convex
linear combination of v and w.)

(c) Suppose T is a triangle in R2 with one vertex at 0 and another at (c, 0) with c > 0, so the third is
at (a, b) with b ̸= 0 (as the third vertex cannot be on the line through the other two vertices); any
triangle can be arranged to be such a T by sliding and rotating it in R2.
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In terms of a, b, c, build a 2× 2 matrix M of the form
[
1 x
0 y

]
for which the associated linear

transformation f carries T onto an equilateral triangle with side length c.

Exercise 14.12. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) If a function f : Rn → Rm satisfies f(0) = 0 then f must be linear.
(b) There is exactly one linear function f : R2 → R3 satisfying

f(1, 1) =



1
2
3


 and f(1,−1) =




1
−2
1


 .
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15. Matrix algebra

We have introduced (in Chapter 14) the notion of matrix multiplication as a means of computing
composition of linear transformations, and a variety of explicit examples have been worked out (illustrating
how ubiquitous it is that AB ̸= BA for n × n matrices A and B when n > 1). As the course proceeds,
the importance of matrix multiplication will become ever more apparent.

However, we haven’t given an especially good reason for the terminology “matrix multiplication”
(other than that we chose to denote it as AB). In this chapter we will explore further properties of this
operation. Its relationship with matrix addition (a new notion that we need to define, but fortunately holds
no surprises at all) will demystify why we call the construction AB (which looks rather peculiar in terms
of the formula for its entries) a “product”. The features of matrix algebra discussed here will be used
repeatedly in the chapters that follow.

By the end of this chapter you should be able to:

• rapidly compute matrix products involving a diagonal matrix;
• compute the sum of two matrices and scalar multiples of a matrix, and know the linear

transformation corresponding to each and how these interact with matrix multiplication;
• appreciate that in general there is no “cancellation law” for matrix multiplication, and that

matrix multiplication is sensitive to the order in which it is applied.

In the historical development of matrices, multiplication came before addition (see [Ha1, p. 567])!
This may sound surprising, but the reason is very natural: composing rotations (as in Section 14.1) has
visual meaning whereas matrix addition has only algebraic rather than geometric significance.

15.1. Some examples with matrix multiplication. Matrix multiplication in general is a complicated-
looking notion, though if we think about it geometrically in terms of calculating the effect of composing
linear transformations (such as rotations or shearing in some direction) then it is a natural thing to con-
sider. Its ubiquity and significance throughout the natural sciences, economics, computer science, and
data science is largely due to its connection to the composition of transformations. There are special cases
when the algebraic formulas for matrix multiplication become simpler, and one of the real surprises in the
theory of matrix algebra is that these special cases turn out to be highly relevant even for work with rather
general matrices (as we shall see later, especially in Chapter 22 and Part V). We discuss a few of these
special types of matrices now. First, we need a definition:

Definition 15.1.1. For an n × n matrix A, its diagonal consists of the entries aii in position (i, i)
for all 1 ≤ i ≤ n: this is the diagonal going from upper left to lower right, sometimes called the
main diagonal. (The other diagonal direction, from lower left to upper right, is sometimes called the
anti-diagonal; it plays no significant role whatsoever in linear algebra.)

More generally, for an m × n matrix B for any m,n ≥ 1, its diagonal consists of its entries bii.
An m× n matrix is called diagonal if all entries away from the diagonal vanish.

Example 15.1.2. Here are some examples of diagonal matrices:



2 0 0
0 3 0
0 0 4


 ,

[
−1 0
0 5

]
,




0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


 ,



−6 0 0 0
0 4 0 0
0 0 1 0


 ,




3 0 0
0 0 0
0 0 −2
0 0 0


 .
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Here are some non-diagonal matrices (make sure you see why each is non-diagonal):


2 1 0
0 3 0
0 0 4


 ,

[
−1 0
6 5

]
,




0 0 0 1
0 0 0 0
0 0 −1 0
0 0 0 0


 ,



0 −6 0 0
0 0 4 0
0 0 0 1


 ,




0 0 0
3 0 0
0 0 0
0 0 −2


 .

It’s very easy to multiply two diagonal matrices: the diagonal entries just multiply! For instance:


a 0 0
0 b 0
0 0 c





a′ 0 0
0 b′ 0
0 0 c′


 =



aa′ 0 0
0 bb′ 0
0 0 cc′


 ,




a 0 0
0 b 0
0 0 c
0 0 0






a′ 0 0 0 0
0 b′ 0 0 0
0 0 c′ 0 0


 =




aa′ 0 0 0 0
0 bb′ 0 0 0
0 0 cc′ 0 0
0 0 0 0 0




■

Example 15.1.3. It is not too much harder to multiply any matrix by a diagonal matrix (of the appropriate
size!), but the effect depends a lot on whether we multiply by the diagonal matrix on the left or right:

[
2 0 0
0 7 0

]

a b
c d
e f


 =

[
2a 2b
7c 7d

]
,



a b
c d
e f



[
2 0 0
0 7 0

]
=



2a 7b 0
2c 7d 0
2e 7f 0




This illustrates that for a diagonal matrix D, computing DA multiplies rows of A by the corresponding
diagonal entries of D (dropping rows beyond where the diagonal of D ends, in the non-square case),
and computing BD multiplies the columns of B by the corresponding diagonal entries of D (appending
columns of 0’s beyond where the diagonal of D ends, in the non-square case). Thinking about the 2 × 2
case, such as [

2 0
0 7

] [
a b
c d

]
=

[
2a 2b
7c 7d

]
,

[
a b
c d

] [
2 0
0 7

]
=

[
2a 7b
2c 7d

]
,

is the easiest way to remind yourself what happens, so don’t memorize it. ■

The n× n diagonal matrix whose diagonal entries are all equal to 1 has a special name:

The special property of the number 1 is that 1×a = a = a×1 for any a ∈ R. There is an n×nmatrix
that satisfies an analogous property for multiplication of n × n matrices, and (even though typically
AB ̸= BA when n > 1) it works whether you multiply on the left or right:

Definition 15.1.4. The n× n identity matrix, denoted In, is defined to be the diagonal n× n matrix

In =




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1




whose diagonal entries are all equal to 1.

• The corresponding linear transformation TIn : Rn → Rn gives the same output as input. In
other words, TIn(x) = x for every x ∈ Rn (Definition 14.3.1 defines the notation “TA”).

• For any m× n matrix A we have ImA = A = AIn.

It may seem that In is hardly deserving of any attention. But for our later work with the funda-
mental concepts of matrix inversion (the matrix analogue of “1/x”, essential for studying systems of
linear equations) and eigenvectors, the matrix In will be extremely convenient.
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Remark 15.1.5. Diagonal matrices may seem too special to be of any interest. One of the great surprises
in linear algebra is how ubiquitous they are. For example, in Chapter 27 we’ll see that every m×n matrix
A can be expressed as A = RDR′ where D is a diagonal m × n matrix (with non-negative diagonal
entries) and the m×m matrix R and n×n matrix R′ express “rigid motions” of Rm and Rn respectively.

In words: upon rotating the standard bases of Rm and Rn into some other orthonormal bases (encoded
in R and R′), in such new reference frames the effect of A looks diagonal (encoded in D)! Figure
B.4.1 illustrates how astonishing this is: an “ugly” A carries an ellipsoid (egg-shape) titled in a specific
way exactly onto a sphere, carrying the perpendicular axes of symmetry of the ellipsoid exactly onto an
orthonormal basis as shown. Such a visual meaning of RDR′ always holds (this may not be apparent).

The existence of such an expressionRDR′ forA (called a singular value decomposition ofA) is a deep
result, but what is the practical significance? It turns out to be the most fundamental fact in the entirety
of modern data science: this underlies data compression, machine learning, and all “big data” problems
in all scientific fields. These matters are discussed at length in Section 27.3. Diagonal matrices arise in
quantitative fields in numerous other ways via the concept of “eigenvalue” to be discussed in Part V.

Example 15.1.6. There is a nice class of matrix multiplications that can be used to manipulate rows:

1 5 0
0 1 0
0 0 1





a b c
d e f
g h i


 =



a+ 5d b+ 5e c+ 5f
d e f
g h i


 (15.1.1)

adds 5 times the second row to the first row. In general, left multiplication by



1 m 0
0 1 0
0 0 1


 with m as the

(1, 2)-entry adds m times the second row to the first row. Likewise, to add m times the second row to the
third row, move the entry “m” to the (3, 2)-position (leaving “0” in the (1,2)-entry); try it!

One can use a similar idea to manipulate columns by multiplying in the other order:

a b c
d e f
g h i





1 5 0
0 1 0
0 0 1


 =



a b+ 5a c
d e+ 5d f
g h+ 5g i




Analogously to (15.1.1), now we’ve added 5 times a column (which?) to another column (which?). ■

Example 15.1.7. A very useful class of matrices, one of which occurs on the left in (15.1.1), is the upper
triangular matrices, such as

A =



1 5 0
0 1 0
0 0 1


 , B =



−2 −1 7 4
0 1 2 0
0 0 −5 3


 , C =




3 0 4
0 −6 2
0 0 −5
0 0 0


 .

To be precise, an m× n matrix U is called upper triangular when its only possible nonzero entries are in
or above the diagonal, or equivalently all entries “below” the diagonal vanish (i.e., the ij-entry vanishes
whenever i > j). We allow 0’s in or above the diagonal too, but everything below the diagonal must be 0.

The formula to multiply two upper triangular matrices is complicated to write out explicitly (it isn’t
as clean as the diagonal case), but a nice thing happens: if A and B are upper triangular, then AB is
upper triangular too. We saw 3 × 3 instances of this in Example 14.3.8. Check the following additional
examples to convince yourself this holds in general:

2 −1 1
0 −3 2
0 0 4





−1 3 6 1
0 4 5 −3
0 0 −2 1


 =



−2 2 5 6
0 −12 −19 11
0 0 −8 4


 ,



1 −4 3
0 1 6
0 0 1





1 4 −27
0 1 −6
0 0 1


 =



1 0 0
0 1 0
0 0 1


 ,
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

−1 3 6 1
0 4 5 −3
0 0 −2 1







6 2 4
0 1 2
0 0 −4
0 0 0


 =



−6 1 −22
0 4 −12
0 0 8


 .

Similarly, we can define lower triangular matrices, such as

A =



2 0 0
5 1 0
0 4 −3


 , B =



−2 0 0 0
6 1 0 0
4 −3 5 0


 , C =




3 0 0
2 −6 0
4 7 −5
9 −2 −1


 .

To be precise, an m× n matrix L is called lower triangular when its only possible nonzero entries are in
or below the diagonal, or equivalently all entries “above” the diagonal vanish (i.e., the ij-entry vanishes
whenever i < j). We allow 0’s in or below the diagonal too, but everything above the diagonal must be
0. The product of two lower triangular matrices is always a lower triangular matrix, much like the upper
triangular case considered above. ■

Remark 15.1.8. You might think that upper and lower triangular matrices are too special to be of any real
interest for work with general matrices. But amazingly, it turns out that “most” m × n matrices A can
be written in the form A = LU where L is m × p lower triangular and U is p × n upper triangular for
p = min(m,n) the smaller among m and n (so if m = n then p = m = n)! It is mysterious to us at this
stage how to find such L and U when given A. In Chapter 22 we will discuss the application of such L
and U to solving systems of m linear equations in n unknowns, and for computing “matrix inverses”, and
indicate how such L and U are computed from A.

15.2. Addition and scalar multiplication for matrices. Before we state the general properties of
matrix multiplication, we need to address addition and scalar multiplication for matrices, topics that are
fortunately entirely unsurprising: if A and B are m× n matrices and c is a scalar, then:

(i) the sum A+ B is defined to be the m× n matrix obtained by adding corresponding entries in A
and B (i.e., its ij-entry is aij + bij); the matrix sum A + B only makes sense when A and B
are both m× n,

(ii) the scalar multiple cA is defined to be the m × n matrix obtained by multiplying every entry of
A by c (i.e., its ij-entry is caij).

Example 15.2.1. Here are some matrix sums:


−1 2 1
0 7 4
5 −3 6


+



3 8 2
6 −4 1
2 7 1


 =



2 10 3
6 3 5
7 4 7


 ,

[
1 −1 6
2 3 −2

]
+

[
−4 5 −3
−2 1 1

]
=

[
−3 4 3
0 4 −1

]
,

[
7 −9
4 5

]
+

[
−7 9
−4 −5

]
=

[
0 0
0 0

]
.

■

The matrix sums in Example 15.2.1 come out the same way if we swap the order of the matrices on the
left side of each equality, ultimately because the termwise sum of numbers aij+bij is the same as bij+aij .
In this way, one gets straight from the definition that A+ B = B + A for any two m× n matrices A and
B for any m and n due to the analogous property for numbers. Nothing surprising happens with matrix
addition!
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Example 15.2.2. Here are some scalar multiplications:

5



3 8 2
6 −4 1
2 7 1


 =



15 40 10
30 −20 5
10 35 5


 , (−2)

[
7 −9
4 5

]
=

[
−14 18
−8 −10

]
, (−1)

[
−4 5 −3
−2 1 1

]
=

[
4 −5 3
2 −1 −1

]
.

■

Matrix addition and scalar multiplication of matrices have meaning in terms of linear transformations:

TA+B(x) = TA(x) + TB(x), TcA(x) = c TA(x)

(using “TA” notation from Definition 14.3.1); i.e., these respectively correspond to the pointwise sum of
linear transformations TA + TB and the pointwise c-multiple of a linear transformation. This expresses
concrete identities for matrix-vector products with respect to addition and scalar multiplication of matrices:
(A + B)x = Ax + Bx and (cA)x = c(Ax) (identities that one can check in the 2 × 2 case by writing
them out; those who are interested in the general case of each can work that out similarly). In summary:

Consider a scalar c and two m× n matrices

A =




a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn


 B =




b11 b12 . . . b1n
b21 b22 . . . b2n
...

... . . . ...
bm1 bm2 . . . bmn




Definition 15.2.3. The matrix sum A+B is defined to be the m× n matrix

A+B =




a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
... . . . ...

am1 + bm1 am2 + bm2 . . . amn + bmn




and the scalar multiple cA is defined to be the m× n matrix

cA =




ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n

...
... . . . ...

cam1 cam2 . . . camn




Proposition 15.2.4. The linear transformations TA+B and TcA for the matrix sum and the scalar mul-
tiple respectively satisfy TA+B(x) = TA(x) + TB(x) and TcA(x) = c TA(x) for all x ∈ Rn.

Familiar-looking rules for the interaction of matrix addition and scalar multiplication of matrices are
valid and involve no surprises, such as c(A+ B) = cA+ cB and (c1c2)A = c1(c2A), since these express
analogous familiar properties for numbers at the level of each individual matrix entry. Matters become
more interesting (and more useful) when matrix multiplication is brought in, so we now turn to that.

15.3. First properties of matrix algebra. Part of this course is familiarizing yourself with what
works – and what doesn’t – with matrix multiplication. Here are some basic unsurprising properties,
similar to the case of ordinary numbers (in Chapter 18 we’ll encounter more advanced ones).

Important basic properties of matrix multiplication:

(MM1) It recovers matrix-vector multiplication: if A is an m × n matrix, and x ∈ Rn is thought of
as an n× 1 matrix, the matrix-matrix product Ax is the same as the matrix-vector product.
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(MM2) A(B +C) = AB +AC and (A′ +B′)C ′ = A′C ′ +B′C ′. (These “distributive laws” are the
reason we call it matrix multiplication.)

(MM3) A(BC) = (AB)C, and A(cB) = (cA)B = c(AB) for any scalar c. In particular, taking C
to be an m× 1 matrix that is a column vector v by another name, A(Bv) = (AB)v.

(MM4) If A is an m × n matrix, then ImA = A = AIn, where Im is the m ×m identity matrix and
In is the n× n identity matrix.

In Section 15.4 we give clean proofs of these properties for those who are interested, especially an
elegant proof of (MM2) and (MM3) by arguments with linear transformations instead of messy algebra
with explicit formulas. Those who are interested can check that A(cIn) = cA = (cIm)A; i.e., cA is the
product in either order of A against the diagonal matrix whose diagonal entries are all equal to c.

Example 15.3.1. Since all of the properties listed above express analogues of familiar properties for num-
bers, so there are no surprises, we content ourselves with illustrating these with 2 × 2 matrices. Let’s
choose

A =

[
3 −1
4 2

]
, B =

[
−5 7
4 1

]
, C =

[
8 3
7 −3

]
.

Then

A(BC) =

[
3 −1
4 2

]([
−5 7
4 1

] [
8 3
7 −3

])
=

[
3 −1
4 2

] [
9 −36
39 9

]
=

[
−12 −117
114 −126

]

and

(AB)C =

([
3 −1
4 2

] [
−5 7
4 1

])[
8 3
7 −3

]
=

[
−19 20
−12 30

] [
8 3
7 −3

]
=

[
−12 −117
114 −126

]
,

so in this case A(BC) = (AB)C as in (MM3).
The distributive laws A(B+C) = AB+AC and (A+B)C = AC+BC in (MM2) work out equally

well by direct calculation. Let’s discuss the first one, and leave it to the reader to carry out the analogous

calculation to verify the second one in this case. The sum B + C is equal to
[
3 10
11 −2

]
, so

A(B + C) =

[
3 −1
4 2

] [
3 10
11 −2

]
=

[
−2 32
34 36

]
.

The products AB and AC are

AB =

[
3 −1
4 2

] [
−5 7
4 1

]
=

[
−19 20
−12 30

]

and

AC =

[
3 −1
4 2

] [
8 3
7 −3

]
=

[
17 12
46 6

]
,

so

AB + AC =

[
−2 32
34 36

]
,

and that in turn is exactly what we calculated for A(B + C) in this case.
Finally, for (MM1) and (MM4) we do direct calculations for the same A. If x ∈ R2 then the matrix-

matrix product Ax is equal to [
3 −1
4 2

] [
x1
x2

]
=

[
3x1 − x2
4x1 + 2x3

]
,
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but the right side viewed as a vector is exactly the matrix-vector product Ax. That establishes (MM1) for
this specific A, and for (MM4) we multiply matrices explicitly:[

1 0
0 1

] [
3 −1
4 2

]
=

[
3 −1
4 2

]
=

[
3 −1
4 2

] [
1 0
0 1

]
.

■

Important properties which indicate what can “go wrong”:

• You can only make sense of AB if the number of columns in A matches the number of rows
in B. Otherwise it simply doesn’t make sense. If you find yourself trying to compute AB
when this condition on rows and columns doesn’t hold then somewhere you have made a
mistake.

• In particular, just because AB is defined doesn’t mean that BA is defined! Even if AB
and BA are both defined, AB does not have to equal BA (see Sections 14.3 and 14.5)!

• If AB = AC you cannot in general “cancel” A to conclude B = C when A is not the zero
matrix; see Example 14.3.4. (We will study conditions on A under which a cancellation law
does work when we discuss matrix inverses in Chapter 18.)

Example 15.3.2. If A is a 3× 2 matrix and B is a 2× 2 matrix then AB makes sense (as a 3× 2 matrix)
but BA makes no sense (since B has 2 columns and A has 3 rows). For example, if

A =




4 3
−1 0
−5 6


 , B =

[
8 −4
0 1

]

then it makes sense to form the product AB and compute it to be

AB =




4 3
−1 0
−5 6



[
8 −4
0 1

]
=




32 −13
−8 4
−40 26




whereas the matrix product BA =

[
8 −4
0 1

]


4 3
−1 0
−5 6


 makes no sense at all. ■

Example 15.3.3. The distributive law for scalars explains “(a+ b)(c+ d) = ac+ ad+ bc+ bd” (indeed,
(a+ b)(c+ d) = a(c+ d) + b(c+ d) = ac+ ad+ bc+ bd), and the same works for matrices for the same
reason provided that we are careful about the order of matrix multiplication:

(A+B)(C +D) = A(C +D) +B(C +D) = AC + AD +BC +BD.

As a special case with n× n matrices, (A+B)2 = (A+B)(A+B) = A2 +AB+BA+B2. This is
not A2 +2AB +B2 except when BA = AB, so there is no “binomial theorem” for computing (A+B)m

with general n× n matrices when n > 1. Another special case occurs when A = In and C = In:

(In +B)(In +D) = I2n + InD +BIn +BD = In +D +B +BD. (15.3.1)

■

15.4. Proofs of properties of matrix multiplication. In this section we use the relationship be-
tween matrices and linear transformations to give a clean proof of the “associative law” A(BC) =
(AB)C and the “distributive laws” A(B + C) = AB + AC and (A′ + B′)C ′ = A′C ′ + B′C ′ for
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matrix multiplication, and also establish the other basic properties that for any m × n matrix A we
have ImA = A = AIn and the matrix-matrix product Ax for any x ∈ Rn viewed as an n × 1 matrix
coincides with the matrix-vector product denoted the same way.

Associative property. Let’s begin with the property A(BC) = (AB)C. Firstly, BC is the matrix
of the linear transformation TB ◦ TC . Therefore, A(BC) is the matrix of the linear transformation
TA ◦ (TB ◦ TC). This sends a vector x to

TA(TB ◦ TC(x)) = TA(TB(TC(x))).

Going the other way, AB is the matrix of the linear transformation TA ◦ TB. Therefore (AB)C is
the matrix of the linear transformation (TA ◦ TB) ◦ TC . This transformation sends an input x to

(TA ◦ TB)(TC(x)) = TA(TB(TC(x))).

So (AB)C andA(BC), considered as linear transformations, are the same: they take an input x to
the output TA(TB(TC(x))). Thus, (AB)C = A(BC) since for any linear transformation T (x) =Mx
with a matrix M , T determines M via the outputs T (ej) (these are the columns of M ).

Distributive properties. We treat the property A(B +C) = AB +AC, and the interested reader
can adapt it to similarly establish (A′ +B′)C ′ = A′C ′ +B′C ′. As with associativity, it is the same to
show that the associated linear transformations TA(B+C) and TAB+AC coincide. Evaluating on a vector
x, we have

TA(B+C)(x) = TA(TB+C(x)) = TA(TB(x) + TC(x)) = TA(TB(x)) + TA(TC(x)),

where the final equality uses that TA(v1 + v2) = TA(v1) + TA(v2) (applied with v1 = TB(x),
v2 = TC(x)). Likewise,

TAB+AC(x) = TAB(x) + TAC(x) = TA(TB(x)) + TA(TC(x)),

where the final equality uses the definition of matrix multiplication in terms of computing a compo-
sition of linear functions. These calculations show that for all vectors x the outputs TA(B+C)(x) and
TAB+AC(x) are equal to the same thing and so are equal to each other. Hence, we get the equality of
linear functions TA(B+C) = TAB+AC , as required.

Further properties. For an m× n matrix A we shall compute the matrix products ImA, AIn, and
Ax for any x ∈ Rn viewed as an n × 1 matrix. For these the explicit matrix multiplication is quite
clean (please try), but the viewpoint of linear transformations is quite slick: for any x ∈ Rn

TImA(x) = TIm(TA(x)) = TA(x)

since TIm : Rm → Rm carries each vector to itself, so TImA = TA as linear transformation (as they
take each input x to the same output). This forces ImA = A. A similar argument shows that AIn = A.

Lastly, the matrix-matrix product Ax for x ∈ Rn is



a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn







x1
x2
...
xn


 ,

and this is the m× 1 matrix whose ith entry is

ai1x1 + ai2x2 + · · ·+ ainxn;

that in turn is the ith entry of the matrix-vector product Ax, so we are done.
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Chapter 15 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
In the n× n identity matrix Definition 15.1.4
A+B (form×nmatricesA,B) entrywise sum of matrices of same size, cor-

responds to pointwise sum of associated linear
functions

(i) at start of Sec. 15.2

cA (for scalar c, matrix A) entrywise multiplication by c, corresponds to
pointwise multiplication by c against output of
associated linear function

(ii) at start of Sec. 15.2

Concept Meaning Location in text
diagonal of m× n matrix the list of ii-entries for all i Definition 15.1.1
diagonal m× n matrix matrix whose non-diagonal entries all equal 0 Definition 15.1.1
upper (resp. lower) trian-
gular m× n matrix

matrix whose only possible nonzero entries are in or
above (resp. in or below) the diagonal

Example 15.1.7

matrix addition for two m × n matrices A and B, it is the m × n
matrix obtained by adding corresponding entries

Def. 15.2.3

scalar mult. against a ma-
trix

form×nmatrixA and scalar c, it is them×nmatrix
obtained by multiplying all entries by c

Definition 15.2.3

Result Meaning Location in text
identity matrix has no effect un-
der matrix multiplication

for m× n matrix A, we have ImA = A = A In Definition 15.1.4

product of upper triangular ma-
trices is upper triangular, simi-
larly for lower triangular

if U1 and U2 are upper triangular and U1U2

makes sense then it is upper triangular, and sim-
ilarly in the lower triangular case

Example 15.1.7

TA+B = TA + TB for m × n matrices A and B and any x ∈ Rn,
TA+B(x) = TA(x) + TB(x) in Rm

Proposition 15.2.4

TcA = c TA form×nmatrixA and scalar c and any x ∈ Rn,
TcA(x) = c TA(x) in Rm

Proposition 15.2.4

good properties of matrix mul-
tiplication

matrix mult. is associative & distributes on both
sides over matrix addition, and interacts well
with scalar mult. and matrix-vector products

(MM1)–(MM4) at start of
Sec. 15.3

Skill Location in text
recognize by inspection if an m × n matrix is diagonal or upper tri-
angular or lower triangular

Example 15.1.2

know (or be able to quickly figure out) the pattern for the outcome of
left or right multiplication by a diagonal m× n matrix

Examples 15.1.2, 15.1.3

add m× n matrices and multiply them by scalars Examples 15.2.1, 15.2.2

be aware of the subtleties of matrix multiplication box just above Example 15.3.2
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15.5. Exercises. (links to exercises in previous and next chapters)

Exercise 15.1. Let A =



2 0 −1
3 10 7
0 −2 1


, B =



5 0 0
0 1 0
0 0 −3


, and C =

[
3 −1 2
12 −31 23

]
. For each of the

following matrix products, compute it or explain why it isn’t defined:

(a) AB
(b) BC
(c) CB

Exercise 15.2. Let A =



1 3 5
2 −1 3
1 0 2


, B =



−2 0 −6
0 1 −1
1 −1 4


, C =



3 0 0
0 −2 0
0 0 7


.

(a) Compute A+B and A+ C.
(b) Compute the products AC and CA obtained by multiplying A by the diagonal matrix C on each

side, and note that these products are not equal! Also, compute BC and CB (again, not equal!).
(c) Compute C(A + B) in two ways: first, multiply C by your answer for A + B from part (a);

second, add your answers for CA and CB from part (b). You should get the same outcome both
ways (since matrix multiplication distributes over matrix addition)!

Exercise 15.3. This exercise illustrates in the 3× 3 case how matrix multiplication encodes certain “row
operations” on general matrices. Consider the following two 3× 3 matrices A and B, and a general 3× 3
matrix M :

A =



1 a 0
0 1 0
0 0 1


 , B =



0 1 0
1 0 0
0 0 1


 , M =



m11 m12 m13

m21 m22 m23

m31 m32 m33


 .

(a) Show that for every 3× 3 matrix M , the product AM is obtained from M by adding a times the
second row to the first row. How is MA related to M?

(b) Show that for every 3× 3 matrix M , the product BM is obtained from M by swapping the first
and second rows. How is MB related to M?

These facts for 3× 3 matrices work for n× n matrices similarly (but you are not being asked to show
this; it just requires some more dexterity with the notation).

Exercise 15.4. Unlike matrix multiplication, matrix addition is always commutative when it is defined: if
A,B are both m× n matrices, then A+B = B +A. Show that this is true for all pairs of 2× 2 matrices

by considering A =

[
a1 a2
a3 a4

]
and B =

[
b1 b2
b3 b4

]
, where you allow the a’s and b’s to be arbitrary real

numbers. (Hint: use the fact that x+ y = y + x for any real numbers x, y.)

Exercise 15.5. If a matrix A is square (i.e. size n× n), then we can multiply A by itself, so the products
A2 = AA,A3 = AAA, . . ., and so on are all defined. The operations of matrix algebra defined in this
chapter then allow us to define how to “evaluate” a single-variable polynomial f(t) at A, as follows.

If f(t) = c2t
2+c1t+c0, then we define the n×nmatrix f(A) to be c2A2+c1A+c0In. A similar recipe

is used if f is a higher-degree polynomial (but we won’t need it for this exercise). Perhaps surprisingly,
this concept is very broadly useful, such as in the more advanced study of algebraic properties of matrices
(as is discussed in Math 104 and Math 113) and for differential equations (as is used in Math 53).

(a) Let f(t) = 2t2 + 3t− 1, A =

[
1 2
−5 2

]
, and B =



2 1 0
0 −1 0
0 0 3


. Compute f(A) and f(B).
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(b) Let g(t) = t2 − 3t+ 12. For A as in part (a), check that g(A) = 0 (the 2× 2 zero matrix).

(c) Let h(t) = t2 + 2t + 1 and C =

[
3 −1
0 1

]
. Notice that h(t) = (t + 1)2. Verify (by computing

both sides separately) that h(C) = (C + I2)(C + I2) as 2× 2 matrices.

Exercise 15.6. In Exercise 15.5, we introduced the idea of plugging an n × n matrix A into a single-
variable polynomial f(t). One of the reasons this idea is so useful is that the “identities” of single-variable
algebra carry over to this setting (you saw an example of this in part (c) of Exercise 15.5).

For example, one such identity is (t − 5)(t + 3) = t2 − 2t − 15. In high school, you may have been
taught a special rule for how to compute this sort of product (or anything of the type “(a + b)(c + d)”),
but it requires no special rule since it follows directly from a few applications of the distributive law
(“a(b+ c) = ab+ac” and “(b+ c)a = ba+ ca”, which imply the analogues using subtraction by replacing
c with −c):

(t− 5)(t+ 3) = t(t+ 3)− 5(t+ 3) = (t2 + 3t) + (−5t− 15) = t2 − 2t− 15.

(a) Use the properties (MM1–MM4) of matrix algebra (and the “commutativity” of addition as in
Exercise 15.4) to symbolically verify that this identity is valid for every square matrix A (don’t
write out big arrays of numbers). That is, verify that (A− 5In)(A+ 3In) = A2 − 2A− 15In for
every n× n matrix A.

(b) More generally, it can be shown (by a refinement of what is done for (a)) that whenever there is a
polynomial identity of the form f(t) = h(t)g(t) + k(t) for polynomials f, g, h, k then for every
n× n matrix A we have f(A) = h(A)g(A) + k(A) as n× n matrices.

To apply this, let p(t) = t3 − 4t2 + 15t − 10 and A =

[
1 2
−5 2

]
as in Exercise 15.5. Check

that p(t) = (t− 1)g(t) + 2, where g(t) is as in Exercise 15.5, and then use this to compute p(A)
as an explicit 2 × 2 matrix without performing any (further) matrix multiplications. (You may
assume the result of Exercise 15.5(b).)

Exercise 15.7. Let A =



2 3 −4
4 −1 6
5 2 1


, B =




7 3
4 −7
−2 9


, and C =




8 1
2 −3
−3 11


. Exhibit an example of

the fact that matrix multiplication is not cancellative in general by checking that AB = AC (but clearly
B ̸= C).

Exercise 15.8. Let A =



2 3 −4
4 −1 6
5 2 1


 (as in Exercise 15.7).

(a) Find a non-zero 3 × 3 matrix M for which AM is the 3 × 3 zero matrix (there are many valid
solutions). (One approach: because of Exercise 15.7, we know that A(B − C) = 0, but B − C
only has two columns.)

(b) Using your matrix M from part (a), compute MA. Is it equal to AM? (The answer will depend
on your choice of M .)

Exercise 15.9. Let A =



2 0 0
0 2 0
0 0 6


, B =



b1 b2 0
b4 b5 0
0 0 b9


, and B′ =



b1 b2 1
b4 b5 0
0 0 b9


 for some real numbers

b1, b2, b4, b5, b9. Explain why AB = BA (regardless of the values of the b’s), but AB′ ̸= B′A.

Exercise 15.10. Let T : R2 → R2 be the linear transformation that, on an input x, outputs the sum of the
rotation counterclockwise by 45◦ of x and twice x. That is, T (x) = Rπ/4(x) + 2x. Find the matrix A for
T .
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Exercise 15.11. Let D be a 5× 5 diagonal matrix with diagonal entries d1, d2, . . . , d5 ∈ R (from top left

to bottom right). Suppose A is a 5 × 5 matrix whose second and fourth columns, respectively, are




2
−1
0
3
4




and




1
8
−9
3
1




. For each of the following, compute it in terms of the di’s or explain why there is not enough

information given to do so:

(a) The second column of DA.
(b) The fourth column of AD.

Exercise 15.12. We defined an m×n matrix U to be upper triangular if all its entries below the diagonal
vanish: uij = 0 when i > j. Examples include:

[
2 1
0 −3

]
,



1 −3 1
0 5 2
0 0 7


 ,



2 4
0 9
0 0


 ,




2 1 1 −3
0 −1 0 5
0 0 6 3
0 0 0 −1




(There is no requirement on diagonal entries or on entries above the diagonal, so some of them could
vanish; e.g., an n × n zero matrix is upper triangular. The only requirement is that entries below the
diagonal must vanish.)

(a) For 1 ≤ i ≤ n, let Vi = span(e1, . . . , ei) be the span of the first i standard basis vectors
of Rn (equivalently: Vi consists of vectors whose entries beyond the ith position all vanish);
define Vi = Rn for i > n. Letting e′1, . . . , e

′
m denote the standard basis of Rm, likewise define

V ′
i = span(e′1, . . . , e

′
i) for 1 ≤ i ≤ m (and V ′

i = Rm for i > m).
If L : Rn → Rm is a linear transformation and A is the corresponding m× n matrix, use the

relationship between the columns of A and the vectors L(ei) to explain why A is upper triangular
precisely when L carries Vi into V ′

i for every i. Think about the above explicit examples to get an
idea, first thinking about the case m = n.

(b) Using (a) and the relationship between matrix multiplication and composition of linear functions,
show that a product U1U2 of upper triangular m× n matrix U1 and upper triangular n× p matrix
U2 is an upper triangular m× p matrix. (This can also be shown by brute force with matrices, but
it is much cleaner to understand this via linear transformations as above.)

Exercise 15.13.

(a) Let A =




1
−3
5


, B =

[
−2 1 4

]
. Compute BA and AB. (Note that the 1 × 1 matrix BA has

as its single entry the dot product, also sometimes called the inner product, of the two vectors
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


1
−3
5


 and



−2
1
4


; the 3 × 3 matrix product AB in the other order is then sometimes called the

outer product of




1
−3
5


 and



−2
1
4


.)

(b) What do you notice about how the rows of AB are related to each other, and likewise for the
columns?

(c) Let C =




3 −2 2
−6 4 −4
12 −8 8


. Find a 3 × 1 matrix A and 1 × 3 matrix B for which C = AB.

(Matrices arising in this way, as a nonzero column multiplied on the left against a nonzero row,
are called “rank 1” matrices and are very important throughout data analysis.)

Exercise 15.14. Let A =

[
1 2
3 4

]
, B =

[
1 −1
3 −2

]
. Denote the columns of A as c1 =

[
1
3

]
and c2 =

[
2
4

]
;

denote the rows of B as r1 =
[
1 −1

]
and r2 =

[
3 −2

]
.

(a) Compute AB directly.

(b) Symbolically writing A =
[
c1 c2

]
and B =

[
r1
r2

]
, if we were to treat the ci’s and rj’s as if they

were scalars (which they aren’t!) then we might wonder if AB is equal to
[
c1 c2

] [r1
r2

]
= c1r1 + c2r2 =

[
1
3

] [
1 −1

]
+

[
2
4

] [
3 −2

]
.

Check that this really gives the right answer!

Remark. In general, if A is an m×n matrix with columns c1, · · · , cn and B is an n× p matrix with rows
r1, · · · , rn, then the m× p product matrix AB is always equal to

AB = c1r1 + c2r2 + · · ·+ cnrn.

Ultimately this is seen via a close inspection of the mechanics of the process of matrix multiplication.

Exercise 15.15. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) If a matrix A is both upper triangular and lower triangular then A must be a diagonal matrix.
(b) If A and B are two 2 × 2 matrices and AB = 0 then BA = 0. (Here, 0 is the 2 × 2 matrix with

all entries equal to 0’s.)
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16. Applications of matrix algebra: population dynamics, PageRank, and gambling

Matrix multiplication looks complicated, but its virtue is that it can be used to encode complicated
phenomena (and this is useful – not just notation – precisely because matrix multiplication has very nice
properties, as we will explore during the rest of this book). In this chapter we use matrix multiplication to
model a class of situations in which the evolution of a system is governed at each stage by (i) knowledge
of the previous stage (and no previous ones, so it is a “memoryless” process), (ii) a matrix of probabilities
for transitioning among different possibilities. Such a process is called a Markov17 chain.

The remarkable facts are that the long-term behavior of such systems reveals rather surprising be-
havior (which we will understand via ideas and methods from matrix algebra) and that these systems are
ubiquitous in real life. The sections in this chapter provide a wide range of illustrations of the power and
utility of Markov chains, in areas as diverse as population dynamics, computer science, and gambling (and
there is a truly vast array of other applications that we do not have time or space to develop in statistical
mechanics, automated speech recognition, financial forecasting, computer-based navigation, and so on).

By the end of this chapter, you should be able to:

• translate a written description of a “Markov chain” system into a mathematical description
using matrix powers;

• appreciate the utility of matrix algebra to analyze long-term behavior that is hopeless to
determine by direct means and involves unexpected patterns.

There is almost no new mathematics in this chapter. Rather you should focus on the skill of trans-
lating, back and forth, between verbal and mathematical descriptions of the situation. This is a genuine
skill: handling “word problems” is one of the primary things you should try to get out of a math course.
Computers can solve a lot of math problems for you, but you have to know what to ask them.

Later on (in Chapter 27) we will return to the topics in this chapter and add some serious new mathe-
matics: we will show how notions to be introduced in Chapters 23 and 24 can be used in these situations
to understand more deeply the phenomena explored in this chapter.

16.1. Bird migration and PageRank. We begin with an example concerning the migration of birds.
(The details of this example are not realistic, but the underlying idea is relevant in population dynamics,
evolutionary biology, public health crises, economic simulations for employment and finance, etc.) Imag-
ine there are three islands inhabited by birds. An ornithologist studying the birds observes the following
migration pattern:

• All the birds on island A migrate to another island each year. One half migrates to island B, the
other half migrates to island C.

• Similarly, all the birds on island B migrate to another island each year. One half migrates to
island A, and the other half migrates to island C.

• Finally, one-third of the birds on island C stay in place each year, one third migrate to island A,
and one third migrate to island B.

This verbal description is illustrated visually in Figure 16.1.1. Initially, there are 10000 birds on each
island. What happens after 20 years (assuming no births or deaths)?

17A.A. Markov (1856-1922) was a Russian mathematician whose introduction of the initial ideas around the concept of
what were later called Markov chains was partly inspired by his interest in poetry. He was an anti-tsarist political activist;
when the House of Romanov celebrated its 300th anniversary in 1913, Markov organized a counter-celebration of the 200th
anniversary of the publication of a book containing the first proof of (a special case of) the Law of Large Numbers.
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FIGURE 16.1.1. Annual bird migration pattern among the three islands

Denote the number of birds on islands A, B, C after k years as Ak, Bk, Ck respectively (so A0, B0, C0

are all equal to 10000, corresponding to the initial population of 10000 birds on each island). Translating
the above text into equations, it says (check!) that the populations after k + 1 years are given as follows:

Ak+1 =
1

2
Bk +

1

3
Ck, Bk+1 =

1

2
Ak +

1

3
Ck, Ck+1 =

1

2
Ak +

1

2
Bk +

1

3
Ck

(e.g., (1/2)Bk contributes to both Ak+1 and Ck+1, and (1/3)Ck contributes to Ak+1, Bk+1, Ck+1). We can
express this system of 3 equations in terms of a matrix-vector product (please check this!):



Ak+1

Bk+1

Ck+1


 =




0 1/2 1/3
1/2 0 1/3
1/2 1/2 1/3





Ak

Bk

Ck


 . (16.1.1)

Let us call the 3 × 3 matrix here M , and write nk to denote



Ak

Bk

Ck


 (e.g., the initial 3-vector n0 has all

entries equal to 10000), so (16.1.1) says nk+1 = Mnk for k = 0, 1, 2, 3, . . . . The entries in each column
of M are non-negative and sum to 1; any square matrix with such properties is called a Markov matrix.18

Now matrix multiplication enters: feeding the relation “nk+1 =Mnk” into itself repeatedly yields

n20 =Mn19 =M(Mn18) =M2n18 =M2(Mn17) =M3n17 = · · · =M20n0 =M20



10000
10000
10000


 .

Fortunately, a computer can rapidly compute M20. (We’ll discuss how it does so in Section 24.4; there are
much better ways than multiplying the matrix by itself 20 times.) Your computer says

M20 ≈



0.286 0.286 0.286
0.286 0.286 0.286
0.429 0.429 0.429


 , and so M20



10000
10000
10000


 ≈



8570
8570
12860


 .

Hence, there are approximately 8600 birds on each of islands A and B after 20 years. Raising a matrix to
a power has modeled a chain of events feeding into itself, repeating the same behavior over and over.

18These are also called stochastic matrices. Beware that in many references, the definition is that the sum along each row
– rather than the sum along each column – is equal to 1; the top of the Wikipedia page for “stochastic matrix” addresses these
various definitions. The column-sum definition is more convenient for our purposes, so we stick with that in this book.
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Remark 16.1.1 (online resource). The websites WolframAlpha and reshish quickly compute matrix
powers.

Remark 16.1.2 (Relation with PageRank). The columns of M20 are all the same (to the accuracy shown)!
More amazingly, for all Markov matrices M with positive entries as well as certain Markov matrices
(such as M above) with some entries equal to 0, the powers Mr for all sufficiently big r have all columns
essentially equal to a single vector vM that is independent of r. The explanation rests on a result (see
Section D.2) that underlies both Google’s PageRank algorithm (read Appendix D) and the technique called
“Markov Chain Monte Carlo” that is used everywhere for efficient sampling of probabilistic scenarios on a
large but finite set of outcomes (applications arise in computational physics [Kr], computational chemistry
[FS], social science [Gill, Ch. 8-13], and detecting partisan gerrymandering [Du, Sec. 4]).

In the above bird example, for all r ≥ 20 it turns out that M r ≈ M20 to high accuracy. Thus, the
populations on each island stabilize after not so many years have passed: individual birds keep moving
around, but eventually the total population on each island remains the same in all subsequent years. The
equality of all columns has a remarkable consequence: the proportion of the total population that winds up
on each island in the final “steady state” is always the corresponding entry in the common column vector
(e.g., 42.9% on island C), so it is independent of the way the 30000 birds were initially distributed across
the three islands! (The reason is a bit of algebra: if A is an n × n matrix with all columns nearly equal
to a common v – such as M r with big r – and c is any n-vector whatsoever whose entries sum to 1 –
such as an “initial population vector” divided by the total population – then Ac ≈ c1v + · · · + cnv =
(c1 + · · ·+ cn)v = v regardless of c.) This type of astonishing conclusion arises in genetics, economics,
industrial design, etc., and is crucial to the functioning of PageRank (as is discussed in Appendix D).

The lesson from this is: matrix powers encode useful (and sometimes rather surprising!) information
about chains of events.

Remark 16.1.3. We have discussed near the start of Remark 16.1.2 that big powers of a Markov matrix M
stabilize when the entries are either all positive or when the matrix satisfies some auxiliary condition which
we did not formulate. The case when some entries of M equal 0 is addressed near the start of Section D.2,
but let’s illustrate here that things can indeed go awry in some such cases (so an extra hypothesis really is
required to ensure the stabilizing of M r for big r when M has some entries equal to 0). Consider

M =

[
0 1
1 0

]
.

In this case we have M2 = I2, so M3 = MM2 = MI2 = M , M4 = MM3 = MM = M2 = I2,
M5 = MM4 = MI2 = M , and so on: the powers of M alternate between M and I2, with Modd = M
and M even = I2. So in this case there is no stabilizing behavior for M r as r grows!

16.2. Gambler’s ruin and genetic evolution. Alice with $2 in her pocket and Bob with $3 in his
pocket play a game whose rules go as follows. They flip a biased coin which has 1/3 chance to be heads
and 2/3 chance to be tails . If it comes up heads, Alice gives Bob a dollar; if it comes up tails, Bob gives
Alice a dollar. Eventually one of them runs out of money, at which point the game ends. What happens
after the first turn? There is a 1/3 chance that Alice will end up with $1, and a 2/3 chance that Alice will
end up with $3. Since Alice has not yet reached $5 (so Bob still has some money) nor $0 (so Alice still
has some money), the game goes on for at least one more turn.

What are the odds of various possibilities for what may happen after two turns? Or more turns? This
is complicated, since the outcome at each turn depends on the previous turn, which itself is a probabilistic
situation. Matrix algebra is the right tool to analyze the long-term question: what are the odds that eventu-
ally Alice reaches $5 (i.e., she wins), or the odds that eventually Alice reaches $0 (“gambler’s ruin”)? You
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might reason without doing any work that Bob is a fool to play this game, since Alice’s value goes up 2/3
of the time, but the 1/3 versus 2/3 bias is just a magnified version of the “house edge” that every gambler
in a casino hopes to overcome. Regardless, Alice does have some positive chance of losing (likely less
than 50%), and we want to compute Alice’s odds for success or failure in this game.

What we are going to describe is a basic technique relevant not just to gambler’s ruin, but to many
much more complicated (and very realistic) games too. If a casino wants to know what odds to put on
a given game, it must do an analysis very much like what follows (except that the numerical figures of
$2 and $3 considered here would be rather different).

Remark 16.2.1. The mathematics of the situation we are considering is identical to that which arises
in an entirely different context: understanding the effects of mutations over many generations via the
Wright–Fisher model for genetic drift. Roughly speaking, here is the dictionary relating the gambling
setup with the population dynamics setup: the total amount of money in the gambling setting is
replaced with a fixed population size, flipping a coin is replaced with the passage of a specified genetic
trait from each generation to the next, the probabilities 1/3 for each of heads and 2/3 for tails are
replaced with probabilities p and 1 − p that an offspring inherits a certain genetic trait or not, and
Alice’s odds of eventually winning are replaced with the proportion of the population in the long run
that has the genetic trait of interest.

We won’t say more about the biological application here, but up to appropriate changes in termi-
nology it is analyzed mathematically by exactly the same procedure that is used below. Of course,
in the biological context one can seek a more robust framework that analyzes several genetic traits at
once (this has no analogue in the win-lose gambling context). The mathematical model of Wright–
Fisher can be generalized to accommodate this, and it is the focus of a lot of research in biology.

To model the game, we shall keep track of the probability, or chance, that Alice has a given amount
of money. We turn it into a vector, keeping in mind that the total number of dollars in play is always
$2 + $3 = $5, so Alice cannot ever have more than $5:

p =




probability that Alice has $0
probability that Alice has $1
probability that Alice has $2
probability that Alice has $3
probability that Alice has $4
probability that Alice has $5



∈ R6.

Since it matters how many turns have been played, p is really a function p(n) of the number n of turns.
Thus, for example, what we have said about the odds for the outcomes after the first turn amounts to saying

p(1) =




0
1/3
0
2/3
0
0



, (16.2.1)
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and it is convenient to make the definition p(0) =




0
0
1
0
0
0




since Alice definitely has $2 when the game starts

(the “zero” turn).
After n turns we have

p(n) =




p0(n)
p1(n)
p2(n)
p3(n)
p4(n)
p5(n)




for some probabilities pi(n) that we do not (yet) know. (It is understood that if Alice ever actually reaches
$0 or $5 then she remains in that state for the rest of time: the game ends, but to make the calculations go
smoothly we assign such situations a 100% chance of remaining in that state for all future turns.) What
happens in the next turn?

For example, how likely is Alice to have $3 at the end of the (n + 1)th turn, with n ≥ 1? There are
two ways this could happen:

• Alice had $2 right after her nth turn, and then the coin came up tails. Chance: p2(n)× 2
3
.

• Alice had $4 right after her nth turn, and then the coin came up heads. Chance: p4(n)× 1
3
.

This also holds for n = 0, by inspection of (16.2.1); think it through! In summary, the chance that Alice
has $3 right after her (n+ 1)th turn is 2p2(n)/3 + p4(n)/3. In symbols: p3(n+ 1) = 2p2(n)/3 + p4(n)/3
for all n ≥ 0.

Likewise, for Alice to have $0 right after the (n + 1)th turn, with n ≥ 1, the two possibilities leading
to this are:

• Alice had $0 right after her nth turn, and so stays in that “gambler’s ruin” state forever. Chance:
p0(n)× 1 = p0(n).

• Alice had $1 right after her nth turn, and then the coin came up heads. Chance: p1(n)× 1
3
.

This also holds for n = 0, again by inspection of (16.2.1); convince yourself of this. Thus, p0(n + 1) =
p0(n) + p1(n)/3 for all n ≥ 0.

To similarly compute p1(n+1), we note that for Alice to have $1 after the (n+1)th turn she must have
had $2 after the nth turn (and then then coin came up heads) since the alternative option of $0 after the
nth turn couldn’t have happened (it would yield $0 for all future terms). Hence, p1(n+ 1) = p2(n)× 1

3
.

If you go through such reasoning for the other possible outcomes right after a given turn, and express
the answer in matrix notation, you will find (please check for yourself):

p(n+ 1) =




1 1/3 0 0 0 0
0 0 1/3 0 0 0
0 2/3 0 1/3 0 0
0 0 2/3 0 1/3 0
0 0 0 2/3 0 0
0 0 0 0 2/3 1




︸ ︷︷ ︸
M

p(n) =M p(n)
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for all n ≥ 0, with M denoting the indicated 6 × 6 matrix (e.g., the 4th row expresses the formula above
for p3(n + 1)). The entries in each column of M are non-negative and sum to 1: another Markov matrix!
A visual illustration of this matrix of probabilities is given in Figure 16.2.1.

FIGURE 16.2.1. Odd for various outcomes of coin flips

Feeding the relation “p(n+1) =Mp(n)” into itself repeatedly as in Section 16.1, we similarly obtain

p(n) =Mnp(0)

for all n ≥ 0. In contrast with the bird migration example, for which high powers of the Markov matrix
converge toward a matrix with all columns equal (as discussed in Remark 16.1.2), in this example the high
powers Mn do converge toward a limiting matrix but without all columns equal:

Mn →




1 0.4839 0.2258 0.0968 0.0323 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0.5161 0.7742 0.9032 0.9677 1




as n→ ∞

(the matrix entries are approximations to 4 decimal digits). The powers Mn become close to this limit
already for n = 30. This stability for all large n is explained mathematically in Section D.2.

In concrete terms, the 0’s in the intermediate rows of the limiting matrix express the extremely tiny
odds of the game lasting a very long time (i.e., staying away from the terminating values $0 and $5), and
the numbers along the top and bottom rows are the odds of Alice winding up with $0 (top row) or $5
(bottom row) after a long time: the entries are the odds of losing (top row) or winning (bottom row) when
beginning at $j for j = 0, 1, 2, 3, 4, 5 (from left to right). More concretely,

p(100) =M100p(0) ≈




1 0.4839 0.2258 0.0968 0.0323 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0.5161 0.7742 0.9032 0.9677 1







0
0
1
0
0
0



≈




0.2258
0
0
0
0

0.7742



. (16.2.2)

This calculations means that after very many turns, there is a chance of around 22.58% that Alice has
$0 (i.e., loses) and a chance of around 77.42% that Alice has $5 (i.e., wins). Thus:

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 324



with around 22.6% probability, Alice loses; with around 77.4% probability, Alice wins.

For applications of these ideas to molecular structure, see Remark J.2.1. Probability theory gives
alternative ways to figure out the preceding winning odds; see [KT, Sec. 3.6], especially [KT, (3.52)]
with N = 5, k = 3.

Example 16.2.2. Suppose we want to compute the probability that the game ends before the 10th turn.
How would we do this? Recall that if at any stage Alice reaches $0 or $5 then she remains in that state
forever. Thus, the game ends before the 10th turn precisely when Alice is in the state of $0 or $5 after
the 9th turn. (She may have reached that losing or winning state on an earlier turn, but then remains in it
forever and so in particular is in that state after the 9th turn as well.)

Hence, this probability is p0(9) + p5(9). In other words, we compute

p(9) =M9




0
0
1
0
0
0



≈




0.204
0.028
0

0.089
0

0.679



, so p0(9) + p5(9) ≈ 0.204 + 0.679 = 0.883

(where again we do the computation on a computer). So the chance is approximately 88.3%. ■

Remark 16.2.3. In many real-world problems involving decisions made with uncertainty, the tech-
nique of Markov processes as above needs to be generalized to “Markov decision processes”. This
arises in many contexts, such as: finance (which and how much among a collection of stocks to
purchase at a given time?), machine learning (how does a rover on Mars decide what to do given the
available battery power and sunlight?), public health (how to determine quarantine levels at each stage
of an epidemic?), and so on. See [Pu, Ch. 1] for a detailed discussion of many real-world examples.

Remark 16.2.4. The subject of “network analysis” (see Section 16.4 for a basic example) uses matrix
powers, Markov matrices, and more sophisticated linear algebra to analyze information: the spread of
disease through a population via probabilistic infection of one’s contacts [BSH], managing transmis-
sion loads across networks (for power, telecommunications, etc.; see [BG, 3.3, 3.4, App. A to Ch. 3]),
Netflix recommendations (based on what films have been viewed by customers who watch a specific
film: see Example 21.6.3), and much more. In fact, the “Magna Carta of the Information Age” [Shan]
(which provided the conceptual framework for all modern telecommunications and electronic manip-
ulation of data) ultimately rests on treating communication of information in terms of a Markov chain
(see [Shan, Secs. 4-6]).

16.3. Linear recurrence relations. Next we consider more mathematical situation, involving a
sequence of numbers in which each term is determined by the previous few terms according to a
linear formula. This arises when modeling many real-world situations for which there is a feedback-
loop mechanism, such as: population dynamics (a toy version of which was given in Section 16.1),
search algorithms in computer science, digital signal processing, financial forecasting (via difference
equations), and much more.

Consider the sequence of numbers starting with 1, 1, 1 for which each successive term is built from
the previous three terms via the formula

an = an−1 + 2an−2 − an−3 for n ≥ 4. (16.3.1)
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This sequence begins 1, 1, 1, 2, 3, 6, 10, 19, . . . ; i.e., with a1 = 1, a2 = 1, a3 = 1, a4 = 2, a5 = 3, a6 =
6, and so on. The formula (16.3.1) expresses each term as a linear function of the previous 3 terms
(this is called a “linear recurrence”). There is nothing special about using 1, 1, 1 as the first three
terms; we could have used any three numbers, but chose 1, 1, 1 just to make the following discussion
more concrete. In real life, the aspect that may become more sophisticated is to replace the specific
linear recurrence (16.3.1) with one that involves more complicated coefficients on the right side.

Problem: Accurately approximate a1000. (This is a prototype for the very natural task of qualita-
tively understanding long-term behavior in population dynamics, macroeconomics, etc.)

This problem doesn’t seem to involve linear algebra, but understanding large powers of a fixed
matrix turns out to be the key issue. To explain this, consider for each n ≥ 1 the vector v(n) =

an
an+1

an+2


. Therefore,

v(1) =



1
1
1


 , v(2) =



1
1
2


 , v(3) =



1
2
3


 , . . . .

The linear recurrence relation an+3 = an+2 + 2an+1 − an (i.e., (16.3.1) with n + 3 in place of n)
may be applied to the last entry in v(n+ 1) to obtain

v(n+ 1) =



an+1

an+2

an+3


 =




an+1

an+2

an+2 + 2an+1 − an


 .

We can write this as a linear function of v(n):

v(n+ 1) =




0 1 0
0 0 1
−1 2 1




︸ ︷︷ ︸
A



an
an+1

an+2


 = Av(n);

this A is not a Markov matrix. Now feeding “v(n+1) = Av(n)” into itself repeatedly for decreasing
values of n, we can make calculations such as this:

v(10) = Av(9) = A(Av(8)) = A2 v(8) = A2(Av(7)) = A3 v(7) = · · · = A9 v(1) = A9



1
1
1


 .

More generally, such a calculation shows that

an
an+1

an+2


 = v(n) = An−1



1
1
1




for any n ≥ 1. This allows us to evaluate an as long as we know how to raise the matrix A =


0 1 0
0 0 1
−1 2 1


 to powers. Given how complicated matrix multiplication appears to be, it may seem that

to compute An for n ≈ 10 is quite unpleasant by hand and for n ≈ 1000 is a real nightmare. But
remarkably, it turns out that there are elegant quick ways to accurately approximate An for large n
(and even computers do not grind out matrix multiplication directly to compute large powers). This
rests on notions to be introduced in Chapters 23 and 24, so we will return to this topic in Section 24.4.
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Remark 16.3.1. The involvement of a big matrix power suggests that the an’s grow exponentially in
n. The situation is subtle because Sections 16.1 and 16.2 give interesting matrices whose big powers
have all entries not growing at all. In Section 24.4 we will use linear algebra to understand the growth
of big matrix powers and in Example 24.4.3 we will apply those methods to the powers of the 3 × 3
matrix A in the preceding discussion to obtain an exact formula for an yielding the approximation
an ≈ cλn where λ ≈ 1.8109 is the largest root of the polynomial x3 − x2 − 2x + 1 (the other two
roots are approximately −1.2469 and .4450) and c = −(5/7)λ2 + (3/7)λ+12/7 ≈ 0.1672. If you’re
curious, a1000 ≈ 9.1877× 10254 and more exactly it is

9187718511772266978178825494668544362076334204210134095096522796754406551731879708

4539126041948677028290950061074023021006381626356622940444747108801111817266390395

8925851861215584837681734828023270877310457406247208110156109651441897659179775342

361578394.

16.4. Friendship network. There are 7000 undergraduate students at Stanford. Let’s arrange
them in some order, from 1 to 7000. Let N be the 7000 × 7000 matrix whose ij-entry nij is 1 if
student i and student j are friends and 0 if they are not. (Here we make the convention that a person
cannot be a friend of themself, so all the diagonal entries of N are zero.)

Note that N is symmetric around its main diagonal (in the sense of Definition 15.1.1): the ij-entry
and ji-entry are the same (both 0, or both 1) for any i and j. In real life the notion of being a friend
may sometimes not be symmetric, but we ignore that. If instead one were to study the matrix N ′

encoding the relationship of being a follower (on some specific platform) rather than a friend, say N ′
ij

is 1 when student i follows student j and 0 otherwise, then symmetry fails for N ′.
What information does N2 (i.e., the matrix product N N ) contain? That is, what is the meaning

of the ij-entry of N2? Using the formula (14.3.1), we find

ij-entry of N2 =
7000∑

k=1

niknkj. (16.4.1)

Now for each k, and each i and j, the product nik · nkj is equal to either 1 · 1 = 1 or else 1 · 0 = 0 or
0 · 1 = 0 or 0 · 0 = 0, so it equals 1 precisely when nik = 1 = nkj , which is to say student k is a friend
of both student i and student j (in particular, this happens only when k ̸= i, j; recall that the diagonal
entries of N vanish by design). Make sure you work through this and understand it!

Thus, the kth term in the sum on the right side of (16.4.1) is equal to 0 or 1, and that term equals 1
precisely when student k is a friend with student i and with student j. The sum of those 1’s is therefore
the number of such students who are friends with student i and with student j, so

ij-entry of N2 = number of common friends of student i and student j.

In the special case i = j, this becomes: ii-entry of N2 = number of friends of student i.

Example 16.4.1. Consider a toy version in which we select 5 Stanford undergraduates (labeled as
students #1, #2, #3, #4, #5 in some way) and only study the friendship network among them. In
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this case we have a 5× 5 matrix, say we call it Ntoy, that could be something like this:

Ntoy =




0 1 0 0 1
1 0 1 1 0
0 1 0 0 1
0 1 0 0 0
1 0 1 0 0



.

This matrix encodes that student #2 is friends with students #1, #3, and #4 (so student 2 has 3
friends), and student #4 is only friends with student #2. This matrix is symmetric around its diagonal,
just as we noted above for N (i.e., by flipping across the diagonal we recoverN again, which just says
visually that the ij-entry is the same as the ji-entry for all i ̸= j, as is seen directly from how the
matrix entries are defined: student i being a friend of student j is a “symmetric” relationship between
i and j).

One computes

N2
toy =




2 0 2 1 0
0 3 0 0 2
2 0 2 1 0
1 0 1 1 0
0 2 0 0 2



,

so for example the number of friends of student #2 is equal to the (2,2)-entry of N2
toy that is 3 (as

we knew), the number of common friends of students #1 and #3 is the (1,3)-entry of N2
toy that is

2 (namely: students #2 and #5), and the number of common friends of students #1 and #4 is the
(1,4)-entry of N2

toy that is 1 (namely: just student #2). Note that N2
toy is also symmetric; this can be

understood from the interpretation of the meaning of its ij-entry in terms of chains of friends linking
student i to student j, but it is also a special case of a general fact concerning powers of any square
matrix symmetric around its diagonal (see Example 20.3.6). ■

What about N3; i.e, the matrix product N N N? By similar reasoning that we won’t go through
here, one finds that

ij-entry of N3 = number of chains of friends of length 3 between student i and student j;

i.e., student j is a friend of k who is a friend of ℓ who is a friend of i (this is called “three degrees of
separation” since it says that j is a friend of a friend of a friend of student i). Since nobody is their
own friend, in the chain “j is a friend of k who is a friend of ℓ who is a friend of i” necessarily j ̸= k,
k ̸= ℓ, and ℓ ̸= i, so if i = j then all 3 values i = j, k, and ℓ are different. In contrast, when when
i ̸= j then either all 4 values j, k, ℓ, i are different or else j = ℓ and k = i (in which case there are
exactly 2 different people in the chain, so then necessarily the different students i and j are friends
since i = k and j = ℓ with k and ℓ friends).

Example 16.4.2. How can we determine if every pair of students at Stanford is at most three degrees
of separation away from each other? One might try to check if the entries of N3 are all positive. But
this is the wrong thing to do: the entries of N3 count chains of friends of length exactly 3 and not
at most 3. We need a way to count length-3 chains in which it is permitted for some student to be
repeated as a friend of themself within the chain (e.g., turn a length-2 chain of friends in the initial
setup where nobody is a friend of themself into a length-3 chain by repeating someone in the chain as
their own friend).

This amounts to removing the original constraint of nobody being a friend of themself and instead
requiring everyone to be their own friend: we make the diagonal entries all equal to 1 rather than all
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equal to 0. In other words, we work with the matrix N + I7000 rather than N , so we seek to determine
if (N + I7000)

3 has all entries > 0. (Note that for i ̸= j, the ij-entry of (N + I7000)
3 is not the number

of different ways of getting from student i to student j through friendship chains of at most 3. Indeed,
some shorter chains become length-3 chains in many ways. For example, if i and j are already friends
then the 1-step chain from i to j underlies many 3-step chains, such as: from i to i to i to j, and from
i to i to j to j, and even from i to j to i to j.)

In our toy situation with 5 students corresponding to Ntoy in Example 16.4.1, we have

(Ntoy + I5)
3 =




7 8 6 3 7
8 10 8 6 6
6 8 7 3 7
3 6 3 4 2
7 6 7 2 7



,

so we conclude from the positivity of all entries that indeed there are at most “3 degrees of separation”
among these 5 students. In contrast, if you calculate (Ntoy + I5)

2 then you’ll find that the (4, 5)-entry
(and also the (5, 4)-entry) is equal to 0, so 2 degrees of separation do not suffice for this population
of 5 students (we cannot get from student #4 to student #5 in at most 2 steps through a chain of
friends). ■
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Chapter 16 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
nothing new!

Concept Meaning Location in text
Markov matrix a square matrix whose entries are non-negative and

columns each sum to 1
Section 16.1

Result Meaning Location in text
some pop. dynamics
are governed by ma-
trix powers

for a collection of populations moving around with fixed “tran-
sition rates” at each time step, long-term behavior is governed
by powers of an associated matrix

Section 16.1

high powers of cer-
tain Markov matri-
ces have all columns
nearly the same

if a Markov matrix M has all entries positive (or some equal to
0 subject to additional hypotheses) then for big r the columns
of M r are all nearly the same

Remark 16.1.2

some gambling out-
comes are governed
by matrix powers

odds of winning by a certain stage or in the long run in certain
games of chance are governed by powers of a matrix of “transi-
tion probabilities”

Section 16.2

Skill Location in text
for certain problems about population dynamics or gambling, set up
relevant matrix language to analyze with a matrix power and know
that high powers encode long-term behavior (not expected to com-
pute high powers yourself)

Sections 16.1, 16.2
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16.5. Exercises. (links to exercises in previous and next chapters)

Exercise 16.1. Two phone companies, let’s call them P1 and P2, are competing for customers in the Bay
Area. Suppose that during each calendar year, 85% of the customers of P1 stay with P1 and 15% of P1’s
customers switch to P2, and that during each calendar year, 92% of the customers of P2 stay with P2 and
8% of their customers switch to P1.

(a) For each n ≥ 0, define the vector vn =

[
xn
yn

]
, where xn is the number of customers for P1 in year

n, and yn is the number of customers of P2 in year n. Explain why

xn+1 = (0.85)xn + (0.08)yn, yn+1 = (0.15)xn + (0.92)yn,

and write a 2× 2 Markov matrix M for which vn+1 =Mvn for all n ≥ 0.
(b) For the correct Markov matrix M that you should have found in (a), direct computation (which

we are not asking you to do here) shows that M2 =

[
.7345 .1416
.2655 .8584

]
. What does the first row of

this matrix tell us concerning the behavior of customers of each of P1 and P2 after two years have
elapsed? (A customer who began with one of these companies and is with it at the end of two
years may have switched to the other company in the middle of this time, but don’t try to keep
track of that level of detail.)

(c) Again using the correct matrix M from (a), one can show that Mm ≈
[
.3478 .3478
.6522 .6522

]
for large

m. Interpret the meaning of the two numbers appearing in this matrix.

Exercise 16.2. Consider a sequence of numbers a1, a2, a3, . . . for which each an for n > 3 is determined
by the 3 preceding terms according to the formula

an+3 = an+2 − an+1 + 2an.

For example, if a1 = 1, a2 = 4, a3 = −1 then a4 = a3 − a2 + 2a1 = −1− 4 + 2 · 1 = −3.

(a) Write down a 3× 3 matrix A so that for vn =



an+2

an+1

an


 we have vn+1 = Avn for all n ≥ 0.

(b) Compute A3, and from your answer read off a formula for an+5 in terms of an+2, an+1, and an.

Exercise 16.3. A population of birds lives on two islands I1 and I2. On January 1 of year y, there are n1

birds on island I1 and n2 birds on island I2. Each spring, 10% of the birds on I1 move to I2, and each
fall 10% of the birds on I2 move to I1. There is no other movement of birds between the islands. Let

p =

[
n1

n2

]
be the “population vector” whose ith entry is the bird population on island Ii on January 1 of

some particular year y.

(a) LetM be the 2×2 matrix for which the population vector at the end of year y isMp (disregarding
births and deaths of birds). Then M is a product of some of the matrices below:

A =

[
0.9 0.1
0 1

]
, B =

[
0.9 0
0.1 1

]
, C =

[
1 0
0.1 0.9

]
, D =

[
1 0.1
0 0.9

]
.

Find the matrices above for whichM is a product of these matrices (remember that order matters),
and then compute M .

(b) What is the matrix N for which Np is the population vector at the end of year y + 1? Compute
it explicitly.
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(c) For the correct answer M to (a), Mn ≈
[
.5263 .5263
.4737 .4737

]
for large n. Interpret the meaning of the

common number in the first row and the common number in the second row.

Exercise 16.4. A city has two basketball teams, called the Frogs and the Toads. Each citizen of the city is
either a Frog supporter, a Toad supporter, or a non-watcher (ignore both teams). If they change their status
during the basketball season then they don’t change it again during the season. Suppose the following:

• every year, of those who are Frog supporters at the start of the basketball season 10% give up and
become non-watchers for the rest of the season, and the other 90% remain Frog supporters;

• every year, of those who are Toad supporters at the start of the basketball season 10% give up and
become non-watchers for the rest of the season, and the other 90% remain Toad supporters;

• among those who were non-watchers at the start of the basketball season, 5% become Frog sup-
porters and 10% become Toad supporters.

Let Fi, Ti, and Ni be the respective number of Frog supporters, Toad supporters, and non-watchers at
the start of the basketball season i years from now.

(a) Define vi to be the vector



Fi

Ti
Ni


. Write down a 3 × 3 matrix A so that vi+1 = Avi for every

i ≥ 0.
(b) For what matrix M do we have vi+10 =Mvi for all i? Express M in terms of A; you don’t need

to compute it.

Exercise 16.5. Let A be the Markov matrix
[
1/2 3/4
1/2 1/4

]
.

(a) For v =

[
3
2

]
and w =

[
−1
1

]
, check that {v,w} is a basis of R2 with Av = v and Aw =

−(1/4)w. (How such v and w are found will be discussed in Section 23.3.)
(b) The basis property in (a) tells us that any x ∈ R2 can be written as x = αv+βw for some scalars

α, β. Using the conclusions in (a), show that Ax = αv − (β/4)w, A2x = αv + (β/16)w, and
A3x = αv − (β/64)w.

(c) Explain why we should have Amx ≈ αv for large m. (Hint: how does ±β/4m behave as m
grows?) This is a special case of a general result (Proposition 24.4.2) that describes high powers
of a square matrix in terms of a later concept called “dominant eigenvalue”.

Exercise 16.6. Consider a sequence of numbers a1, a2, a3, . . . for which each an for n > 2 is determined
by the 2 preceding terms according to the formula

an+2 = an+1 − an.

For example if a1 = 2 and a2 = 5 then a3 = 5− 2 = 3 and a4 = 3− 5 = −2.

(a) For vn =

[
an+1

an

]
, verify that vn+1 = Avn for A =

[
1 −1
1 0

]
. Check by direct computation that

A6 = I2. (Note that A6 = A3A3, which will save some time when computing A6.)
(b) Explain why the equalityA6 = I2 says that an+6 = an for all n, and then verify this latter equality

directly from the recurrence defining each am in terms of the two preceding terms.

Exercise 16.7. Consider two citiesC andC ′ with the following population movement between their urban
and suburban areas (disregarding all movement in or out of each city altogether). For city C, during each
year 7% of the urban population moves to the suburbs and 3% of the suburban residents move to the urban
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areas. For city C ′, during each year 5% of the urban population moves to the suburbs and 4% of the
suburban residents move to the urban areas.

(a) Write down 2 × 2 Markov matrices M and M ′ so that if p =

[
xU
xS

]
is the population vector for

C at the end of last year (with xU the urban population, and xS the suburban population) and

p′ =

[
x′U
x′S

]
is the population vector for C ′ at the end of last year then Mp and M ′p′ are the

respective population vectors for C and C ′ at the end of this year. Explain in words why your
answer is correct.

(b) If you computed M and M ′ correctly then it turns out that (to three decimal digits’ accuracy) for
all large m we have

Mm ≈
[
.3 .3
.7 .7

]
, M ′m ≈

[
.444 .444
.556 .556

]
.

Interpret in words what these numbers mean in terms of the population in each city after enough
time has passed. Is the long-term effect of these slight changes in percentages surprising?

(These approximations work once m is in the low 40’s for each of M and M ′. One could
argue that this is too many years, so applying these ideas in genetics for many generations of a
fruit fly is more meaningful. Hence, if you prefer, the lesson is that for low-probability genetic
inheritance events, a small change in the odds can have magnified effects over the time scale of
many generations. Although a change from 4% to 3% may seem small, in a relative sense it is
huge: the difference of 1% is 25% of 4%. In other words, two small numbers can have a big
ratio.)

Exercise 16.8 (only for those who read Section 16.4 on social networks). In Section 16.4 it is asserted that
if M is the n× n “friendship network matrix” for some population of n people (Stanford undergraduates,
US citizens, the entire world, etc.) for which nobody is regarded as a friend of themself then the ij-entry
of M3 is the number of friendship chains of length 3 between the ith and jth person in the network.

(a) Explain why this is correct (Hint: write M3 = M ·M2 and use the interpretation for entries of
M2).

(b) Explain with justification an interpretation for the ij-entry of M4 (Hint: write M4 =M ·M3 and
use the interpretation for entries of M3).

If you happen to know mathematical induction, feel free to kill two birds with one stone by settling both
parts at once with a single argument to interpret the entries of M r for every r ≥ 2 (where the case r = 2
is known, by Section 16.4).

Exercise 16.9. In the discussion of PageRank in Appendix D (which you don’t need to have read to do this
exercise, though it provides interesting motivation!), an essential ingredient is a result – Theorem D.1.1
– which says (among other things) that for any n × n Markov matrix M with positive entries there is a
nonzero vector v for which Mv = v. This fact, while much weaker than the full strength of Theorem
D.1.1, is already rather surprising and turns out (unlike Theorem D.1.1) to have an explanation at the level
of this course. This exercise leads you through such an argument for n = 3 (and when you have learned
more about dimension later in the course, you can adapt the argument below to any n).

(a) For y =




y1
y2
...
yn


 ∈ Rn and w =




1
1
...
1


 ∈ Rn, express the scalar w · y in terms of the yi’s.
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(b) Using (a) and the “Markov property” that all columns of M sum to 1, check that all n-vectors of
the form Mx − x (for x ∈ Rn) are orthogonal to w from (a). (Hint: if {cij} is an n × n array
of numbers, the sum

∑n
i=1

∑n
j=1 cij organized first by columns and then by rows is equal to the

sum
∑n

j=1

∑n
i=1 cij organized first by rows and then by columns, since rearrangement of terms

in a sum does not affect the value of the sum.)
(c) Let vj = Mej − ej for 1 ≤ j ≤ n, and we assume all vj are nonzero (or else some ej is a

nonzero solution to Mx = x). These are n vectors in Rn, and by (a) they are all orthogonal to
w. Now assume n = 3, so these are 3 nonzero vectors in a plane through the origin.

Use the Dimension Criterion in Section 5.1 to show that there is some linear combination
a1v1 + a2v2 + a3v3 that is equal to 0 with some nonzero coefficient ai. Explain why the nonzero

x = a1e1 + a2e2 + a3e3 =



a1
a2
a3


 is a solution to Mx = x.

Note that unlike in the statement of Theorem D.1.1, this argument does not construct such an x by any
explicit procedure (such as via a limiting process).

Exercise 16.10. Continuing the theme of Exercise 16.9, where we saw that the vector w =




1
1
...
1


 is

orthogonal to all vectors of the form Mx − x, now we show that if all mij > 0 (as in Theorem D.1.1)
then the only vectors with that orthogonality property are the scalar multiples of w. (This can be used to
establish the uniqueness part of Theorem D.1.1 via results on dimension discussed later in the course.)

Suppose a vector c =




c1
c2
...
cn


 is orthogonal to every vector of the form Mx− x. We want to show that

the ci’s are all equal to a common value c, so then c = cw as desired. Among the n entries in c, there is
some biggest value (perhaps occurring more than once); let ck be an occurrence of that biggest value, so
ci ≤ ck for all i. We want to rule out the possibility that ci < ck for some i (so then ci = ck for all i, which
is the desired result that all ci’s have the same value).

(a) Using that Mej is the jth column of M , the ith entry of which is mij , for any vector v verify
that v · (Mej − ej) = (

∑n
i=1 vimij) − vj . Use the orthogonality property of c to deduce that

cj =
∑n

i=1 cimij .
(b) Recall that ci ≤ ck for all i. If ci0 < ck for some i0 (a possibility we want to rule out), use the final

conclusion in (a) and the positivity of all mik’s to deduce that ck <
∑n

i=1 ckmik = ck
∑n

i=1mik.
Applying the “Markov property” to the kth column, deduce that ck < ck, an absurdity (so no
ci0 < ck can exist, which is what we wanted to confirm).

Exercise 16.11. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) If M is an n× n Markov matrix then M2 is also. (Hint: think about bird migrations.)
(b) If M is an n × n Markov matrix and w is an n-vector with non-negative entries summing to 1

and satisfying Mw = w, then all powers Mk, for large enough k, are approximately equal to the
n× n matrix whose columns all equal w.
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17. Multivariable Chain Rule

Our next application of matrix multiplication is to adapt “dy/dx = (dy/du)(du/dx)” from single-
variable functions to multivariable functions by using matrix multiplication.

By the end of this chapter, you should be able to:

(CR1) translate a word problem involving composite functions into a mathematical statement;
(CR2) use the multivariable Chain Rule to compute the derivative matrix of a composite function as

a matrix product, with careful attention to the order of multiplication of matrices;
(CR3) recognize the utility of the multivariable Chain Rule for computing the derivative of a single-

variable function R → R that is expressed as a composition R → Rn → R.

Instances of (CR2) arise everywhere in physics and engineering when expressing differential equations
in new coordinate systems (e.g., passing from rectangular to spherical or cylindrical coordinates).
Let’s comment on (CR3). A function f : R → R of time may depend on many inputs that also
depend on time; this involves expressing f as a composition R → Rn → R. The multivariable Chain
Rule then expresses df/dt in terms of the rates of change (in time) of the inputs. Examples include:

(i) total profit as a function of production costs, total sales, and selling price,
(ii) population size as a function of many biological and sociological factors,

(iii) the backpropagation algorithm that underlies “learning from errors” in artificial neural net-
works to compute “weights” that power chatbots (referred to as the “crown jewels” for such
AI systems in this article); see Appendix G for more details on this.

17.1. Statement of main formula. If f and g are functions R → R, their composition f ◦g : R → R
is defined by the rule (f ◦ g)(x) = f(g(x)). Many familiar functions are built as compositions of simpler
ones. (The function f ◦ g is often referred to as a composite function.) In Section 8.2 we gave a few
examples and some illustrations of the ubiquitous role of the composition operation when forming new
functions from simpler ones.

Theorem 17.1.1 (Single-Variable Chain Rule). The derivative (f ◦ g)′(x) = (f(g(x)))′ of the compo-
sition f ◦ g is equal to the product function f ′(g(x)) g′(x). Equivalently, the value (f ◦ g)′(a) of the
derivative of f ◦ g at x = a is the product f ′(g(a)) g′(a) for every a ∈ R.

This is often written in more suggestive terms as
dy

dx
=
dy

du

du

dx
with the shorthand that y stands for f and u stands for g, engaging in some abuse of notation (that you
got accustomed to through practice): “y” on the left side is really y ◦ u as a function of x, and “u” in
the first factor on the right side is an independent variable whereas in the second factor on the right
side it is not an independent variable but rather is a function of x!

The experience in single-variable calculus that derivatives are much easier to compute than anti-
derivatives ultimately stems from the fact that such a simple universal formula expresses the derivative
of a composite function in terms of the derivatives of the functions being composed (whereas there is
nothing like this available for anti-derivatives). One thinks of the Chain Rule as a recipe for computing
the derivative of f ◦ g at any point x = a in terms of two ingredients:

• the derivative f ′ evaluated at the point g(a),
• the derivative g′ evaluated at the point a.
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Once these ingredients are worked out, the derivative (f ◦ g)′ at x = a is obtained by multiplying them
together. With some practice, in single-variable calculus you learned how to apply the Chain Rule to
compute a huge range of derivatives. Realistic mathematical models often involve interdependencies of
input expressed via functions of several variables, such as listed near the start of this chapter.

Example 17.1.2. Suppose a person walks on a mountain with height function h(x, y) ∈ R above sea level
where x and y are the (horizontal) distances in feet respectively east and north of the summit (e.g., x < 0
refers to being west of the summit); the mountain is the graph of h in the sense of Section 9.5. As a

function of time t in minutes, let p(t) =
[
x(t)
y(t)

]
∈ R2 be the path traversed by the person (i.e., at time t

their east-west displacement from the summit is x(t) and their north-south displacement from the summit
is y(t)). Thus, a(t) = h(p(t)) denotes the person’s altitude above sea level at time t.

x

y
.
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FIGURE 17.1.1. Contour plot showing a red path to the top of mountain

We wish to compute a′(t), the rate of change of altitude as a function of time. Since a is a function
R → R, the task of computing a′(t) is something we could imagine trying to do in the context of single-
variable calculus. But there is nothing in single-variable calculus telling us how a′(t) can be completely
determined by two rather different ingredients: the hilliness of the mountain and the xy-velocities of
motion.

The derivative matrix (Dh)(x, y) =
[
∂h/∂x ∂h/∂y

]
keeps track of how hilly the mountain is. For

instance, ∂h/∂y measures steepness of the mountain in the north-south direction (e.g., if very negative then

it drops quickly for someone walking in a northerly direction). The derivative matrix (Dp)(t) =

[
x′(t)
y′(t)

]

keeps track of the speed in east-west and north-south directions (e.g., if x′(t) < 0 then the person is
walking in a westerly direction); one might also regard (Dp)(t) as a “velocity vector” for the xy-directions.
The multivariable Chain Rule to be stated and illustrated below will give a universal formula (irrespective
of the specifics of h and p) for a′(t) in terms of (Dh)(x, y) and (Dp)(t). ■

Example 17.1.3. In the context of Lagrange multipliers from Chapter 12, we noted in Remark 12.2.14 that
when maximizing a function f(x) subject to a constraint g(x) = c, one may regard the point a at which
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f attains its maximum subject to the constraint g = c as a vector-valued function of c. This maximum is
f(a(c)), which we now see is a composition of two functions: first we have a as a function of c, and then
we plug that into f . Hence, the ordinary calculus derivative d

dc
(f(a(c))) expressing the rate of change in c

for the maximum of f(x) subject to g(x) = c is a situation similar in form to the one in Example 17.1.2.
It was mentioned in Remark 12.2.14 that the Lagrange multiplier λ(c) associated with this constrained

optimization problem is exactly that derivative d
dc
(f(a(c))). To explain why this works, we need a way to

compute such composite derivatives which involve a vector-valued intermediate step (namely, a). We will
carry this out in Example 17.1.9. ■

Example 17.1.4. The output of a mechanical or biological or financial process often rests upon many
ingredients, each of which depend on many other ingredients, and so on, setting up a chain of many layers
of dependence. For example, the velocity of a runner depends on energy stored in various muscles and
signals sent from neurons, and these in turn depend on air intake, oxygen levels in blood, the hilliness of
the path being traversed, etc. It is important to understand how the output varies in terms of such deeper
ingredients, which is exactly working with a composition of multivariable functions.

In general, we have a vector-valued function F(x1, . . . , xm) of several inputs xj each of which depends
on a collection of other inputs (y1, . . . , yp), and those in turn may depend on yet other inputs (z1, . . . , zn),
and so on. When the first step of dependencies is plugged in so F is expressed in terms of the yk’s, or we
go a step further and express F in terms of the zr’s (or beyond), we obtain a multivariable composition.
Can we express the partial derivatives of each component function of the composition in terms of some
“universal formula” built out of the partial derivatives of the dependence functions at each layer (e.g., xj’s
in terms of yk’s, yk’s in terms of zr’s) without explicitly plugging all layers of dependence into F?

Here is an example. Consider F(v, w) = (vw, v+w) with a chain of dependencies on other parameters

(v, w) = (xy, 3x+ yz), (x, y, z) = (st, s2t2, s+ t),

and suppose we want to analyze the behavior of F when expressed in terms of (x, y, z) or (s, t). We can
express such dependencies in terms of the functions

R2 h→ R3 g→ R2 f→ R2

defined by

h(s, t) = (st, s2t2, s+ t), g(x, y, z) = (xy, 3x+ yz), f(v, w) = (vw, v + w),

namely “F in terms of (x, y, z)” is f ◦g, and “F in terms of (s, t)” is f ◦g ◦h. (Make sure you understand
this!) A typical question we would like to systematically be able to answer is this: when F is viewed as a
function of (s, t), what is (∂F1/∂t)

∣∣∣
(2,−1)

(where F1 is the first component function of F)?

One way to do this is raw substitution: we plug in explicitly to get

F(s, t) = f(g(h(s, t))) = f(g(st, s2t2, s+ t))

= f(s3t3, 3st+ s3t2 + s2t3)

= (3s4t4 + s6t5 + s5t6, s3t3 + 3st+ s3t2 + s2t3),

so F1(s, t) = 3s4t4+s6t5+s5t6 and hence ∂F1/∂t = 12s4t3+5s6t4+6s5t5. Evaluating at (s, t) = (2,−1),
we get −12 · 16 + 5 · 64− 6 · 32 = −64.

But this is a bit tedious, and for many practical situations it would be very unpleasant or impossible
to proceed this way. For instance, in the context of a neural network for machine learning, such partial
derivatives need to be computed but the number of variables at each layer could be on the order of millions
and the number of layers (i.e., the number of composition steps) can also be rather large (far more than
composing just three functions as above). After we introduce the multivariable Chain Rule, we’ll see in
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Example 17.1.6 how it works out for the example above. (In the optional Appendix G, for those who are
interested, we discuss in more detail the tremendously important application to neural networks.) ■

Theorem 17.1.5 (The multivariable Chain Rule). If f : Rp → Rm and g : Rn → Rp are two
functions then the derivative matrix of f ◦ g : Rn → Rm at a point a ∈ Rn is computed in terms of
the derivative matrices of f and g at appropriate points via the formula

(D(f ◦ g))(a) = (Df)(g(a)) (Dg)(a)

where the right side is a matrix product. Working at a variable point v = (v1, . . . , vn) ∈ Rn, this
takes on the equivalent form

(D(f ◦ g))(v) = (Df)(g(v)) (Dg)(v).

Warning: Most multivariable calculus books do not state this matrix version of the Chain Rule.
They express the result in terms of the matrix entries (partial derivatives), which has the appearance
of a different result for every possible number of variables. The uniform matrix version we have pre-
sented illustrates that “multivariable calculus is just like single-variable calculus if you use matrices.”
There is only one Chain Rule: the version we have written above. (For the formulation in terms of
matrix entries, see (17.1.3) when n = m = 1 and Remark 17.1.10 (or (17.4.2)) for the general case.)

The intuition behind the multivariable Chain Rule is rather concrete, as follows. By definition, (Df)(a)
is the best linear approximation to f(x) − f(a) for x near a. And by definition matrix multiplication
calculates exactly the composition of linear transformations. Thus, in words this Chain Rule says:

the best linear approximation to a composite function f ◦g at a ∈ Rn is the composition
(in the same order!) of the best linear approximations to f (at g(a)) and g (at a).

In Section 17.4 we explain more fully this linear algebra intuition for where the multivariable Chain Rule
comes from, for those who wish to understand it in more detail. (We will later see a reformulation of
this Chain Rule in terms of somewhat complicated formulas with scalar-valued component functions, in
(17.1.4) and (17.1.6), but only the perspective of matrix multiplication provides a genuine explanation for
where such scalar-valued formulas come from.)

For v ∈ Rn, all participants in the multivariable Chain Rule formula are matrices whose entries are
functions of v1, . . . , vn (the coordinates of the input v ∈ Rn). Note that the matrix multiplication in the
formula “makes sense” in terms of the number of rows and columns in the respective matrices:

(D(f ◦ g))(v)︸ ︷︷ ︸
m×n

= (Df)(g(v))︸ ︷︷ ︸
m×p

(Dg)(v)︸ ︷︷ ︸
p×n

Example 17.1.6. Let’s revisit Example 17.1.4 and compute (∂F1/∂t)(2,−1) via the Chain Rule. In terms
of the notation introduced there, we seek to compute the (1, 2)-entry (i.e., upper-right entry) of the 2 × 2
matrix (D(f ◦ g ◦ h))(2,−1). This 2× 2 derivative matrix is equal to

(Df)(g(h(2,−1))) (Dg)(h(2,−1)) (Dh)(2,−1) = (Df)(−8,−2) (Dg)(−2, 4, 1) (Dh)(2,−1).

Here, the point at which each derivative matrix is being evaluated is obtained by applying the chain of
compositions to (2,−1):

(2,−1)
h
⇝ (−2, 4, 1)

g
⇝ (−8,−2)

via the formulas defining g and h. The formulas defining f , g, and h give

Df =

[
w v
1 1

]
, Dg =

[
y x 0
3 z y

]
, Dh =




t s
2st2 2s2t
1 1


 .
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Evaluating these at the required points then gives that (DF)(2,−1) is the matrix product

[
−2 −8
1 1

] [
4 −2 0
3 1 4

]

−1 2
4 −8
1 1


 =

[
−32 −4 −32
7 −1 4

]

−1 2
4 −8
1 1


 =

[
−16 −64
−7 26

]
.

The desired (1, 2)-entry is −64 (agreeing with what we obtained in Example 17.1.4). Observe that this
method is completely different from the bare-hands approach in Example 17.1.4. ■

Example 17.1.7. In the setting of Example 17.1.2, let’s see what we can learn from the multivariable Chain
Rule. We expressed the altitude a : R → R above sea level at time t as the composition R

p→ R2 h→ R.
The multivariable Chain Rule says that at a time t0, the 1×1 matrix [a′(t0)] = (Da)(t0) equals the product

(Dh)(p(t0))(Dp)(t0) =
[
hx(p(t0)) hy(p(t0))

] [x′(t0)
y′(t0)

]
=
[
hx(p(t0))x

′(t0) + hy(p(t0)) y
′(t0)

]
.

Comparing entries of the (equal) 1× 1 matrices (Da)(t0) and (Dh)(p(t0))(Dp)(t0) yields

a′(t0) = hx(p(t0))x
′(t0) + hy(p(t0)) y

′(t0) = (∇h)(p(t0)) · p′(t0) (17.1.1)

where p′(t) =

[
x′(t)
y′(t)

]
is the velocity at time t. For example, after 10 minutes the rate of change of the

altitude of the person’s path is a′(10) = hx(p(10))x
′(10) + hy(p(10)) y

′(10). To think more broadly in
terms of general time t (not focusing on a specific time value), we rewrite (17.1.1) as

da

dt
=
∂h

∂x

dx

dt
+
∂h

∂y

dy

dt
= (∇h)(p(t)) · p′(t) (17.1.2)

(where it is understood that the partial derivatives of h are really being evaluated at the point p(t) =
(x(t), y(t))). This is a “universal formula” for how rapidly the person is moving up and down in altitude
in terms of two ingredients: (i) their (signed) speeds in the x-direction and y-direction, (ii) the geometric
information of the steepness of the mountain. Giving a “universal formula” such as (17.1.2) for a rate of
change of a composition (such as a(t) = (h ◦ p)(t)) in terms of rates of change for intermediate layers of
a composition (such as for h and p) is the content of the multivariable Chain Rule.

Let’s see what this is saying in a specific example. Suppose the mountain has an elliptical level curve
at each elevation; for specificity, suppose the height h(x, y) of the mountain over a point (x, y) at sea level
(with the summit over (0, 0)) is h(x, y) = 200−3x2−xy−y2, so the height at the summit is h(0, 0) = 200
and in general the part of the mountain at a height c is the level curve 200−3x2−xy−y2 = c that is a tilted
ellipse as shown in Figure 17.1.2 (which is a contour plot of h). For the path up the hill seen from above

(i.e., as if drawn on a contour plot, as in Figure 17.1.2), suppose it is p(t) =

[
t− 20

−3t+ 60

]
(so the actual

position in space is at an altitude a(t) = h(t− 20,−3t+60) = h(p(t)) above the point (t− 20,−3t+60)
at sea level). From a bird’s-eye view, the path of motion looks like a straight line with constant speed in

the xy-directions, with initial position p(0) =
[
−20
60

]
and placement at the summit at t = 20 minutes since

p(t) = (0, 0) for t = 20. Let’s work out what (17.1.2) is saying in this case.
We have

(Dh)(x, y) =
[
−6x− y −x− 2y

]
, (Dp)(t) =

[
1
−3

]

(so the velocity in the xy-directions is constant in time). Substituting this into (17.1.2) yields

a′(t) = (−6x− y)(1) + (−x− 2y)(−3) = −6x− y + 3x+ 6y = −3x+ 5y
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where really (x, y) = p(t), so we should substitute x(t) = t− 20 for x and y(t) = −3t+ 60 for y to get

a′(t) = −3(t− 20) + 5(−3t+ 60) = −18t+ 360.
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FIGURE 17.1.2. Green path directly up a mountain that is an ellipse at each elevation

As a safety check, let’s confirm that this computation of a′(t) using the “universal formula” (17.1.2)
agrees with what we get by explicit substitution:

a(t) = h(p(t)) = h(t− 20,−3t+ 60)

= 200− 3(t− 20)2 − (t− 20)(−3t+ 60)− (−3t+ 60)2

= 200− 3(t2 − 40t+ 400)− (−3t2 + 120t− 1200)− (9t2 − 360t+ 3600)

= 200− 3t2 + 120t− 1200 + 3t2 − 120t+ 1200− 9t2 + 360t− 3600

= −9t2 + 360t− 3400,

so a′(t) = −18t + 360 once again. Observe that there was some tedium involved in working out a(t)
explicitly, whereas our computation of a′(t) via the multivariable Chain Rule in the guise of (17.1.2)
entirely bypassed the need to explicitly compute a(t), instead expressing a′(t) in terms of the derivatives
of h and p that are easier to work with. ■

The algebra involved in computing a′(t) via the multivariable Chain Rule is ultimately less than the
fully explicit second way of computing it. But the real significance of the Chain Rule goes beyond
being a time-saving device, or a way to simplify calculations one does by hand: it provides a formula
as in (17.1.2) that tells us in precise quantitative terms exactly how the rate of change of a composite
procedure (such as a = h ◦ p) is completely determined by knowledge of rates of change arising from
the various inputs (such as p(t) and h(x, y)).

That enables us to draw qualitative conclusions for how the overall rate of change is impacted
when we make adjustments to the input. There are numerous situations in economics, the natural
sciences, computer science, and so on where an overall effect is described in terms of many inputs,
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and in such cases the multivariable Chain Rule is the best tool for analyzing how the rate of change of
an overall effect depends on that of the inputs.

For instance, suppose someone else moves twice as quickly in the x-direction and three times as

quickly in the y-direction. Their path P (t) is
[
2x(t)
3y(t)

]
, so their altitude function A(t) = h(P (t)) has rate

of change in time given by

A′(t) =
∂h

∂x

d(2x)

dt
+
∂h

∂y

d(3y)

dt
= 2

∂h

∂x

dx

dt
+ 3

∂h

∂y

dy

dt
.

Comparing this with (17.1.2), we see that there isn’t any “easy” direct formula for A′(t) in terms of a′(t)
(because the speed-up factors of 2 and 3 in the x and y directions are not the same), but nonetheless we
can see qualitatively how A′(t) deviates from a′(t) in terms of how the formulas for them deviate from
each other. This qualitative comparison of A′(t) and a′(t) is the same regardless of the specific details of
the path p or the hilliness h of the mountain.

At first glance, the general multivariable Chain Rule may seem like a complicated formula, but its
formal structure is pretty much the same as the single-variable Chain Rule you already know! The two
ingredients in the multivariable Chain Rule are:

• the derivative matrix Df evaluated at g(a) (or at g(v) if working at a variable point v in Rn),
• the derivative matrix Dg evaluated at a (or at v if working at a variable point in Rn).

We emphasize:

the derivative matrix for f ◦g at the point of interest is obtained by multiplying the derivative matrices
of the two ingredients in the same order as the order of composition of the functions (i.e., f -derivative
on the left, g-derivative on the right).

Matrix multiplication is sensitive to the order of multiplication except for 1 × 1 matrices (which
is scalar multiplication by another name), and the single-variable Chain Rule is the special case of
the multivariable Chain Rule with 1 × 1 matrices. For this reason, from now on “Chain Rule” will
mean the multivariable Chain Rule.

Example 17.1.8. The formula in (17.1.2) for n = m = 1 with p = 2 generalizes to n = m = 1 and any
p as follows. Suppose a function R → R is expressed as a composition f ◦ g for some g : R → Rp

and f : Rp → R. The case p = 2 arose in Example 17.1.2, and examples with larger p pervade the
applications mentioned near the start of this chapter. (See Appendix G for striking applications with more
general n and m.) Denote the component functions of g as g1, . . . , gp (i.e., g(t) = (g1(t), . . . , gp(t))), and
consider f as a function of y = (y1, . . . , yp) ∈ Rp.

The deduction of (17.1.2) works equally well for any p, as follows. The unique entry (f ◦ g)′(t) in the
1× 1 matrix (D(f ◦ g))(t) can be computed via the Chain Rule from the matrix product

(Df)(g(t))(Dg)(t) =

[
∂f

∂y1

∂f

∂y2
. . .

∂f

∂yp

]



g′1(t)
g′2(t)

...
g′p(t)


 =

[
∂f

∂y1

dg1
dt

+ · · ·+ ∂f

∂yp

dgp
dt

]

where it is understood that each ∂f/∂yk is evaluated at g(t). Comparing the entries in the 1× 1 matrices
then gives the equality of numbers

(f ◦ g)′(t) =
p∑

k=1

∂f

∂yk

dgk
dt

= (∇f)(g(t)) · g′(t) (17.1.3)
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where g′(t) is the “velocity vector” in Rp with kth entry g′k(t) and each ∂f/∂yk is evaluated at g(t)
(recovering (17.1.2) when p = 2, up to a change in the letters used to denote various functions, and
recovering the Chain Rule in single-variable calculus when p = 1). Here is a notationally more convenient
formulation in the spirit of (17.1.2):

df

dt
=

p∑

k=1

∂f

∂yk

dyk
dt

(17.1.4)

where yk(t) denotes the kth component function of g (i.e., g(t) = (y1(t), . . . , yp(t))).

■

Example 17.1.9. As an application of (17.1.3) (or (17.1.4)), we finish off Example 17.1.3: in the notation
there, we wanted to compute the derivative with respect to c of f(a(c)) and show it equals λ(c). Since we
regard c as a varying quantity, we rename it as t.

The formula (17.1.3) tells us that the derivative of f(a(t)) with respect to t is the dot product of
the gradient (∇f)(a(t)) at a(t) against the vector a′(t) whose jth entry is a′j(t). The main result on
Lagrange multipliers (Theorem 12.2.1) tells us that (∇f)(a) = λ (∇g)(a) (ignoring the case (∇g)(a) =
0). Remembering the dependence of everything on the choice of value of t, this really says

(∇f)(a(t)) = λ(t) (∇g)(a(t)).
Putting it all together, we have

d

dt
(f(a(t))) = (∇f)(a(t)) · a′(t) = (λ(t) (∇g)(a(t))) · a′(t) = λ(t)((∇g)(a(t)) · a′(t)).

Ah, but the dot product (∇g)(a(t)) · a′(t) on the right side is the same type of multivariable Chain Rule
output we have already encountered, except with g in the role of f . More specifically, this is the derivative
with respect to t of the composite function g(a(t)) (rather than f(a(t)) as above). But the whole point of
t is that it keeps track of the constraint on g! More specifically, by design a(t) is a point on the constraint
locus g(x) = t, so g(a(t)) = t. So we conclude that

d

dt
(f(a(t))) = λ(t)

d

dt
(g(a(t))) = λ(t)

d

dt
(t) = λ(t) (1) = λ(t),

as desired. ■

Remark 17.1.10. There is a generalization of (17.1.4) for the general “scalar-valued” case f : Rp → R
that uses g : Rn → Rp for any n ≥ 1. It is a restatement of the multivariable Chain Rule in the casem = 1
avoiding the language of matrices; this is the version stated in many multivariable calculus textbooks, and
it is widely used in scientific and engineering literature, so we now present it.

Consider g : Rn → Rp, and write its components as g1(x), . . . , gp(x). For any f : Rp → R, the
Chain Rule formula for f ◦ g can be written without reference to matrices as

∂(f ◦ g)
∂xj

=

p∑

k=1

∂f

∂yk

∂gk
∂xj

; (17.1.5)

with 1 ≤ j ≤ n; each ∂f/∂yk on the right side is evaluated at g(x), and the left side is evaluated at x.
Where does the right side of (17.1.5) come from? It is the expression for the 1j-entry in the 1 × n

product matrix (Df)(g(x)) (Dg)(x) (we say more about this in Remark 17.4.1). A convenient way to
think about (17.1.5) is that by writing y = g(x), it expresses rates of change of f in terms of the x’s as
a sum of contributions of rates of change of f in terms of the y’s multiplied by rates of change of the y’s
in terms of the x’s: abbreviating the notation in (17.1.5) by writing f instead of f ◦ g on the left side and
writing yk instead of gk on the right side expresses it as:
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∂f

∂xj
=

p∑

k=1

∂f

∂yk

∂yk
∂xj

(17.1.6)

(where the left side is evaluated at x and each ∂f/∂yk on the right side is evaluated at g(x)). Although
(17.1.5) is the more precise formulation, you will often encounter the notationally convenient ver-
sion (17.1.6) in many places. Observe that when n = 1 this recovers (17.1.4).

An important special case is when n = p; in this case often x and y are different coordinates on
the same region of Rn. The best-known example of this is the use of polar coordinates on R2, where
g(r, θ) = (r cos θ, r sin θ): we are “locating” a point on the plane in terms of its distance r from the origin
and its angle θ from the positive x-axis (instead of its rectangular coordinates). Analogues with spherical
and cylindrical coordinates for n = 3 arise in many physical problems.

17.2. Sample calculations. To get comfortable with the mechanics of this new Chain Rule, let’s carry
out some calculations with it. Some of the following examples use the more fundamental formulation in
terms of matrix multiplication, and others use the more explicit scalar-valued formulas in (17.1.4), (17.1.5),
and (17.1.6). Both versions of the Chain Rule are useful in practice.

Example 17.2.1. Consider the function f : R3 → R2 given by

f(x, y, z) = (xy + (1/2)z2, xz + (1/2)y2)

and define F (s, t) = f(t2, st, 1/s); i.e., F = f ◦ g for g(s, t) = (t2, st, 1/s). Let’s calculate (DF )(1, 2)
in two ways: using the Chain Rule and using explicit calculation of the component functions of F .

Method 1. By the Chain Rule, (DF )(1, 2) = (Df)(g(1, 2))(Dg)(1, 2) = (Df)(4, 2, 1)(Dg)(1, 2).
Computing partial derivatives of component functions of f and g yields

(Df)(x, y, z) =

[
y x z
z y x

]
, (Dg)(s, t) =




0 2t
t s

−1/s2 0


 .

Hence,

(DF )(1, 2) = (Df)(4, 2, 1)(Dg)(1, 2) =

[
2 4 1
1 2 4

]


0 4
2 1
−1 0


 =

[
7 12
0 6

]
.

Method 2. For the explicit approach, we compute

F (s, t) = (t2(st) + (1/2)(1/s)2, t2(1/s) + (1/2)(st)2) = (st3 + (1/2)s−2, t2/s+ s2t2/2),

so

(DF )(s, t) =

[
t3 − 1/s3 3st2

−(t/s)2 + st2 2t/s+ s2t

]
.

Thus,

(DF )(1, 2) =

[
7 12
0 6

]
. ■

Example 17.2.2. Suppose the temperature in a room is given by some function T (x, y, z) at the point
(x, y, z). A bug that begins at rest on the floor at (4, 2, 0) flies around along the spiral path p(t) =
(3 + cos t, 2 + sin t, t) where t is time (measured in seconds). At time t = 3, what is the rate of change
with respect to time for the temperature as experienced by the bug along its path of motion?
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The temperature felt by the bug at time t is f(t) = T (p(t)) = T (3 + cos t, 2 + sin t, t). If we write
p(t) = (x(t), y(t), z(t)) then the Chain Rule in the form (17.1.4) says

f ′(t) =
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
+
∂T

∂z

dz

dt
= −(sin t)

∂T

∂x
+ (cos t)

∂T

∂y
+
∂T

∂z
, (17.2.1)

where it is understood that all partials of T are evaluated at the point p(t) ∈ R3.
For instance, if T (x, y, z) = e−(x−2)2−(y−2)2 + z then

∂T

∂x
= −2(x− 2)e−(x−2)2−(y−2)2 ,

∂T

∂y
= −2(y − 2)e−(x−2)2−(y−2)2 ,

∂T

∂z
= 1,

so evaluating these partials at p(t) = (3 + cos t, 2 + sin t, t) gives

∂T

∂x
(p(t)) = −2(1 + cos t)e−(1+cos t)2−(sin t)2 ,

∂T

∂y
(p(t)) = −2(sin t)e−(1+cos t)2−(sin t)2 ,

∂T

∂z
(p(t)) = 1.

Plugging these into (17.2.1) and simplifying the algebra a bit, we get

f ′(t) = 2(sin t)e−(1+cos t)2−(sin t)2 + 1. ■

Example 17.2.3. Suppose g : R3 → R2 is

g(x, y, z) =

[
xy + z2

zey

]
,

and f : R2 → R2 is f(v, w) = (v/w, v + w). The composition h = f ◦ g : R3 → R2 carries (x, y, z) to
[
(xy + z2)/(zey)
xy + z2 + zey

]
.

In other words, if we write h in terms of component functions as (h1, h2) : R3 → R2 for h1, h2 : R3 → R
then

h1(x, y, z) =
xy + z2

zey
, h2(x, y, z) = xy + z2 + zey.

Computing the matrix (Dh)(1, 2,−1) of values of partial derivatives at (1, 2,−1) of the component
functions of h directly (i.e., without the Chain Rule) can be done in this case without too much fuss upon
noting that we can write h1 in the form (xy/z)e−y + ze−y, yielding

∂h1
∂x

= (y/z)e−y,
∂h1
∂y

= ((x/z)(1− y)− z)e−y,
∂h1
∂z

= (−(xy/z2) + 1)e−y.

Thus,
∂h1
∂x

(1, 2,−1) = −2e−2,
∂h1
∂y

(1, 2,−1) = 2e−2,
∂h1
∂z

(1, 2,−1) = −e−2. (17.2.2)

The partials of h2 are ∂h2/∂x = y, ∂h2/∂y = x + zey, ∂h2/∂z = 2z + ey, so evaluating at (1, 2,−1)
gives (h2)x(1, 2,−1) = 2, (h2)y(1, 2,−1) = 1− e2, (h2)z(1, 2,−1) = −2 + e2. If the first component of
f had been w/v rather than v/w then the first component h1 of h would have been (zey)/(xy+ z2) which
does not break up as a sum, making direct computation of the partials of h1 a bit of a mess in that case.

The Chain Rule provides a completely different way to compute those partials, without needing to
compute h1 and h2 explicitly first. It enables us to efficiently organize the division of labor for computing
partials of h into separately computing partials of f (without the intervention of g!) and partials of g. In
cases where the component functions of h are complicated, this can be a real simplification.

Even in cases (as at present) where one could compute the partials of the component functions of
h = f ◦ g directly, the Chain Rule typically lets us get by with simpler calculations at every step (except
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we do have to carry out one matrix multiplication at the end). This was already seen when fleshing out
Example 17.1.2 in Section 17.1.

Turning now to the Chain Rule in our setting above, we compute

(Df)(v, w) =

[
1/w −v/w2

1 1

]
, (Dg)(x, y, z) =

[
y x 2z
0 zey ey

]

and g(1, 2,−1) = (3,−e2), so by the Chain Rule

(Dh)(1, 2,−1) = (Df)(3,−e2) (Dg)(1, 2,−1) =

[
−1/e2 −3/e4

1 1

] [
2 1 −2
0 −e2 e2

]

=

[
−2/e2 2/e2 −1/e2

2 1− e2 −2 + e2

]
.

The first row of the final matrix gives the partial derivatives of h1 at (1, 2,−1) with respect to x, y, z in
order (recovering what we computed directly in (17.2.2)), and likewise with the second row for h2. ■

Example 17.2.4. Consider the composition h = f ◦ g : R3 → R3 of functions f : R2 → R3 and
g : R3 → R2 given by

f(x, y) = (x2, xy, y2), g(r, s, t) = (r sin(πs),−s+ t).

In this case it actually makes sense to form the composite functions

h = f ◦ g : R3 → R3, H = g ◦ f : R2 → R2

in both orders, but these are totally different things:

h(r, s, t) = (r2 sin2(πs), r sin(πs)(−s+ t), (−s+ t)2), H(x, y) = (x2 sin(πxy),−xy + y2).

Let’s compute (Dh)(1, 1,−1) using the Chain Rule. By computing partial derivatives of component
functions of f and g we have

(Df)(x, y) =



2x 0
y x
0 2y


 , (Dg)(r, s, t) =

[
sin(πs) πr cos(πs) 0

0 −1 1

]
,

so since g(1, 1,−1) = (0,−2) we have

(Dh)(1, 1,−1) = (Df)(0,−2) (Dg)(1, 1,−1) =




0 0
−2 0
0 −4



[
0 −π 0
0 −1 1

]
.

Multiplying these matrices gives the answer

(Dh)(1, 1,−1) =



0 0 0
0 2π 0
0 4 −4


 .

As a safety check, the first two entries in the bottom row say the third component function h3(r, s, t) =
(−s+t)2 of h satisfies (∂h3/∂r)(1, 1,−1) = 0 and (∂h3/∂s)(1, 1,−1) = 4, both of which can be checked
by direct calculation with the formula for h3.

Let’s now do similarly for the composition H in the opposite order, and compute (DH)(0,−2). Note
that f(0,−2) = (0, 0, 4) (not (1, 1,−1)!!), so by the Chain Rule

(DH)(0,−2) = (Dg)(0, 0, 4) (Df)(0,−2) =

[
0 0 0
0 −1 1

]


0 0
−2 0
0 −4


 =

[
0 0
2 −4

]
. (17.2.3)
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For example, writing H1 and H2 for the component functions of H : R2 → R2, the right column of the
final 2×2 matrix says (∂H1/∂y)(0,−2) = 0 and (∂H2/∂y)(0,−2) = −4, as can be verified directly from
the formulas H1(x, y) = x2 sin(πxy) and H2(x, y) = −xy + y2.

Beware that although in this case it also makes sense algebraically to form the product matrix

(Dg)(1, 1,−1) (Df)(0,−2)

in the opposite order, this has nothing to do with (D(g ◦ f))(0,−2) = (DH)(0,−2). Indeed, the latter
was computed in (17.2.3), and is not equal to

(Dg)(1, 1,−1) (Df)(0,−2) =

[
0 −π 0
0 −1 1

]


0 0
−2 0
0 −4


 =

[
2π 0
2 −4

]

(the upper-left entries are different). This does not contradict the Chain Rule for H at (0, 2) since that
instance of the Chain Rule requires evaluating Dg at the point f(0, 2) = (0, 0, 4) rather than at (1, 1,−1).

■

The preceding example illustrates a point to keep in mind:

The order of multiplication of matrices in the Chain Rule matches the order of composition of the
functions being composed. Even if it “makes sense” to multiply the matrices in the wrong order, the
opposite-order product is generally not the derivative matrix for the opposite-order composite function
(since evaluation is usually at the wrong points). Be careful about the order of matrix multiplication!

Example 17.2.5. In single-variable calculus, we learn the “product rule” for derivatives:

(g1g2)
′(x) = g′1(x)g2(x) + g1(x)g

′
2(x).

This fact from single-variable calculus has a striking explanation in terms of the multivariable Chain Rule,
as follows. The idea is to express the product function g1g2 : R → R in the single-variable setting as a
multivariable composition f ◦ g according to the picture

R
g→ R2 f→ R

where g(x) = (g1(x), g2(x)) and f(y1, y2) = y1y2 (so f coincides with M in Example 8.1.4). Check for
yourself that indeed f ◦ g is the function with value g1(x)g2(x) at x.

This composition “decouples” the multiplication step from the consideration of the two separate func-
tions g1 and g2. By the rules for derivative matrices in terms of partial derivatives, we have

(Df)(y1, y2) = [y2 y1], (Dg)(x) =

[
g′1(x)
g′2(x)

]
,

so upon multiplying these in the correct order we see that the 1× 1 matrix [(g1g2)
′(x)] is the product

(Df)(g(x)) (Dg)(x) = (Df)(g1(x), g2(x)) (Dg)(x) = [g2(x) g1(x)]

[
g′1(x)
g′2(x)

]
,

and by the rules for matrix multiplication this is the 1× 1 matrix [g2(x)g
′
1(x) + g1(x)g

′
2(x)]. Staring at the

single entry in this matrix, we get the old formula for (g1g2)′(x). This is a totally new explanation of the
product rule from single-variable calculus, by using the multivariable Chain Rule! ■

In Example 17.2.6 below we will see that expressing a single-variable function as a multivariable
composition naturally arises in the context of computing the velocity for a comet orbiting a star. There is
an abundance of other applications of the same idea (often when seeking to compute rates of change with
respect to time), some of which were mentioned at the start of this chapter.
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Example 17.2.6. The position of a comet orbiting a star at (0, 0) on the xy-plane is given by the function
p(t) = (3 cos t+ 1, sin t) graphed below:

y

x
•

FIGURE 17.2.1. A comet orbiting a star at the origin

(The output of the function p : R → R2 consists of the points on an ellipse with (0, 0) as one of its foci,
in accordance with Kepler’s Laws, but that is not needed in the calculations which follow.)

Suppose we want to find the points along the orbit where the comet is closest or furthest from the star.
This amounts to finding the maxima and minima of the distance d(t) between the comet and the star at
time t. Those maxima and minima occur at those times t0 satisfying d′(t0) = 0. For this reason, it is
of interest to an astronomer to compute the derivative d′(t). (Note that since d(t) ≥ 0, the maxima and
minima of d are the same as for d2, so for the purpose of finding the times at which the extreme values are
attained we could replace d with d2. This has the merit of removing some annoying square roots which
otherwise arise from the Pythagorean Theorem below. We make the direct calculations below without that
trick, since our aim is to illustrate the consistency of the Chain Rule with other methods of calculation,
and it comes out more impressively by retaining the square roots below.)

Note that the distance d is very naturally a composite function:

d(t) =
√
(3 cos t+ 1)2 + (sin t)2 = (F ◦ p)(t)

where F (x, y) =
√
x2 + y2. We shall now compute d′ in two different ways: first we will find a formula

for the single-variable function d(t) and compute its derivative using single-variable calculus, and then we
will use the Chain Rule via the above expression for d : R → R as a composition R → R2 → R of
multivariable functions.

The first method below looks shorter only because it is a more familiar technique (from single-variable
calculus) and we have done the messy algebra for you; it is not really simpler. After reading both methods,
you should recognize that the second method is not longer after one gets accustomed to the Chain Rule.

• (First method) Since

d(t) =
√
(3 cos t+ 1)2 + (sin t)2 =

√
9 cos2 t+ 6 cos t+ sin2 t+ 1,

taking the derivative with respect to t (using the single-variable Chain Rule) yields

d′(t) =
(√

9 cos2 t+ 6 cos t+ sin2 t+ 1
)′

=
(9 cos2 t+ 6 cos t+ sin2 t+ 1)′

2
√
9 cos2 t+ 6 cos t+ sin2 t+ 1

=
−18 cos t sin t− 6 sin t+ 2 sin t cos t

2
√
9 cos2 t+ 6 cos t+ sin2 t+ 1

= − 8 sin t cos t+ 3 sin t√
9 cos2 t+ 6 cos t+ sin2 t+ 1

.
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• (Second method) Defining x(t) = 3 cos t + 1 and y(t) = sin t to be the components of p(t), for
d(t) = (F ◦ p)(t) we get from (17.1.4)

d′(t) =
∂F

∂x

dx

dt
+
∂F

∂y

dy

dt
= (−3 sin t)

∂F

∂x
+ (cos t)

∂F

∂y
.

The partials of F are

∂

∂x
(
√
x2 + y2) =

x√
x2 + y2

,
∂

∂y
(
√
x2 + y2) =

y√
x2 + y2

,

to be evaluated at p(t) = (x(t), y(t)). Hence,

d′(t) = (−3 sin t)
x(t)√

x(t)2 + y(t)2
+ (cos t)

y(t)√
x(t)2 + y(t)2

= (−3 sin t)
3 cos t+ 1√

(3 cos t+ 1)2 + (sin t)2
+ (cos t)

sin t√
(3 cos t+ 1)2 + (sin t)2

= − 8 sin t cos t+ 3 sin t√
(3 cos t+ 1)2 + sin2 t

.

Though these two methods of computing d′(t) are very different, they give the same answer (as they
must if we didn’t make a mistake): the numerators in both fractional expressions are literally the same,
and the expressions inside the square roots in the denominators for the two fractional expressions for d′(t)
are seen to be equal upon expanding out (3 cos t+ 1)2 = 9 cos2 t+ 6 cos t+ 1. ■

Remark 17.2.7. Using the formula for d′(t) and considering where it vanishes, we can find the critical
points of d(t). Namely, they correspond to where sin t = 0 (so cos t = ±1) or cos t = −3/8 (so sin t =
±
√
55/8). The positions p(t) = (3 cos t + 1, sin t) at such times are respectively (4, 0), (−2, 0) and

(−1/8,±
√
55/8). These points have respective distances from (0,0) given by 4, 2, and

√
7/8 = 0.935 . . . .

Thus, the point at greatest distance from the sun is (4, 0), as is obvious from the picture of the orbit in
Figure 17.2.1, and the points at closest distance to the sun are (−1/8,±

√
55/8). The latter is not easy to

see from Figure 17.2.1, but it is clear from the picture that (−2, 0) at the opposite end of the orbit from
(4, 0) is definitely not closest to the sun and the points that are closest are a pair a bit to the left of the
y-axis (as a safety check on the reasonableness of our determination of those points as (−1/8,±

√
55/8)).

In Examples 17.2.2 and 17.2.6 we saw the scalar-valued (17.1.4) in action. The next example illustrates
its generalizations (17.1.5) and (17.1.6) for situations when the source involves more than one variable.

Example 17.2.8. Consider a functionf(x, y, z) whose variables x, y, z each depend on another pair of
variables u,w via the formulas

x(u,w) = sin(u)w, y(u,w) = w2, z(u,w) = u/w. (17.2.4)

Via these dependencies, f can be viewed as a function of (u,w), namely f(sin(u)w,w2, u/w). We shall
compute the partials of f with respect to u and w in terms of its partials with respect to x, y, z.

The general formula (17.1.5) (expressed as in (17.1.6)) gives

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
+
∂f

∂z

∂z

∂u
. (17.2.5)

We compute the partials of x, y, z with respect to u using (17.2.4):

∂x

∂u
= cos(u)w,

∂y

∂u
= 0,

∂z

∂u
=

1

w
.
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Plugging these into the right side of (17.2.5) yields
∂f

∂u
= cos(u)w

∂f

∂x
+

1

w

∂f

∂z
. (17.2.6)

For example, at (u,w) = (0,−2) we have (x, y, z) = (0, 4, 0) due to (17.2.4), so (17.2.6) gives

∂f

∂u
(0,−2) = −2

∂f

∂x
(0, 4, 0)− 1

2

∂f

∂z
(0, 4, 0).

Likewise, to compute ∂f/∂w we use the general formula (17.1.5) (expressed as in (17.1.6)) to get

∂f

∂w
=
∂f

∂x

∂x

∂w
+
∂f

∂y

∂y

∂w
+
∂f

∂z

∂z

∂w
. (17.2.7)

We compute the partials of x, y, z with respect to w using (17.2.4):
∂x

∂w
= sin(u),

∂y

∂w
= 2w,

∂z

∂w
= − u

w2
.

Plugging these into the right side of (17.2.7) yields
∂f

∂w
= sin(u)

∂f

∂x
+ 2w

∂f

∂y
− u

w2

∂f

∂z
. (17.2.8)

For example, at (u,w) = (π/2,−2) we have (x, y, z) = (−2, 4,−π/4) due to (17.2.4), so

∂f

∂w
(π/2,−2) =

∂f

∂x
(−2, 4,−π/4)− 4

∂f

∂y
(−2, 4,−π/4)− π

8

∂f

∂z
(−2, 4,−π/4). ■

Example 17.2.9. Let’s push the calculations in Example 17.2.8 further: suppose u and w depend on an-
other variable r, say

u = r3, w = er.

Thus, we can view f as a function of r, namely

f(sin(u)w,w2, u/w)|(u,w)=(r3,er) = f(sin(r3)er, e2r, r3e−r).

We will compute df/dr = ∂f/∂r in three ways in terms of the partials of f with respect to x, y, z. These
approaches will all give the same answer, as they must if we don’t make a mistake. (In terms of the matrix
Chain Rule, the equality of the three approaches below expresses the associativity of matrix multiplication,
but we omit discussion of that and instead just work out the calculations that illustrate the consistency.)

First, using (17.1.4) going through the dependence of f on (u, v) which depends on r gives

df

dr
=
∂f

∂u

du

dr
+
∂f

∂w

dw

dr
= (3r2)

∂f

∂u
+ er

∂f

∂w
.

Then we plug in (17.2.6) and (17.2.8) with coefficients evaluated at (u,w) = (r3, er) to get

df

dr
= (3r2)(cos(r3)er

∂f

∂x
+ e−r ∂f

∂z
) + er(sin(r3)

∂f

∂x
+ 2er

∂f

∂y
− r3e−2r ∂f

∂z
).

Collecting the occurrences of ∂f/∂x, ∂f/∂y, and ∂f/∂z simplifies this to:

df

dr
= (3 cos(r3)r2 + sin(r3))er

∂f

∂x
+ 2e2r

∂f

∂y
+ (3r2 − r3)e−r ∂f

∂z
. (17.2.9)

Here is another approach: using (17.1.4) going through the dependence of f on (x, y, z) which depends
on r (via x(u,w) = x(r3, er), y(u,w) = y(r3, er), z(u,w) = z(r3, er)) gives

df

dr
=
∂f

∂x

dx

dr
+
∂f

∂y

dy

dr
+
∂f

∂z

dz

dr
. (17.2.10)
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We next apply (17.1.4) to each of x, y, z as a function of r through (u, v) using (17.2.4):

dx

dr
=
∂x

∂u

du

dr
+
∂x

∂w

dw

dr
= cos(u)w u′(r) + sin(u)w′(r) = cos(r3)er(3r2) + sin(r3)er,

dy

dr
=
∂y

∂u

du

dr
+
∂y

∂w

dw

dr
= 0u′(r) + 2ww′(r) = 2erer = 2e2r,

dz

dr
=
∂z

∂u

du

dr
+
∂z

∂w

dw

dr
=

1

w
u′(r)− u

w2
w′(r) = e−r(3r2)− r3

e2r
w′(r) = 3r2e−r − r3e−r.

Plugging these into (17.2.10), we get exactly the expression (17.2.9).
And for yet another approach (which is very close to the second approach above), f as a function of r

is obtained from (17.2.4) via the expressions x(r3, er) = sin(r3)er, y(r3, er) = e2r, and z(r3, er) = r3e−r:
the function is f(sin(r3)er, e2r, r3e−r). The derivative of this with respect to r is given by (17.1.4):

df

dr
=
∂f

∂x

d

dr
(sin(r3)er) +

∂f

∂y

d

dr
(e2r) +

∂f

∂z

d

dr
(r3e−r)

(this is essentially (17.2.10) with explicit expressions in r substituted for each of x, y, z). Working out
these r-derivatives explicitly again yields (17.2.9). ■

17.3. Evaluating at numerical points. When evaluating the derivative D(f ◦ g) at a specific point
a ∈ Rn, we can proceed in one of two ways:

(a) Compute the matrices (Df)(g(x)) and (Dg)(x) whose entries may contain the variables
x1, . . . , xn, multiply them together, and then plug in x = a at the end.

(b) Compute (Df)(y) and (Dg)(x), plug in y = g(a) and x = a to obtain matrices whose
entries are numbers, and then multiply those numerical matrices together.

The latter option is sometimes easier in practice because multiplying matrices containing variables may
lead to algebraic tedium or errors whereas using specific numbers can make the matrices simpler for
multiplication purposes (though that is not always the case: sometimes working with general formulas,
when not too messy, conveys the structure of a calculation more clearly). To summarize:

When evaluating a composite derivative matrix at a numerical point, it may be simpler to evaluate both
ingredients in the Chain Rule at the corresponding numerical points before multiplying the matrices.

This is illustrated the next two examples, the second of which is perhaps a more dramatic illustration
than the first of how (b) can be much cleaner than (a).

Example 17.3.1. Let g : R2 → R3 be the function g(s, t) =



t2

st
1/s


 and let f : R3 → R2 be the function

f(x, y, z) =

[
(1/2)(x2 + y2 + z2)

xz + (1/2)y2

]
.

For the composite function f ◦ g : R2 → R2, we will compute (D(f ◦ g))(1, 2) in three different ways:

(a) we evaluate (D(f ◦g))(s, t) = (Df)(g(s, t)) (Dg)(s, t) by computing (Df)(x, y) and (Dg)(s, t)
in terms of variables and multiplying the matrices, and at the end setting s = 1 and t = 2,

(b) we evaluate (D(f ◦g))(1, 2) = (Df)(g(1, 2)) (Dg)(1, 2) by computing both matrices on the right
side in terms of numbers, and then multiplying the matrices,

(c) we compute f(g(s, t)) explicitly and evaluate the partial derivatives of its component functions
at the point (1, 2).
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In approaches (a) and (b), we first need to compute partial derivatives of the component functions of f and
of g to get

(Df)(x, y, z) =

[
x y z
z y x

]
, (Dg)(s, t) =




0 2t
t s

−1/s2 0


 .

For approach (a), we compute symbolically that

(Df)(g(s, t)) =

[
t2 st 1/s
1/s st t2

]
,

so (using our above determination of (Dg)(s, t))

(Df)(g(s, t)) (Dg)(s, t) =

[
t2 st 1/s
1/s st t2

]


0 2t
t s

−1/s2 0


 =

[
st2 − 1/s3 2t3 + s2t
st2 − t2/s2 (2t/s) + s2t

]
.

Finally substituting s = 1 and t = 2 yields [
3 18
0 6

]
.

For approach (b), we numerically evaluate (Df)(x, y, z) at g(1, 2) = (4, 2, 1) to get

(Df)(4, 2, 1) =

[
4 2 1
1 2 4

]
, (Dg)(1, 2) =




0 4
2 1
−1 0




(the latter a numerical evaluation of our general computation of (Dg)(s, t)). Multiplying these gives

[
4 2 1
1 2 4

]


0 4
2 1
−1 0


 =

[
3 18
0 6

]
,

the same answer as via approach (a).
Finally, approach (c) is the “brute force” method which bypasses the Chain Rule in favor of a direct

calculation. We have

f(g(s, t)) = f(t2, st, 1/s) = ((1/2)(t4 + s2t2 + 1/s2), t2/s+ (1/2)s2t2).

Computing partial derivatives of the component functions yields
[
st2 − 1/s3 2t3 + s2t

−t2/s2 + st2 2t/s+ s2t

]
.

This agrees with our computation of the matrix product (Df)(g(s, t)) (Dg)(s, t) in approach (a), as it
must, and evaluating this at (s, t) = (1, 2) is exactly what we did at the end of approach (a). ■

Example 17.3.2. Let f : R3 → R2 and g : R4 → R3 be the functions

f(x, y, z) =

[
x2 − xy + y2

4ex+y−z

]

and

g(q, r, s, t) =



qr
rs
st


 .
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Consider the task of computing the derivative of f ◦ g : R4 → R2 at the point (q, r, s, t) = (1, 2, 3, 4).
Finding a general formula for (Df) ◦ g and multiplying it against a general formula for Dg in this case is
a mess. (Please try it for yourself.) So rather than follow option (a) above, we will follow option (b).

First, we have

(Dg)(q, r, s, t) =



r q 0 0
0 s r 0
0 0 t s


 ,

so

(Dg)(1, 2, 3, 4) =



2 1 0 0
0 3 2 0
0 0 4 3


 .

We also have

(Df)(x, y, z) =

[ ∂
∂x
(x2 − xy + y2) ∂

∂y
(x2 − xy + y2) ∂

∂z
(x2 − xy + y2)

∂
∂x
(4ex+y−z) ∂

∂y
(4ex+y−z) ∂

∂z
(4ex+y−z)

]

=

[
2x− y −x+ 2y 0
4ex+y−z 4ex+y−z −4ex+y−z

]

and so

(Df)(g(1, 2, 3, 4)) = (Df)(2, 6, 12) =

[
−2 10 0
4e−4 4e−4 −4e−4

]
.

The product of these matrices (in the correct order) is
[
−2 10 0
4e−4 4e−4 −4e−4

]

2 1 0 0
0 3 2 0
0 0 4 3


 =

[
−4 28 20 0
8e−4 16e−4 −8e−4 −12e−4

]
.

For instance, the composition h = f ◦ g : R4 → R2 has second component h2(q, r, s, t) = 4eqr+rs−st and
the third entry in the bottom row of the final 2 × 4 matrix says (∂h2/∂s)(1, 2, 3, 4) = −8e−4, as can also
be verified directly from the formula for h2 since ∂h2/∂s = 4(r − t)eqr+rs−st. ■

17.4. Where does the multivariable Chain Rule come from? Consider functions f : Rp → Rm

and g : Rn → Rp, and a point a ∈ Rn. We shall now explain informally why the multivariable Chain
Rule

(D(f ◦ g))(a) = (Df)(g(a)) · (Dg)(a)

holds, expressing the derivative matrix of a composite function as the product of the derivative ma-
trices of the functions being composed. Using the viewpoint of matrix multiplication as expressing a
composition of linear transformations, this takes on the more appealing form: “derivative of a compo-
sition is the composition of the derivatives”. To arrive at such a result, we will use the link between
derivative matrices and good linear approximations.

In (13.5.3) we saw that the best linear approximation to the function g at the point a can be
computed with the derivative matrix at a. Informally in symbols:

g(x) ≈ g(a) + ((Dg)(a))(x− a)

for x near a. To simplify the notation, let’s write L = (Dg)(a) to denote the derivative matrix of g at
the point a. The best linear approximation to g(x)− g(a) is then

g(x)− g(a) ≈ L(x− a)︸ ︷︷ ︸
matrix-vector mult.
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for x near a.
Also let us write M = Df(g(a)) to denote the derivative matrix of f at the point g(a). Thus,

f(y)− f(g(a)) ≈M(y − g(a))︸ ︷︷ ︸
matrix-vector mult.

(17.4.1)

for y near g(a).
Now we put these two approximations together to study the composition h = f ◦ g. For x near a

we have that g(x) is near g(a) and so (17.4.1) applies with y = g(x) to give

f(g(x))− f(g(a)) ≈M(g(x)− g(a)) ≈M(L(x− a)) = (ML)(x− a)

for x near a. (Observe that at exactly this step, we have really been performing a composition of the
best linear approximations; in the language of matrix-matrix products and matrix-vector products, it
comes out as the matrix product ML.) This says

h(x)− h(a) ≈ (ML)(x− a)

for x near a. Thus, ML gives a good linear approximation to h(x) − h(a) for x near a. If one is
careful about estimating the errors in these approximations, it can be shown that as x gets arbitrarily
close to a, the quality of ML as a linear approximation becomes so good that it is the “best” such
linear approximation in the limit as x approaches a, so it must be the derivative matrix (Dh)(a) for h
at a. But ML = (Df)(g(a)) (Dg)(a), so we are done.

Remark 17.4.1. By using the formula for the entries of a derivative matrix and the formula for the
entries of a matrix product, we can reformulate the Chain Rule more explicitly in the language of
partial derivatives of component functions as in (17.1.5) or (17.1.6), as we now explain.

Write g : Rn → Rp in terms of component functions as

g(x) = (g1(x), . . . , gp(x))

for x = (x1, . . . , xn) ∈ Rn. For f : Rp → R, the composite function h = f ◦ g : Rn → R takes x
to f(g(x)).

For 1 ≤ j ≤ n, the 1× n matrix (Dh)(x) (a single “row”) has jth entry ∂h/∂xj , and this is equal
to the 1j-entry of (Df)(g(x)) (Dg)(x) by the Chain Rule, where (Df)(g(x)) is also a single “row”
(a 1× p matrix). Writing y = (y1, . . . , yp) ∈ Rp, the 1j-entry of (Df)(g(x)) (Dg)(x) is

∂f

∂y1

∂g1
∂xj

+
∂f

∂y2

∂g2
∂xj

+ · · ·+ ∂f

∂yp

∂gp
∂xj

where each ∂f/∂yk is understood to be evaluated at g(x). Thus,

∂h

∂xj
=

p∑

k=1

∂f

∂yk

∂gk
∂xj

(17.4.2)

(where again each ∂f/∂yk is evaluated at g(x)), recovering (17.1.5) since h = f ◦ g.
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Chapter 17 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
nothing new!

Concept Meaning Location in text
composition of multivari-
able functions

in many situations, a multivariable function has its
variables all depending on some other collection of
variables, and the cumulative dependence is a com-
position

Example 17.1.4

functions f : R → R
sometimes can be usefully
studied via multivariable
methods

in many examples, f may be expressed as a compo-
sition R → Rn → R with n > 1

Ex. 17.1.2, 17.1.9, 17.2.2
17.2.6

linear approximation of a
composition is a matrix
product

to linearly approximate a composition we linearly ap-
proximate each step, and then the original composi-
tion is approximated by a composition of linear func-
tions, which in turn is given by a matrix product

discussion right after The-
orem 17.1.5

Result Meaning Location in text
multivariable Chain Rule the derivative matrix for f ◦ g at a is the product (in the

same order) of the derivative matrix of f at g(a) and
the derivative matrix of g at a

Thm. 17.1.5, box above
Ex. 17.1.8

dot product formula for
derivative of composition
R → Rp → R

for g : R → Rp and f : Rp → R, the single-variable
derivative of f(g(t)) is (∇f)(g(t)) · g′(t)

(17.1.3), (17.1.4)

Skill Location in text
use matrix multiplication to compute the derivative matrix of a com-
position at a specific point (knowing at which point to evaluate each
derivative matrix)

Examples 17.1.6, 17.1.7, 17.2.1,17.2.3,
17.2.4

for composition R → Rp → R, compute its single-variable deriv-
ative as dot product of gradient and a component-wise differentiated
vector (or equivalently: (17.1.4))

Examples 17.1.7, 17.1.8, 17.2.2, 17.2.6

be aware of compatibility between symbolic and numerical uses of
the multivariable Chain Rule

Section 17.3

for g : Rn → Rp and f : Rp → R with coordinates (x1, . . . , xn) on
Rn and (y1, . . . , yp) on Rp, compute partials of “f in terms of x’s”
(i.e., partials of f ◦ g) in terms of partials of “f in terms of y’s” and
partials of component functions of g

Remark 17.1.10, Exs. 17.2.8, 17.2.9
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17.5. Exercises. (links to exercises in previous and next chapters)

Exercise 17.1. Consider the following functions

f(x, y) =

[
sin(x)

eyx
2

]
, g(r, s, t) = rst, h(v) =

[
v + sin(v)
v + cos(v)

]
.

Calculate the following:

(a) the derivative matrix D(h ◦ g)(r, s, t) (do this using the Chain Rule)
(b) the derivative matrix D(f ◦ h)(0) (do this using the Chain Rule)
(c) the x-partial derivative of g(f(x, y), x) = g(f1(x, y), f2(x, y), x) in two ways: by bare hands

(computing g(f(x, y), x) explicitly in terms of x and y), and by expressing it as (g ◦ F )(x, y) for

F (x, y) = (f1(x, y), f2(x, y), x) = (sin(x), eyx
2

, x)

and using the Chain Rule. (This part only serves to illustrate how different the two computations
are which give the same answer; for this particular g the first way is certainly easier.)

Exercise 17.2. Assume that f : R3 → R3 is a function with f(1, 1, 2) =



2
2
1


 and (Df)(1, 1, 2) =



1 3 1
2 4 3
1 1 0


 . Let g(x, y, z) =

√
x2 + y2 + z2. Calculate (g ◦f)y(1, 1, 2). (Hint: this is an entry in a certain

derivative matrix.)

Exercise 17.3. Let f : R2 → R2 be the function f(x, y) = (x3y2 − y, xy3 − x), so f(1, 1) = (0, 0). By
using the Chain Rule to compute D(f ◦ f)(1, 1), give the linear approximation to (f ◦ f)(1 + h, 1 + k)
for h, k near 0. (If you try to compute (f ◦ f)(x, y) = f(f(x, y)) explicitly with the aim of directly
computing its partial derivatives at (1, 1), you will get a total mess! This illustrates one important role for
the multivariable Chain Rule in the machine learning algorithm called backpropagation that is discussed
in Appendix G; see in particular the final paragraph of Section G.4.)

Exercise 17.4. Consider four pairs of variables (x, y), (r, s), (v, w), (t, z) related to each other as follows:

x(r, s) = r2 + s2, y(r, s) = rs,

r(v, w) = v + w, s(v, w) = v2,

v(t, z) = t2 + z, w(t, z) = z3.

For a function f(x, y), we can make these substitutions to write f in terms of (r, s), (v, w), or (t, z).

(a) Use formula (17.1.6) to show that
∂f

∂r
=
∂f

∂x
· (2r) + ∂f

∂y
· s.

(b) Apply formula (17.1.6) twice to show that

∂f

∂v
=
∂f

∂x
· (2r + 4sv) +

∂f

∂y
· (s+ 2rv).

Hint: A first application of formula (17.1.6) will express ∂f/∂v as a sum of products of each of
∂f/∂x and ∂f/∂y against expressions arising from the dependencies of x and y on v, similar
in spirit to (a). But the dependence of x on v rests on the dependence of x on r and s and the
dependence of r and s on v, so you can carry out another application of the Chain Rule.
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(c) Calculate
∂f

∂t
, beginning with

∂f

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
. Your answer should be of the form

∂f

∂x
· (terms containing some of r, s, v, w, t, z) +

∂f

∂y
· (terms containing some of r, s, v, w, t, z).

(The calculations simplify a bit since ∂w/∂t = 0, as w(t, z) only depends on z.) After symbolic
differentiations, there is no need to use the given expressions for some variables in terms of others
(e.g., r and s in terms of v and w) to rewrite everything in terms of most basic variables t and z;
leave appearances of r, s, v, w as they are!

Exercise 17.5. Let F : R2 → R be a function.

(a) Consider a level curve F (x, y) = c defining y implicitly as a function y(x) of x. By using the
Chain Rule for F (x, y(x)) = (F ◦ h)(x) with h(x) = (x, y(x)) to compute the x-derivative of
F (x, y(x)), deduce that wherever Fy is non-vanishing we have

dy

dx
= −Fx(x, y)

Fy(x, y)
= −∂F/∂x

∂F/∂y
.

(This is a universal answer to all “implicit differentiation” problems in single-variable calculus!)
(b) Use (a) to calculate the slope of the tangent line to the level curve 2x3y − y5x = 1 at (1, 1). This

curve is shown in Figure 17.5.1 below (though the picture isn’t used in the solution).

•(1, 1)

−2 −1 0 1 2

−2

−1

0

1

2

FIGURE 17.5.1. The curve 2x3y − y5x = 1 (with 4 “parts”) and its tangent line at (1, 1).

If you look closely at the formula in (a), the minus sign is interesting because it shows that in
the context of implicit functions if one tries to think about ∂f/∂u as if it were a fraction (which
it is not, despite the notation) then one arrives at incorrect conclusions: consider “cancelling the
∂F ’s” on the right side of the formula in (a). A more striking sign occurs in Exercise 17.6(b).

Exercise 17.6. Consider a region in a level surface f(x, y, z) = c that defines each of x, y, z implicitly as
a differentiable function of the other two (e.g., the surface x2 + y2 + z2 = 1 is a sphere of radius 1 in R3

centered at the origin, on which this works away from the equators in the coordinate planes by using square
roots with an appropriate sign; e.g., z = −

√
1− x2 − y2 in the southern hemisphere, x =

√
1− y2 − z2

in the right hemisphere, etc.). In economics this occurs with x, y, z corresponding to labor, capital, and
production respectively.
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(a) Apply the Chain Rule (17.1.5) to f(x, y, z(x, y)) = c to show that (for z as a function of (x, y))
∂z

∂y
= −∂f/∂y

∂f/∂z
.

By thinking about x as a function of (y, z) and y as a function of (x, z) on the level surface, obtain
analogous expressions for ∂y/∂x and ∂x/∂z as negated ratios of partial derivatives of f . (Hint:
f(x, y, z(x, y)) = (f ◦ g)(x, y) for g(x, y) = (x, y, z(x, y)).)

Also compute ∂x/∂y, and deduce that ∂x/∂y = 1/(∂y/∂x).
(b) Upon multiplying your formulas in (a) together, deduce the surprising “triple product rule” that

∂z

∂y

∂y

∂x

∂x

∂z
= −1

(not 1!) on the level surface f(x, y, z) = c. The lesson is that in the context of implicit functions,
the “fraction” intuition for partial derivatives must be treated with great care.

(c) Consider an experiment in which there are three quantities of interest called P, V, T which satisfy
PV = cT for a positive constant c. (This arises in the Ideal Gas Law, with pressure P , volume
V , and temperature T .) This relation enables us to express each of P, V, T as a function of the
other two (e.g., P = cT/V ). As a special case of (b) applied to the level surface f(P, V, T ) = 0
for f(P, V, T ) = PV − cT , verify by direct calculation of the partial derivatives that

∂T

∂V

∂V

∂P

∂P

∂T
= −1.

Remark. The “internal energy” of a (possibly non-ideal) gas can be expressed as a function
U(S, V ) of its entropy S and volume V , and as such its temperature T and pressure P are given by
the formulas T = ∂U/∂S and P = −(∂U/∂V ). In less explicit ways, the entropy S is a function
of U and V , and the volume V is a function of S and U . The triple product rule in (b) says
−1 = (∂S/∂V )(∂V/∂U)(∂U/∂S), with ∂U/∂S = T and ∂V/∂U = 1/(∂U/∂V ) = 1/(−P )
(using the end of (a)), so ∂S/∂V = P/T . This says that at a fixed energy level (“constant U”),
making a change in the volume causes entropy to change at the rate P/T .

Exercise 17.7. Let f, g : Rn → Rm be two vector-valued functions. Use the Chain Rule similarly to
Example 17.2.5 to compute that for the R-valued function h defined by the dot product h(x) = f(x)·g(x),
the 1× n derivative matrix (Dh)(x) is given by the “product rule” formula

(Dh)(x) = g(x)⊤(Df)(x) + f(x)⊤(Dg)(x),

where the notation w⊤ for an m-vector w is the 1 ×m row vector with ith entry wi (i.e., it is “w written
as a row rather than a column”).

Exercise 17.8. Let f : Rn → R and let v ∈ Rn be a unit vector. The directional derivative of f in
direction v at a point a ∈ Rn is defined as

(Dvf)(a) =
d

dt

∣∣∣
t=0
f(a+ tv) ∈ R

(the rate of change of f at time t = 0 when viewed as a function on the line through a in the direction of
v that is parameterized at unit speed in that direction).

(a) By writing f(a+ tv) as (f ◦ g)(t) for g : R → Rn defined by g(t) = a+ tv, use the Chain Rule
to show that (Dvf)(a) = ((Df)(a))v (a matrix-vector product).

(b) You are in a hilly region where the height is described by f(x, y) = sin(πxy).You are at a =

[
1
2

]
.

What is the slope in direction directly northeast? (Hint: use the unit direction vector
[
1/
√
2

1/
√
2

]
.)
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Exercise 17.9. We continue the discussion of directional derivatives from Exercise 17.8. Let f : Rn → R
be a function and v ∈ Rn a unit vector and a ∈ Rn a point.

(a) Show that
(Dvf)(a) = (∇f)(a) · v.

(b) Assuming (∇f)(a) is nonzero, in what unit direction is the directional derivative of f the biggest?
That is, for which unit vector(s) v is (Dvf)(a) the biggest?

Exercise 17.10. Let f(x, y) = c be a level curve in R2. Assume that we can parametrize this curve using

g : R → R2 with “velocity vector” g′(t) =

[
g′1(t)
g′2(t)

]
nonzero for all t (visually, g traces out the entire

curve, with nonzero velocity at all times), so (f ◦ g)(t) = c for all t. It is permitted that g(t1) and g(t2)
can coincide for some t1 ̸= t2.

(a) Let f(x, y) = x2 + y2 and c = 1. Give a function g : R → R2 that parametrizes this level set.
(There is more than one correct answer.)

(b) In the general case, by taking the t-derivative of the constant function (f ◦ g)(t) = c and using
the Chain Rule, show that (∇f)(g(t)) is perpendicular to g′(t).

(c) For every t, the velocity vector g′(t) that we are assuming to be nonzero points along the direction
of the tangent line to the curve f(x, y) = c at the point g(t) on this curve. (We hope that sounds
physically reasonable: a particle moving around on a curve has velocity always tangent to the
curve at each time.) Explain the statement “the gradient of f is perpendicular to each level set
f = c.”

Exercise 17.11. This exercise is a simplified model of the mathematics that arises in the analysis of
artificial neural networks via the technique called “backpropagation”. The function G(x) below models
the output of a neural network with input x; the matrices A,B,C represent the strength of connections

between different layers of the network, and analyzing the dependence of G
([

1
0

])
on small changes in

C as is done below is a key part of training the neural network.

Let f : R2 → R2 be the function f
([
x
y

])
=

[
x/(1 + x)
y/(1 + y)

]
, and define the matrices

A =
[
1 1

]
, B =

[
1 1
1 0

]
, C =

[
c11 c12
c21 c22

]
.

We define the function G : R2 → R as the composition

G(x) = A f (B f (Cx)) ,

soG is a function of x and of the entries cij of C which we are going to try to determine in order to achieve
a certain extremum.

If one does the algebra, when C =

[
0 2
3 1

]
then G

([
1
0

])
=

3

7
and G

([
0
1

])
=

61

65
. Now we allow

ourselves to change one entry of this C by at most ±0.01. Use linear approximation (and the Chain Rule)
to answer the following:

(a) Which matrix entry of C should you change (and by how much) in order to increase G
([

1
0

])

as much as possible? Hint: You can use the following guide:

– Describe G
([

1
0

])
as a function H(c11, c21) (why no c12 and c22?)
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– We want to change just one of c11, c21 by at most ±.01 to make H become as big as possible.
The linear approximation then leads us to compute (DH)(c11, c21), which should be done
using the Chain Rule.

– For any linear function f(v) = Mv for a matrix M , we have (Df)(c) = M for any c, as
explained in Exercise 13.9. Consequently any matrix appearing in the definition of H can
just be copied “as is” into the matrix product that gives DH via the Chain Rule.

(b) Which matrix entry of C should you change (and by how much) in order to decrease G
([

0
1

])

as much as possible?

Exercise 17.12. For a function f : R2 → R, define h(r, θ) = f(r cos θ, r sin θ). (Informally, h is “f
written in polar coordinates”.)

(a) Use the Chain Rule in either the matrix form or (17.1.5) or (17.1.6) to show that

∂h

∂r
= cos θ

∂f

∂x
+ sin θ

∂f

∂y
,

∂h

∂θ
= −r sin θ ∂f

∂x
+ r cos θ

∂f

∂y
.

By abuse of notation, ∂h/∂r and ∂h/∂θ are usually written as ∂f/∂r and ∂f/∂θ respectively.
(b) For r > 0, use the formulas in (a) to find functions g1(r, θ) and g2(r, θ) for which

∂f

∂y
= g1(r, θ)

∂h

∂θ
+ g2(r, θ)

∂h

∂r
.

(Hint: use that sin2 θ + cos2 θ = 1.) Using the abuse of notation mentioned at the end of (a), the
right side is usually written as g1(r, θ) ∂f/∂θ + g2(r, θ) ∂f/∂r.

Exercise 17.13. This exercise explores analogues of partial derivatives when expressions other than coor-
dinates are held constant. It is relevant to computing rates of change along isoquants in economics as well
as in settings with energy or pressure or other quantities held fixed during a thermodynamical process.

(a) Consider the line y + x = c for some c (i.e., “y + x is constant”) and describe points on this line
in the form (x, hc(x)) for a function hc (which depends on c). Use the Chain Rule (17.1.4) to

express
d

dx
(f(x, hc(x))) (the “x-partial of f along the line y + x = c”) in terms of

∂f

∂x
and

∂f

∂y
(evaluated at the point (x, hc(x)), which you may omit from the notation).

(b) The x-partial along the indicated line in (a) is denoted as
(
∂f

∂x

)

y+x

in the context of some

applications outside of mathematics (so the subscript is not to be confused with shorthand no-
tation for partial derivatives!). For F (x, y) = xy3 − 2xy, use your answer to (a) to compute(
∂F

∂x

)

y+x

(1, 1). (This does not equal
∂F

∂x
(1, 1) = −1!)

Since (1, 1) lies on y + x = 2, you just computed
d

dx
(F (x, 2 − x))

∣∣∣
x=1

. Directly compute

this and check you get the same value. (It isn’t necessary to expand out (2 − x)3, since you can
use the single-variable Chain Rule; don’t overlook that (2− x)′ = −1.)

Exercise 17.14. This exercise explores analogues of partial derivatives when expressions other than coor-
dinates are held constant. It is relevant to computing rates of change along isoquants in economics as well
as in settings with energy or pressure or other quantities held fixed during a thermodynamical process.

(a) Consider the line 3y − 5x = c for some c (i.e., “3y − 5x is constant”) and describe points on this
line in the form (x, hc(x)) for a function hc (which depends on c). Use the Chain Rule (17.1.4)
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to express
d

dx
(f(x, hc(x))) (the “x-partial of f along the line 3y − 5x = c”) in terms of

∂f

∂x
and

∂f

∂y
(evaluated at the point (x, hc(x)), which you may omit from the notation).

(b) The x-partial along the indicated line (a) is denoted as
(
∂f

∂x

)

3y−5x

in the context of some ap-

plications outside of mathematics (so the subscript is not to be confused with shorthand nota-
tion for partial derivatives!). For F (x, y) = xy3 − 2xy, use your answer to (a) to compute(
∂F

∂x

)

3y−5x

(3, 1). (This does not equal
∂F

∂x
(3, 1) = −1!)

Since (3, 1) lies on 3y − 5x = −12, you just computed
d

dx
(F (x, (5/3)x − 4))

∣∣∣
x=3

. Directly

compute this and check you get the same value. (It isn’t necessary to expand out ((5/3)x − 4)3,
since you can use the single-variable Chain Rule; don’t overlook that ((5/3)x− 4)′ = 5/3.)

Exercise 17.15. Let S be the surface in R3 defined by a condition of the form h(x, y, z) = c and consider
a region in S where y is implicitly defined as a (differentiable) function of (x, z), so h(x, y(x, z), z) = c.

(a) For a function f : R3 → R, we want to relate partial derivatives of f(x, y(x, z), z) (so holding x
or z constant along S) to the usual partial derivatives of f . Use the Chain Rule (17.1.5) to show

∂

∂x
(f(x, y(x, z), z)) =

∂f

∂x
+
∂f

∂y

∂y

∂x
,

∂

∂z
(f(x, y(x, z), z)) =

∂f

∂y

∂y

∂z
+
∂f

∂z
.

(b) By using f = h in (a), deduce the following formulas for the partial derivatives of y(x, z):
∂y

∂x
= −∂h/∂x

∂h/∂y
,
∂y

∂z
= −∂h/∂z

∂h/∂y

(each right side is evaluated at the point (x, y(x, z), z) ∈ S).
(c) On the surface S defined by xy2 + y5z2 = 2, there is a point near P = (3,−1, 1) that has

x = 2.9 and z = 1.2. What is its approximate y-coordinate? (Hint: for the function y(x, z)
implicitly defined near (3, 1) by the condition xy2 + y5z2 = 2 with y(3, 1) = −1, we are seeking
to estimate y(2.9, 1.2). Apply the linear approximation by using (b).)

Remark. In applications outside mathematics, the left sides of the equalities in (a) are sometimes denoted
(∂f/∂x)z and (∂f/∂z)x respectively because their values at P = (a, b, c) ∈ S are respectively the x-
partial along the curve (x, y(x, c), c) in S through P where “z is held constant” and the z-partial along the
curve (a, y(a, z), z) in S through P where “x is held constant”.

Exercise 17.16. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) Suppose f : R → R2 and g : R2 → R satisfy (g ◦ f)(t) = 51 (a constant function: f lands in the
level curve g = 51). Then the 2-vectors (Df)(t) and (∇g)(f(t)) are perpendicular.

(b) For any f : R2 → R, and g(u, v) = f(u+ v, u− v), we have (Dg)(u, v) = (Df)(u+ v, u− v).
(c) For any f : R2 → R and g(x, y) = f(2x, 2y), we have (Dg)(x, y) = 2(Df)(2x, 2y).
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18. Matrix inverses and multivariable Newton’s method for zeros

We have seen several operations on matrices – addition, subtraction, and multiplication – but the
absence of division is notable. We now learn how to divide one matrix by another (but only very carefully,
because this operation only makes sense for certain matrices). When working with nonzero scalars a,
often 1/a is called the “reciprocal” of a; for matrices we use the word “inverse” rather than “reciprocal”.

By the end of this chapter, you should be able to:

• recognize which further rules of algebra do and do not apply to matrix multiplication;
• correctly use inverses, recognizing that not all nonzero matrices are invertible;
• determine when a 2× 2 matrix has an inverse, and compute the inverse when it exists;
• use 2× 2 inverses to run one step of Newton’s method to find zeros of non-linear functions.

18.1. Inverse of a matrix. A function takes in an input and produces an output. Some functions have
unambiguous inverses that allow you to go backwards from the output to the input.

Example 18.1.1. The function f(x) = 2x + 3 from R to R has an unambiguous inverse because given
y = 2x + 3 we can “solve for x in terms of y”: x = (y − 3)/2. We say the function g(y) = (y − 3)/2 is
the inverse function to f because

g(f(x)) = x for all x, and f(g(y)) = y for all y.

(Explicitly, g(f(x)) = (f(x)−3)/2 = ((2x+3)−3)/2 = x and f(g(y)) = 2g(y)+3 = 2((y−3)/2)+3 =
y.) The feature that the compositions g ◦ f and f ◦ g both “don’t do anything” to x and y, respectively, is
the key point. ■

Example 18.1.2. The function f : R → R defined by f(x) = x2 does not have an unambiguous inverse.
An illustration of the problem is that the inputs

√
2 and −

√
2 both produce the output 2. So, while we

often think of g(y) =
√
y for y ≥ 0 as a way of reversing the function f(x) = x2, at least when x ≥ 0, it

is not unambiguous since we can also use −√
y. There are additional problems when y < 0. ■

Example 18.1.3. The function f : R2 → R2 defined by f
([
x1
x2

])
=

[
2x1 + x2
x1 + 2x2

]
has an unambiguous

inverse: writing f
([
x1
x2

])
=

[
y1
y2

]
, so 2x1 + x2 = y1 and x1 + 2x2 = y2, we can “solve for each of

x1 and x2 in terms of y1 and y2”. More precisely, by the method for solving a system of 2 equations in 2
unknowns taught in algebra classes, we obtain x1 = (2y1−y2)/3 and x2 = (−y1+2y2)/3. In the language

of vectors
[
x1
x2

]
=

[
(2y1 − y2)/3
(−y1 + 2y2)/3

]
, so an inverse function to f is g

([
y1
y2

])
=

[
(2y1 − y2)/3
(−y1 + 2y2)/3

]
. ■

A function with an unambiguous inverse is called invertible because we can unambiguously “undo”
its effect. Let’s recast Example 18.1.3 in the language of matrices, to see it as part of a wider context.

Example 18.1.4. Consider the 2× 2 matrix A =

[
2 1
1 2

]
. The associated linear transformation TA : R2 →

R2 that assigns to each input vector
[
x1
x2

]
∈ R2 the output vector A

[
x1
x2

]
∈ R2 is given by the recipe

[
2 1
1 2

] [
x1
x2

]
=

[
2x1 + x2
x1 + 2x2

]

that is exactly f
([
x1
x2

])
from Example 18.1.3.
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Its inverse function g : R2 → R2 from Example 18.1.3 also has such a description, using another 2×2
matrix:

g

([
y1
y2

])
=

[
(2y1 − y2)/3
(−y1 + 2y2)/3

]
=

[
(2/3)y1 − (1/3)y2
(−1/3)y1 + (2/3)y2

]
=

[
2/3 −1/3
−1/3 2/3

] [
y1
y2

]
= TB

([
y1
y2

])

for the 2× 2 matrix B =

[
2/3 −1/3
−1/3 2/3

]
. ■

In the preceding example, the linear transformation TA : R2 → R2 has inverse g that is also a linear
transformation, written as TB for some 2 × 2 matrix B. Can we express the property that TA and TB are
inverse to each other directly in terms of the matrices A and B? If you compute AB and BA (please do)
you’ll find that both equal the 2× 2 identity matrix I2. This is not a coincidence:

Proposition 18.1.5. For any n× n matrix A, the following two conditions on A are equivalent:

(a) The linear transformation TA : Rn → Rn is invertible. Explicitly, for every (output) b ∈ Rn

there is a unique (input) x ∈ Rn that solves the equation Ax = b.
(b) There is an n × n matrix B for which AB = In and BA = In (in which case the function

TB : Rn → Rn is inverse to TA : Rn → Rn), with In as in Definition 15.1.4.

When these conditions hold, B is uniquely determined and is denoted A−1,

Definition 18.1.6. We call anyA satisfying these conditions invertible, and thenB is called the inverse
matrix of A (and likewise A is then the inverse matrix of B).

See Remark 18.1.9 for comments on determining invertibility and computing the inverse. Appli-
cations of inverses are given in Section 18.3, Section 18.5, Theorem 22.5.4, and Remark 22.5.8.

For those who are interested, see Section 18.6 for a proof of the equivalence of (a) and (b).

Example 18.1.7. For A =

[
1 2
3 5

]
, consider the function f

([
x1
x2

])
=

[
x1 + 2x2
3x1 + 5x2

]
=

[
1 2
3 5

] [
x1
x2

]
=

TA

([
x1
x2

])
. For the matrix B =

[
−5 2
3 −1

]
, please check directly that AB and BA are each equal to I2,

so we say
[
1 2
3 5

]−1

=

[
−5 2
3 −1

]
.

We can check by direct substitution that the functions TA and TB are inverse to each other; i.e.,

TB

(
TA

([
x1
x2

]))
=

[
x1
x2

]
and TA

(
TB

([
y1
y2

]))
=

[
y1
y2

]
. For instance, TB

(
TA

([
x1
x2

]))
equals

TB

([
x1 + 2x2
3x1 + 5x2

])
=

[
−5 2
3 −1

] [
x1 + 2x2
3x1 + 5x2

]
=

[
−5(x1 + 2x2) + 2(3x1 + 5x2)
3(x1 + 2x2)− (3x1 + 5x2)

]
=

[
x1
x2

]

(the final equality involves some cancellation in the algebra that we leave for you to check). Please verify

similarly for yourself by direct calculation that TA

(
TB

([
y1
y2

]))
=

[
y1
y2

]
. ■

Although the definition of invertibility in Definition 18.1.6 treats A and B on equal footing, it is
convenient that in practice we only need to check half of the definition:

Theorem 18.1.8. If A and B are n× n matrices that satisfy AB = In then A is invertible and B is its
inverse; i.e., automatically the other equation BA = In holds.
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A proof is given in Section B.1 (see Proposition B.1.4(ii)) for those who are interested. The key point
is to understand how linear transformations interact with dimensions.

Matrix inverses arise in a wide variety of applications, including computer graphics (for real-time
3-dimensional image rendering involving frequent change of perspective), certain types of wireless
communication technology (to recover a message from a transmission signal that is received), and
GPS (which we’ll return to in Section 18.5).

We did not define what it means for an m× n matrix to be invertible when m ̸= n. For a 2× 3 matrix
A, could there be a 3× 2 matrix B for which AB = I2 and BA = I3? If you think about it geometrically
via linear transformations (as rotations, shearings of space, projections, or compositions thereof), it is hard
to imagine how a linear transformation TA : R3 → R2 that squashes all of 3-dimensional space (linearly)
into a plane could be inverted. This is a nice instance of using the visualization of linear transformations
to gain insight into what is otherwise pure algebra with matrices. The non-invertibility of any 2× 3 matrix
is visually suggested by Figure 18.1.1, and Proposition B.1.4(i) shows that this intuition is correct (and
that more generally there is no sensible inverse for any m× n matrix whenever m ̸= n).

T

FIGURE 18.1.1. The image of a solid cube (with white unseen faces) under a linear trans-
formation T : R3 → R2. Many points of the solid cube go onto the same point in R2; any
point in R2 hit by two cube faces with different colors is colored by the hybrid color.

Remark 18.1.9. It is very important to be able to determine if an n × n matrix A is invertible, and
to compute A−1 when it exists. There is an explicit formula for inverses: for n = 2 it will be given
in (18.2.2), but for n > 2 the formula is very complicated and also impractical to use (even by
computers). See Remark E.4.11 if you are curious.

There is one “easy” case: diagonal matrices! Just as multiplication for n× n diagonal matrices is
multiplying corresponding entries (Proposition 14.3.7), for inverses we just reciprocate the entries:

if A =




a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an


 with all ai ̸= 0 then A−1 =




1/a1 0 · · · 0
0 1/a2 · · · 0
...

... . . . ...
0 0 · · · 1/an


 (18.1.1)

(and if any diagonal entry of a diagonal matrix vanishes then it is not invertible).
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Efficient software works well for matrices with explicit numbers as entries when n > 2 is not
too huge; that is often the best course of action for practical problems. However, certain types of
n × n matrices are easy to invert (see Section 22.3 for the upper triangular case), and this can be
bootstrapped to understand more general cases. It is a challenging and interesting problem to find
efficient algorithms to invert n× n matrices. We will return to this in Chapter 22.

A “random” n × n matrix is invertible (we explain the precise meaning of this in Remark E.4.6 and
Theorem E.4.10), so an n × n matrix that is non-invertible is rather special. An archaic synonym for
“special” is “singular”, so it is common in many references to call a non-invertible n× n matrix singular,
and so to call invertible n× n matrices non-singular.

18.2. The 2× 2 case and determinants.

Example 18.2.1. A 2 × 2 matrix A =

[
a b
c d

]
has an inverse if ad − bc ̸= 0. To understand this, for the

system of linear equations

ax1 + bx2 = y1

cx1 + dx2 = y2

(which in vector language says Ax = y) let’s try to “solve for the x’s in terms of the y’s”. We get rid of
x2 by multiplying the first equation by d, the second by b (so we have bdx2 in each), and subtracting the
second from the first: this yields (ad − bc)x1 = dy1 − by2, so dividing by the nonzero ad − bc solves for
x1. Similarly we get rid of x1 by multiplying the first equation by c, the second by a (so we have acx1 in
each), and subtracting the second from the first: this yields (bc − ad)x2 = cy1 − ay2, so dividing by the
nonzero bc− ad = −(ad− bc) solves for x2. Putting it all together, we get
[
x1
x2

]
=

[
(ad− bc)−1(dy1 − by2)
(bc− ad)−1(cy1 − ay2)

]
=

1

ad− bc

[
dy1 − by2
−cy1 + ay2

]
=

1

ad− bc

[
d −b
−c a

] [
y1
y2

]
. (18.2.1)

In other words, the matrix
1

ad− bc

[
d −b
−c a

]
=

[
d/(ad− bc) −b/(ad− bc)
−c/(ad− bc) a/(ad− bc)

]
(18.2.2)

is the inverse A−1, because it expresses x in terms of y as in (18.2.1). (You can also check directly that
the product of the right side of (18.2.2) against A in both orders is equal to I2.) The formula (18.2.2) is
very useful in practice, and here is a way to remember how to build it from A: swap the diagonal entries,
multiply the off-diagonal entries by −1, and divide by the “cross-difference” ad− bc.

To illustrate (18.2.2) numerically, consider A =

[
2 1
1 2

]
as in Example 18.1.3, or A =

[
1 2
3 5

]
as in

Example 18.1.7. The formula (18.2.2) in these two cases replicates the matrixB in each of those examples.
(Check this by plugging the values of a, b, c, d from each of these cases into (18.2.2).) ■

Example 18.2.2. We saw in Section 14.4 that the rotation counterclockwise in R2 by an angle θ (in radians)
has the matrix

Aθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Does this have an inverse? One approach is to use the criterion as in Example 18.2.1 upon noting that in
this case ad− bc = (cos θ)(cos θ)− (− sin θ)(sin θ) = cos2 θ + sin2 θ = 1 ̸= 0.

It is also illuminating to think about what is going on geometrically rather than algebraically: can we
undo the effect of a counterclockwise rotation by the given angle θ? Indeed we can, simply rotating by
the same angle in the opposite direction (i.e., clockwise), which has the same effect as rotating by 2π − θ
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counterclockwise. For instance, in terms of degrees, the effect of a −50° rotation counterclockwise is the
same as both a 310° rotation counterclockwise and a 50° rotation clockwise, as in Figure 18.2.1.

•

•

•

T (u)

T (v)
•v

u•
T is the rotation by −50◦.

= 310◦

= −50◦

FIGURE 18.2.1. The effect of rotating 310° one way is the same as rotating −50° the same
way as well as 50° the other way.

In symbols, A−1
θ = A2π−θ = A−θ, the final equality holding since adding 2π to an angle (in radians)

has no effect on the associated rotation.
You should also checkA−θ is inverse toAθ directly via matrix multiplication: compute thatAθA−θ and

A−θAθ both equal I2 (using that sin(−θ) = − sin(θ), cos(−θ) = cos(θ), and sin(θ)2 + cos(θ)2 = 1). ■

Remark 18.2.3. It is also true that if ad− bc = 0 then the matrix A =

[
a b
c d

]
is not invertible. The reason

is essentially embedded in the formula (18.2.2): if an inverse were to exist then it would have to be given
by this expression, which does not make sense in this case.

For those who are interested, here is a way to show that A really cannot ever admit an inverse when
ad− bc = 0. We will show that the equation Ax = 0 always has at least two solutions for such A, so
A cannot have an inverse (since by Definition 18.1.6 invertibility is equivalent to the equationAx = b
having exactly one solution for every b ∈ R2; we’ll violate this with b = 0). If A is the zero matrix

then Ax = 0 has lots of solutions: every 2-vector x works! Next, suppose A =

[
a b
c d

]
is not the zero

matrix, so at least one of the entries a, b, c, d is nonzero. Hence, at least one (possibly both) of the

vectors
[
d
−c

]
and

[
b
−a

]
is different from 0. But direct calculation shows that each of these vectors is

a solution to Ax = 0 precisely because ad− bc = 0:[
a b
c d

] [
d
−c

]
=

[
ad− bc
cd− dc

]
=

[
0
0

]
,

[
a b
c d

] [
b
−a

]
=

[
ab− ba
cb− da

]
=

[
0

−(ad− bc)

]
=

[
0
0

]
.

This exhibits at least one nonzero solution to Ax = 0, yet x = 0 is also a solution, so Ax = 0 has at
least two solutions (namely, 0 and some nonzero 2-vector), so A is not invertible.

Definition 18.2.4. Let A =

[
a b
c d

]
. The determinant of A, denoted as det(A), is ad− bc.

Example 18.2.1 and Remark 18.2.3 say that a 2×2 matrixA is invertible precisely when det(A) ̸=
0. Thus, to check if a 2× 2 matrix A is invertible we compute if det(A) is nonzero.
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Remark 18.2.5. There is a concept of “determinant” det(A) (a certain scalar) for n × n matrices A for
any n. This is developed in Appendix E, where it is shown that the non-vanishing of det(A) characterizes
exactly whenA is invertible. The determinant is complicated when n > 2, so using it to detect invertibility
is not so useful for numerical work when n > 2. However, determinants are conceptually important and
show up in probability, multivariable integration (where one uses determinants of derivative matrices: see
Section E.6), and differential equations. In the case n = 2 the determinant will reappear in Theorem
23.3.1. (A method due to Lewis Carroll computes n× n determinants from many 2× 2 cases!)

Remark 18.2.6. The determinant det(A) of a 2 × 2 matrix A =

[
a b
c d

]
has a geometric interpretation:

| det(A)| is the distortion effect on area of regions R in R2 upon applying the associated linear transfor-
mation TA : R2 → R2 to the points of such a region. That is, if we denote by TA(R) the collection of
points TA(x) = Ax for x ∈ R then TA(R) has area | det(A)| area(R). We explain this here for a special
case that is rather illuminating. (For an extension to n× n matrices, see Section E.3 in Appendix E.)

Consider the unit square S = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1} with area 1, shown on the left in Figure
18.2.2. Taking this to be the region R, the claim is that TA(S) has area | det(A)| = |ad − bc|. Swap the
columns of A (negating det(A), hence the need for the absolute value) if necessary to ensure the second
column is counterclockwise from the first with angle from the first to the second at most 180°. Figure
18.2.2 illustrates that TA(S) a parallelogram, showing when the angle between the columns is obtuse.

[ 10 ]

[ 01 ]

S
TA

• • [ ac ]

[ bd ]

TA(S)

FIGURE 18.2.2. The effect of TA on the unit square S.

The parallelogram P = TA(S) in Figure 18.2.2 lies inside a bigger rectangle (with sides parallel to
the coordinate axes) as in Figure 18.2.3 that we shall decompose as shown to obtain the area of P by
subtracting off areas of various triangles and smaller rectangles from the area of the ambient big rectangle.

•
[ ac ]

[ bd ]

P

a−b
−c

d

a

−c
−b

d

E

E

F

F

G

G

FIGURE 18.2.3. The geometry underlying why the area of P = TA(S) equals | det(A)|.
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The visualization in Figure 18.2.3 expresses the case that the interior angle of P at the origin is obtuse.
We will focus on treating this when (as in Figure 18.2.3) the bottom edge dips below the x-axis and the
left edge lies to the left of the y-axis; algebraically this says c < 0, a > 0, b < 0, and d > 0. (The
other possibilities with an obtuse interior angle at the origin can be reduced to this case via arguments with
rotations that we omit; cases with interior angle ≤ 90° at the origin are handled similarly.) This yields

area(E) = (−b)(−c) = bc, area(F ) =
1

2
(−b)d = −bd

2
, area(G) =

1

2
(−c)a = −ac

2
(keep in mind that −b,−c > 0). Now we can compute the (positive) area of P via some algebra:

area(large rectangle) − 2 area(E)− 2 area(F )− 2 area(G) = (a− b)(d− c)− 2bc+ bd+ ac

= (ad+ bc− ac− bd)− 2bc+ bd+ ac

= ad− bc

= det(A).

Remark 18.2.7 (online resource). The first half of this video at “Essence of Linear Algebra” vividly
illustrates the meaning of determinants for 2× 2 matrices in the spirit of the preceding discussion.

Example 18.2.8. An elegant synthesis of algebraic and geometric perspectives on linearity is the “pure
thought” determination of the average area of the shadow of a cube, explained here. This also illus-
trates the power of generalization for solving specific problems in mathematics. ■

18.3. Application of matrix inverses I: linear systems. One of the most significant applications of
matrix inverses is to provide a systematic way to think about the process of solving systems of linear
equations for which the number of equations is the same as the number of unknowns:

Example 18.3.1. Let’s solve the system of 3 linear equations in 3 unknowns, visualized in Figure 18.3.1:



2x+ y − z = 4

x− 2y + z = 3

x− y − z = 1

. (18.3.1)

•P

1 3

2

−2−4

6

2x+ y − z = 4
x− 2y + z = 3
x− y − z = 1

FIGURE 18.3.1. Three planes, crossing pairwise in lines that all meet at a common point P

We will solve this system of equations using a matrix inverse. First, rewrite the system in matrix form:


2 1 −1
1 −2 1
1 −1 −1




︸ ︷︷ ︸
A



x
y
z


 =



4
3
1


 . (18.3.2)
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Your computer tells you the good news that A is invertible, with

A−1 =
1

7



3 2 −1
2 −1 −3
1 3 −5


 =



3/7 2/7 −1/7
2/7 −1/7 −3/7
1/7 3/7 −5/7


 .

Now comes the great idea: if we multiply both sides of (18.3.2) by A−1 we get A−1A



x
y
z


 = A−1



4
3
1


,

or in numbers,


3/7 2/7 −1/7
2/7 −1/7 −3/7
1/7 3/7 −5/7





2 1 −1
1 −2 1
1 −1 −1





x
y
z


 =



3/7 2/7 −1/7
2/7 −1/7 −3/7
1/7 3/7 −5/7





4
3
1


 .

That may look like a disaster, but it is not: the point is that the product of the two 3 × 3 matrices on the
left side collapses to I3 precisely because it is A−1A. Hence, the left side simplifies dramatically: the
contribution from the 3× 3 matrices disappears, leaving us with the equation



x
y
z


 =



3/7 2/7 −1/7
2/7 −1/7 −3/7
1/7 3/7 −5/7





4
3
1


 =



17/7
2/7
8/7


 .

Thus, the original linear system (18.3.1) has as its unique solution x = 17/7, y = 2/7, z = 8/7.
We can write this all more succinctly in the following way:

A



x
y
z


 =



4
3
1


 implies



x
y
z


 =

(
A−1A

)


x
y
z


 = A−1


A



x
y
z




 = A−1



4
3
1


 =



17/7
2/7
8/7


 .

We are using here the fact that we can regroup the factors in the product A−1(Av) = (A−1A)v, which we
discussed in Chapter 15.3. (This also works in reverse: if v = A−1b then Av = A(A−1b) = (AA−1)b =
I3b = b.)

The method of multiplying by A−1 on the left works for any values put on the right side of (18.3.1) to
solve for (x, y, z). For example, if instead we had different constants on the right side, such as





2x+ y − z = −2

x− 2y + z = −1

x− y − z = 5

(but the left side is the same as (18.3.1)) then we again rewrite the system in matrix form as


2 1 −1
1 −2 1
1 −1 −1




︸ ︷︷ ︸
same A!



x
y
z


 =



−2
−1
5




and multiply by the same A−1 on the left to obtain


x
y
z


 =



3/7 2/7 −1/7
2/7 −1/7 −3/7
1/7 3/7 −5/7





−2
−1
5


 =



−13/7
−18/7
−30/7


 . ■
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Unfortunately the method in Example 18.3.1 is not completely general: it does not work for every
possible system of n linear equations in n unknowns. The reason is that the n× n matrix associated with
this system of equations may not be invertible. In such cases this method fails, and it requires more insight
to understand whether there are solutions to such a “singular” system.

Let’s illustrate the effect of non-invertibility with an example:

Example 18.3.2. Consider the system of equations



x+ 3y − z = 4

2x+ y + 3z = 3

−x+ y − 3z = 1

,

or equivalently, in matrix form, 


1 3 −1
2 1 3
−1 1 −3




︸ ︷︷ ︸
A



x
y
z


 =



4
3
1


 . (18.3.3)

Though it is probably not apparent based on what we have discussed so far, this matrix A is not invertible
and moreover the system of equations turns out not to have any solution at all. In Chapter 21 we will
explain how to obtain such conclusions in a systematic way.

We should be clear: non-invertibility of the matrix A of coefficients does not always prevent the
existence of solutions! For example, if we look at a system of equations which is slightly different from
(18.3.3), where the left side (the matrix, or equivalently, the coefficients of x, y and z) remains the same
but we alter the constants on the right side, then different things can happen. As an illustration, replace

4
3
1


 by




5
5
−1


 on the right side; i.e., consider the modified system of equations




1 3 −1
2 1 3
−1 1 −3




︸ ︷︷ ︸
sameA!



x
y
z


 =




5
5
−1


 .

This system turns out to have a solution, such as (x, y, z) = (2, 1, 0), and it even has lots more solutions,

such as (−2, 3, 2), (6,−1,−2). In fact, every point on the parametric line



2
1
0


+ t



−2
1
1


 (for any t ∈ R)

is a solution! (We will explain how to understand this systematically in Chapters 21 and 22.) ■

The preceding examples illustrate the following general result.

Theorem 18.3.3. Let A be an n × n matrix, and consider the system of n equations in n unknowns
Ax = b, where b is a given n-vector.

(i) If A is invertible then this system has a unique solution, namely x = A−1b. In particular
(taking b = 0), Ax = 0 has x = 0 as its only solution when A is invertible.

(ii) if A is not invertible then, depending on which n-vector b we choose, the system Ax = b
either has no solution or has infinitely many solutions. In particular (taking b = 0, so
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Ax = b does have a solution, namely x = 0), when A is not invertible the vector equation
Ax = 0 has nonzero solutions (in fact, infinitely many such).

Thus, A is invertible precisely when Ax = 0 has x = 0 as its only solution, and A is non-invertible
precisely when Ax = 0 has a nonzero solution.

The invertible case was illustrated in Example 18.3.1, and the two possible outcomes in the non-
invertible case were illustrated in Example 18.3.2. It may be surprising that the two outcomes in (ii) when
A is non-invertible (no solutions or infinitely many solutions) are the only possibilities. For example, if
A is a non-invertible n × n matrix then it is impossible that Ax = b has precisely five solutions. This is
explained in Section B.2, building on Chapter 21 (Corollary B.2.8(b) addresses the essential step: showing
an n× n matrix A is invertible when Ax = 0 has x = 0 as the only solution).

This discussion leaves us some issues unresolved: how do we determine if a given n × n matrix A is
invertible (equivalently: does Ax = 0 have x = 0 as the only solution)? If it is invertible, how do we
compute A−1? When A is not invertible, how can we understand for a given b if Ax = b has no solutions
or infinitely many? We address these matters in Chapters 21–22.

18.4. More properties of matrix algebra. Recall the following from Section 15.3:

A(B+C) = AB+AC, (A+B)C = AC+BC, and A(BC) = (AB)C, but AB ̸= BA in general!

We add to these some further properties of matrix multiplication which involve inverses of matrices.

(i) When A is invertible you can “cancel A” by multiplying both sides by A−1 (but there is a
caveat; see the Warning below):

– Cancelling an invertible matrix on the left: if AB = AC and A is invertible then
B = C. This holds because you multiply both sides on the left by A−1.

– Cancelling an invertible matrix on the right: if BA = CA and A is invertible then
B = C. For this you need to multiply both sides on the right by A−1.

– Warning: our caveat is that if AB = CA, then you cannot cancel A on the left on one
side and on the right on the other, so you cannot conclude in this case that B = C, even
when A is invertible (see Example 18.4.1 below).

(ii) If A and B are both invertible n × n matrices then AB is also invertible, and (AB)−1 =
B−1A−1 (note the switch of order of multiplication on the right side!); see Example
18.4.3 below for an illustration.

Example 18.4.1. Here is an example where AB = CA and A is invertible, but B ̸= C. The matrix

A =

[
1 1
2 1

]
is invertible, with inverse A−1 =

[
−1 1
2 −1

]
(you can check directly that the product of these

matrices is I2, or you can use the procedure in Example 18.2.1). However, for the visibly distinct matrices

B =

[
2 0
0 −3

]
, C =

[
−8 5
−10 7

]
,

you can check by multiplying matrices that

AB =

[
2 −3
4 −3

]
= CA.

More generally, for invertible n× n matrices A with n > 1, if AB = CA then it is almost always the
case that B ̸= C. ■

Remark 18.4.2. There are important contexts where it is useful to consider matrices A, B, and C, with
A invertible, B diagonal, but C non-diagonal (so C ̸= B) for which AB = CA. This relates to the
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fundamental notion of eigenvectors of a square matrix that we introduce in Chapter 23; this notion is
extremely relevant to data science, image compression, dynamical systems, quantum mechanics, and much
more.

Example 18.4.3. Here is an example which illustrates the general fact that (AB)−1 = B−1A−1 when A
and B are invertible, though typically (AB)−1 ̸= A−1B−1 (i.e., the order of multiplication of A−1 and
B−1 really matters).

Consider the same A and B as in Example 18.4.1:

A =

[
1 1
2 1

]
, A−1 =

[
−1 1
2 −1

]
, B =

[
2 0
0 −3

]
, B−1 =

[
1/2 0
0 −1/3

]
.

(The determination ofB−1 is easy becauseB is diagonal with nonzero diagonal entries: see (18.1.1).) You

can check that AB =

[
2 −3
4 −3

]
, as in Example 18.4.1, and also that

(AB)−1 =

[
−1/2 1/2
−2/3 1/3

]
.

(It is easy to check directly that the product of the right side with AB equals I2, or alternatively, you can
use the general formula from Example 18.2.1). Multiplying the matrices directly shows that

B−1A−1 =

[
1/2 0
0 −1/3

] [
−1 1
2 −1

]
=

[
−1/2 1/2
−2/3 1/3

]
,

which is exactly the same as (AB)−1. However, multiplying these inverses in the other order gives a (very)
different matrix:

A−1B−1 =

[
−1 1
2 −1

] [
1/2 0
0 −1/3

]
=

[
−1/2 −1/3
1 1/3

]
. ■

Example 18.4.4. As an alternative to the algebraic approach in Example 18.4.3, there is a nice geometric
way to think about the formula (AB)−1 = B−1A−1. This explains the reason for the order in which we
multiply A−1 and B−1.

Consider two invertible linear transformations T and T ′ on Rn, such as rotations of R3 by some
specific respective angles θ and θ′ around specific respective lines ℓ and ℓ′ passing through the origin. Then
T ′◦T encodes the overall effect of first applying the transformation T and then applying T ′. As an explicit
example, if T is the rotation Rz around the z-axis corresponding to a 90-degree counterclockwise rotation
in the xy-plane and T ′ is the rotation Rx around the x-axis corresponding to a 90-degree counterclockwise
rotation in the yz-plane then T ′ ◦ T = Rx ◦Rz corresponds to the product matrix



1 0 0
0 0 −1
0 1 0





0 −1 0
1 0 0
0 0 1


 =



0 −1 0
0 0 −1
1 0 0


 .

This final matrix may look mysterious, but it turns out to be a rotation (of 120 degrees counterclockwise)
around the line through (1,−1, 1) and 0. There is no reason you would recognize that immediately without
more experience. However, as a safety check you can verify that this final matrix does carry the point
(1,−1, 1) ∈ R3 to itself (which is the same as what a rotation around the line through that point and 0
does), and we give an illustration in Figure 18.4.1 (follow the red dot in one corner).
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[
0 −1 0
1 0 0
0 0 1

] [
1 0 0
0 0 −1
0 1 0

]•(1,−1, 1)
•

••

x

y

z

FIGURE 18.4.1. The effect of Rz and Rx on a cube. The net transformation of the cube is
Rx ◦Rz.

How can we undo the composite operation T ′◦T ? In terms of the example with rotations in R3, to undo
Rx ◦ Rz we undo the steps in the opposite order from which they were applied. (Why is that reasonable?
Think about undoing other invertible processes, such as: putting on socks and shoes, or opening a window
and sticking your head out. During this lecture in Fall 2018, a student removed a sock while keeping his
shoes on but said it was very painful.) Thus, we should first undo Rx and then undo Rz. Likewise in
general we should first undo the last step, namely undo T ′, and then undo the first step, namely undo T .

Undoing an invertible linear transformation corresponds to applying the inverse transformation (en-
coded by the inverse matrix), so we conclude that the effect of undoing T ′ ◦ T is given by T−1 ◦ T ′−1,
which is to say

(T ′ ◦ T )−1 = T−1 ◦ T ′−1
.

Thus we have expressed in the language of linear transformations the formula (AB)−1 = B−1A−1 for
invertible matrices. This explains why the order of multiplication of A−1 and B−1 is what it is. ■

18.5. Application of matrix inverses II: Newton’s method for finding zeros. An important applica-
tion where inverses of matrices appear in a crucial way is Newton’s method, an algorithm that numerically
approximates solutions to a vector equation f(x) = 0, where f : Rn → Rn is a non-linear function.
(When f is a linear function, finding solutions to f(x) = 0 is an important task in linear algebra; we
will discuss it in Chapters 21–22.) Explicitly, if fj : Rn → R is the jth component function of f – i.e.,
f(x) = (f1(x), . . . , fn(x)) – then f(x) = 0 expresses a system of n non-linear equations in n unknowns:

f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0.

Before discussing what Newton’s method actually is, let us give some specific instances with various
functions f : Rn → Rn; we will then revisit these examples after we have formulated Newton’s method.

Example 18.5.1. Suppose we want to find a simultaneous solution to the pair of (non-linear) equations

x3 + xy + 2y3 − 3 = 0, x2y + xy2 − y = 0.

This is equivalent to trying to solve f(x, y) = (0, 0), where the function

f(x, y) = (x3 + xy + 2y3 − 3, x2y + xy2 − y)

was already considered in Example 13.5.5. (We computed (Df)(x) there.) You can already imagine the
difficulties of trying to find a solution explicitly or by some sort of elementary expression. It looks pretty
hopeless, and almost certainly is. This leads one to try to find ways to approximate a solution (or solutions)
to this equation as accurately as desired. Already in the 1660’s Newton realized the importance of this
and invented a method, at least for functions of one variable (see Remark 18.5.5). It turned out to be an
extremely efficient method and generalizations of it are still in use and underlie a lot of modern scientific
computation, such as numerically estimating solutions to differential equations. ■
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Example 18.5.2. Let’s discuss a fundamental problem in robotics and computer animation (for 3D im-
ages in video games, movies, etc.) where rapidly solving non-linear equations (via Newton’s method)
plays an essential role. Consider an industrial robot consisting of several mechanically-linked “arms”
that are connected one after the other. Each arm can swivel at its link with the previous arm. Suppose
that the joint linking each arm to the previous one is constrained to lie in some fixed plane relative to
the previous arm. This plane changes from joint to joint, but we only need to specify a single angle at
each joint to describe how successive arms lie relative to one another.

Knowing the angle θ1, θ2, . . . by which each arm is positioned relative to the previous arm de-
termines the entire state of the mechanical system. In particular, such angles determine the position
p ∈ R3 of the tip of the final arm. The formula expressing p in terms of those angles is extremely
non-linear, due to the intervention of many trigonometric functions (somewhat like the non-linearity
near the end of Example 10.1.1, but much worse); see [AL, (9.13)] for the formula.

A similar situation arises in computer graphics (for video games, Pixar, etc.): a computer image
of a moving figure has an underlying “skeleton” consisting of rigid parts akin to such a robot. If one
prescribes the angle at each joint, the computer image will appear as a specific spatial image. (We are
disregarding further spatial information that is useful in practice but not essential for this discussion.)

The key point is that in practice one doesn’t want to use the angular data to compute p, or specify
the angles at the joints of a computer image to determine the appearance of the image, but rather to go
the other way around! Namely, one wants the tip of the last arm of the industrial robot to trace out some
specific path p(t) in space (with t denoting time) and seeks to determine the angles θ1(t), θ2(t), . . .
which allow the robot to continuously achieve that path of motion for its tip. Likewise, a computer
graphics artist wants to be able to virtually manipulate the motion of a computer image of a person
(or animal, or talking tea cup, etc.) via its position in 3-dimensional space and the software must
know how to translate that physical motion into the angle positions that produce it (much as someone
throwing a ball thinks in terms of physical positions in space and not about angle measurements).

Underlying all of this, what needs to be done is to solve a non-linear equation f(x) = 0, or more
typically, a (large) sequence of such equations.

Accurately and rapidly calculating the angles from the data of a physical configuration is an entire
subject unto itself called “inverse kinematics” which abounds in massively non-linear equations. We
discuss this further in Examples 18.5.7 and I.1.4. ■

Example 18.5.3. The Global Positioning System (GPS) is used in daily life by pedestrians, hikers,
drivers, airline pilots, etc. navigating via hand-held location devices (such as a smartphone). GPS uses
time measurements based on electronic transmissions to determine the distance from your position to
each of 4 (moving) satellites, and combines this with the 3-dimensional Pythagorean Theorem (see
Theorem 2.3.1) to determine your position (x, y, z) at some time t.

The position (x, y, z) and time t are the unique solution to a system of 4 non-linear equations that
involve many auxiliary measurements, such as: the positions of the satellites at time t, the time for
an electronic signal from each satellite to reach your hand-held device, an error tolerance in the time
measurements by your device’s internal clock (which is not nearly as accurate as the atomic clocks on
the satellites), and the distance from your position to each satellite (computed by a formula involving
the speed of the transmission signal through the atmosphere).

There are more than 30 GPS satellites spread across the sky, and typically at least 6 of them are
visible to your device. By using input from 4 of the satellites, we want to solve f(x, y, z, t) = 0 for a
specific non-linear f : R4 → R4; some geometry with spheres ensures that this system of 4 equations

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 373



in 4 unknowns has a unique solution, though the system is very sensitive to seemingly small time
measurement errors. (Incorporating more than 4 satellites leads to more equations than unknowns,
and new difficulties handled via least-squares techniques.) Your GPS device needs to accurately solve
the non-linear system f(x, y, z, t) = 0 quickly; GPS also needs to solve other non-linear equations,
such as Kepler’s equation [KH, Sec. 3.8.1, Table 3.22, (5)]. We will come back to this topic in
Example 18.5.8 and discuss it further in Example I.1.4. ■

Example 18.5.4. A very important situation when one wishes to find solutions to a vector equation f(x) =
0 is when f is the gradient of a function g : Rn → R. Indeed, as we already learned in Chapter 11, to
find the critical points – and in particular local minima and maxima – of g we must solve the system of
simultaneous equations ∂g/∂x1 = 0, ∂g/∂x2 = 0, . . . , ∂g/∂xn = 0 for the n numbers x1, . . . , xn. In
vector language, we seek solutions to (∇g)(x) = 0.

The method of gradient descent was described in Section 11.3 for locating critical points. However,
this can be rather slow, and Newton’s method is much faster: it often requires far fewer iterations to
produce an approximation with a given degree of accuracy. Novel applications arise in the imaging of
black holes, as we alluded to in Example 11.3.4; see Example I.1.3 for more information. ■

Having provided several motivating examples, we now turn to Newton’s method itself. When faced
with solving a non-linear vector equation f(x) = 0, we first make some initial guess for a solution. There
are many ways that we might choose this, depending on the circumstances and our knowledge about the
function, and it obviously is in our best interest not to make a wildly stupid guess. Our goal is to improve
an initial guess a into a better approximation to a solution. We shall do this by finding a small vector h so
that a + h is closer to an actual solution than a is. In practice, one then iterates this: if we call our initial
guess a1, then one application of the algorithm will produce a new and hopefully better approximation
a1 + h, which we shall call a2. Repeating this process gives a sequence of points a1, a2, a3, . . .. The aim
is that after computing a moderately small number of such points we should have an approximation to a
solution within a high degree of accuracy.

How do we improve our initial guess a to a+ h (i.e., what should we choose for h)? The idea is that
we think of this as trying to find an h which solves f(a+ h) = 0, and solve that by replacing f(a+ h)
by its linear approximation f(a) + (Df)(a)h. Of course, “f(a) + (Df)(a)h = 0” is not exactly the same
equation anymore, but we can hope it is pretty close, and it will be much easier to solve for h!

So let’s go ahead and solve this simplified equation. We must assume that the n × n matrix (Df)(a)
is invertible. This is key to the method, and if this matrix is not invertible then Newton’s method does
not apply. (There will also be convergence issues, which are more serious in practice.) We rewrite f(a) +
(Df)(a)h = 0 as

(Df)(a)h = −f(a), and hence h = −((Df)(a))−1f(a). (18.5.1)
So from our initial guess a we add on this “correction” h to produce our next (hopefully more accurate)
guess to a solution of the non-linear equation:

a− ((Df)(a))−1f(a).

To summarize:

(Newton’s method for approximating zeros of non-linear functions) Let f : Rn → Rn be a non-linear
function and let a be an initial guess for a solution to f(x) = 0, with (Df)(a) invertible. Then if we
have chosen a reasonably, the sequence of vectors a1, a2, a3, . . . ∈ Rn defined by a1 = a and

ak+1 = ak − ((Df)(ak))
−1f(ak) for all k ≥ 1 (18.5.2)

makes sense (e.g., (Df)(ak) is invertible for every k) and converges rapidly to a solution of f(x) = 0.
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How do we know whether we have chosen a reasonably? This is of course crucial, and there are lots
of examples where this algorithm produces a sequence which does not converge (it may even spiral out
to infinity!). An explicit example of this in the setting of Example 18.5.4 with n = 2 is given at the end
of Example I.2.2. These matters are addressed in courses and books on numerical methods (e.g., [BSt,
Sec. 5.3]).

Remark 18.5.5. For n = 1, we are trying to approximate a solution to f(x) = 0 for a function f : R → R.
Newton’s method says now that if a is our first guess to a solution to f(x) = 0 and if f ′(a) ̸= 0, then in
favorable circumstances the sequence of numbers a1, a2, a3, . . . defined by a1 = a and

ak+1 = ak −
f(ak)

f ′(ak)
for all k ≥ 1

converges rapidly to a solution of f(x) = 0. The visualization for this process, in Figure 18.5.1, is as
follows. A vertical line (in red) through ak on the x-axis meets the (light blue) graph y = f(x) at a point,
namely (ak, f(ak)). The tangent line at that point on the graph is y = f(ak) + f ′(ak)(x − ak), and this
meets the x-axis where 0 = y = f(ak) + f ′(ak)(x − ak). Solving that (assuming f ′(ak) ̸= 0!) gives
x = ak − f(ak)/f

′(ak) = ak+1 as the point where the tangent line meets the x-axis, and the process then
repeats.

•

a1

a2•

•

a1

a2

•

a3•

•

a1

a2 a3
a4

•

•
•

FIGURE 18.5.1. Newton’s method demonstrated for the first four points a1, a2, a3, a4.

Newton’s formulation was a cumbersome algebraic process without graphs and derivatives! The mod-
ern formulation is due to Simpson [Yp, Sec. 8]. For a visual interpretation of the 2-dimensional case in
terms of tangent planes to surface graphs in the spirit of Figure 18.5.1, see this video, where the values of
f1(x, y) and f2(x, y) at a common point in R2 are called “residuals” (and see Section 18.7 for an algebraic
justification of the visualization in the video).

Even in the 1-dimensional case, Newton’s method can fail to converge. Moreover, if f(x) = 0 has
more than one solution then the method can be extremely sensitive to the initial choice of a1 = a. Many
single-variable calculus textbooks have an introduction to all of this for n = 1; e.g., see [THW, Sec. 4.7].

We illustrate the power of the multivariable Newton’s method by revisiting the three examples above.

Example 18.5.6. In Example 18.5.1, we sought a zero of f(x, y) = (x3 + xy + 2y3 − 3, x2y + xy2 − y).
The derivative matrix of this function, evaluated at any point, was computed in Example 13.5.5 and equals

(Df)(x, y) =

[
3x2 + y x+ 6y2

2xy + y2 x2 + 2xy − 1

]
. (18.5.3)

Let us run Newton’s method beginning at a = (0, 1) and see what happens.
Set a1 = (0, 1), so f(a1) = (−1,−1). To go to the next step we use (18.5.3) to calculate

(Df)(a1) =

[
1 6
1 −1

]
, so ((Df)(a1))

−1 =

[
1/7 6/7
1/7 −1/7

]
.
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Hence,

a2 = a1 − ((Df)(a1))
−1f(a1) =

[
0
1

]
−
[
1/7 6/7
1/7 −1/7

] [
−1
−1

]
=

[
0
1

]
−
[
−1
0

]
=

[
1
1

]

and then we compute f(a2) = (1, 1). (That f(a2) = a2 is a fluke, with no cosmic significance.) Now
feeding a2 into (18.5.3) yields

(Df)(a2) =

[
4 7
3 2

]
, so ((Df)(a2))

−1 =

[
−2/13 7/13
3/13 −4/13

]
.

Hence,

a3 = a2 − ((Df)(a2))
−1f(a2) =

[
1
1

]
−
[
−2/13 7/13
3/13 −4/13

] [
1
1

]
=

[
1
1

]
−
[
5/13
−1/13

]
=

[
8/13
14/13

]

and then we calculate f(a3) = f(8/13, 14/13) = (865/2197, 98/2197) ≈ (0.3937187, 0.0446063).
At this point our long-suffering computer has had a lot of time to recover from its gambling experience

in Section 16.2, so it is time to wake it up and call it back into action to continue running the steps of
Newton’s method. It springs to life and tells us that

a4 =

(
493367

338052
,
118892

84513

)

with f(a4) = (7.729922331232 . . . , 4.4779445052955 . . . ), and

a5 =

(
4163110851205464514415935765

4237742372856894696580730802
,
781166188908764911625281240

706290395476149116096788467

)

with f(a5) = (1.74051781942412 . . . , 1.163107848685 . . . ). We then tell the computer to stop showing
off with the huge fractions, so it switches to decimal mode and kindly provides the following output:

k ak

4 (1.45944115106551654775 . . . , 1.40678948800776211943 . . . )
5 (0.98238884880556885346 . . . , 1.10601275893343829780 . . . )
6 (0.68009543839836081045 . . . , 1.04221078768332074644 . . . )
7 (0.61510603804391191781 . . . , 1.02420940858000089205 . . . )
8 (0.61155543524094804067 . . . , 1.02365061540338632705 . . . )
9 (0.61154729359324942964 . . . , 1.02364921627629839875 . . . )

10 (0.61154729354900381091 . . . , 1.02364921626903717013 . . . )

and
k f(ak)
4 (7.729922331232 . . . , 4.477944505295 . . . )
5 (1.740517819424 . . . , 1.163107848685 . . . )
6 (0.287472861154 . . . , 0.1785646922178 . . . )
7 (0.011527508214 . . . , 0.008555046538 . . . )
8 (0.000027121317 . . . , 0.000019600872 . . . )
9 (0.000000000145 . . . , 0.0000000001063 . . . )
10 extremely small, around 10−21

The points ak stabilize well for k ≥ 8 and f(ak) is close to (0, 0) beginning at k = 8, with f(a9) rather
close to (0, 0). Since f(a10) ≈ (0, 0) to 21 decimal digits, a10 is an extraordinarily good approximate
solution to f(x) = 0. (For perspective on 21 decimal digits of accuracy, NASA uses π to an accuracy
of 15 decimal digits for interplanetary space probes, such as the Voyager 1 spacecraft that is around
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12.5 billion miles away. So the approximate vanishing of f(a10) is more than sufficient for any current
application.) ■

Example 18.5.7. Let’s return to the area of inverse kinematics within robotics that we mentioned in
Example 18.5.2. This will provide a further application of the motivating idea in (18.5.1) (resting on
the linear approximation property of derivative matrices) for the definition of the multivariable New-
ton’s method in (18.5.2). We focus on the situation with a planar robotic system in Example 13.5.11
to avoid complicated equations and input from physics; this special case will illustrate a mathematical
insight with derivative matrices and their inverses that is relevant to rather general situations.

In notation from Example 13.5.11, the linear approximation property of derivative matrices yields[
∆x
∆y

]
≈ ∆p ≈ (Dp)(θ⃗)∆θ⃗ =

[
∂x/∂θ1 ∂x/∂θ2
∂y/∂θ1 ∂y/∂θ2

] [
∆θ1
∆θ2

]
.

The partial derivatives of x and y with respect to the θj’s are computed using the expressions for x
and y in terms of the θj’s in (13.5.5), from which we obtain

[
∆x
∆y

]
≈
[
−L1 sin(θ1)− L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)
L1 cos(θ1) + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

] [
∆θ1
∆θ2

]
. (18.5.4)

We are given the left side (the desired small change in the position p of the tip), and we want to
solve for the small change in angles to (approximately) achieve that. Exactly as in the reasoning
with (18.5.1) which motivated Newton’s method, we use the inverse of the 2 × 2 derivative matrix
in (18.5.4). A bit of algebra and the addition law for sine gives that the determinant of that matrix is
L1L2 sin((θ1 + θ2)− θ1) = L1L2 sin(θ2), so the formula for the inverse of a 2× 2 matrix yields
[
∆θ1
∆θ2

]
=

1

L1L2 sin(θ2)

[
L2 cos(θ1 + θ2) L2 sin(θ1 + θ2)

−L1 cos(θ1)− L2 cos(θ1 + θ2) −L1 sin(θ1)− L2 sin(θ1 + θ2)

] [
∆x
∆y

]
.

But wait! What if the derivative matrix is not invertible? This corresponds to the vanishing of the
determinant L1L2 sin(θ2), so θ2 = 0, π. These are exactly the positions in which the robotic system is
either fully stretched out (θ2 = 0) or is entirely folded up (θ2 = π), in which case a degree of freedom
has been lost: the tip cannot be moved slightly in a direction along the line of the first arm.

That missing degree of freedom says (from such positions) we cannot achieve any desired small
change in the position of the tip with a small change in the angles. This physical problem is detected
mathematically (as above) through the non-invertibility of the derivative matrix for a configuration
of the robotic arm. This is an instance of a phenomenon called “kinematic (or robotic) singularity”
(recall that a square matrix is called “singular” when it is not invertible). In such configuations a robot
gets stuck or behaves in unpredictable ways, and (in situations more intricate than the planar arm
above) these are systematically found through a study of derivative matrices. The task of “singularity
avoidance” in robotics involves algorithms to keep the robot away from these positions. ■

Example 18.5.8. For the application to GPS in Example 18.5.3, we need to solve a non-linear system
of several equations in x, y, z, t, as well as some other non-linear equations. The usefulness of GPS
(especially on a moving vehicle such as a car or airplane) requires that good approximate solutions are
computed very rapidly. In practice, Newton’s method is used to very rapidly (and accurately) solve
such non-linear systems of equations. ■

Example 18.5.9. To find critical points as in Example 18.5.4 by applying Newton’s method to a “first
derivative” gradient function f = ∇g, the derivative matrix (Df)(a) encodes the information of a “multi-
variable second derivative” of g called its Hessian (introduced in Section 25.2). In Appendix I we develop
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this application in detail and illustrate that its running time can be a big improvement on gradient descent.
This underlies why the algorithm XGBoost wins many machine learning competitions. ■

Example 18.5.10. Another context where the idea behind the multivariable Newton’s method arises is
minimization for the magnitude of non-linear vector-valued functions; see Remark 22.5.7. ■

18.6. Equivalence of characterizations of invertibility. For those who are interested, we finish
this chapter by coming back to an issue that was raised in Section 18.1 but not justified there, namely
proving the equivalence of the following two conditions used to define invertibility for an n×nmatrix
A:

(a) The linear transformation TA : Rn → Rn is invertible. Explicitly, for every b ∈ Rn there is
a unique x ∈ Rn that solves the equation Ax = b.

(b) There is an n× n matrix B with the property that AB = In and BA = In (in which case the
linear transformation TB : Rn → Rn is inverse to TA : Rn → Rn).

We first show that condition (a) implies condition (b). As in (a), suppose that the linear trans-
formation L = TA is invertible. Its inverse function M : Rn → Rn is defined like this:

M(b) is the unique x ∈ Rn that satisfies Lx = b.

We claim M is actually a linear transformation. To check M is linear, pick b1,b2 ∈ Rn and scalars
c1, c2, so we want to show

M(c1b1 + c2b2)
?
= c1M(b1) + c2M(b2).

To verify this equality, we first use the invertibility of L to ensure that there is a unique vector
x1 ∈ Rn satisfying L(x1) = b1 and a unique vector x2 ∈ Rn satisfying L(x2) = b2. By definition of
M , we have M(b1) = x1 and M(b2) = x2, so the desired formula encoding linearity of M amounts
to

M(c1b1 + c2b2)
?
= c1x1 + c2x2.

By definition of M , the left side is the unique vector in Rn carried by L onto the vector c1b1 + c2b2.
Thus, to show it is equal to the right side, we just have to check that the vector c1x1 + c2x2 ∈ Rn

actually is carried by L onto c1b1 + c2b2.
To summarize, the asserted linearity of M comes down to verifying

L(c1x1 + c2x2) = c1b1 + c2b2.

But the right side is c1L(x1) + c2L(x2) and we know

L(c1x1 + c2x2) = c1L(x1) + c2L(x2)

precisely because L is linear! This establishes the desired equality and so completes the verification
of the claim that the inverse function M : Rn → Rn of L is linear. Hence, M = TB for some n × n
matrix B. We will show that this B works as in condition (b).

By the very meaning of “inverse function”, M ◦ L : Rn → Rn carries each vector to itself and
likewise for L ◦M : Rn → Rn. But M ◦ L = TB ◦ TA corresponds to the matrix BA (as was seen
in our discussion relating matrix products to composition of linear transformations in Section 14.3),
and likewise L ◦M = TA ◦ TB corresponds to the matrix AB. In other words, M ◦ L = TBA and
L ◦M = TAB, so TBA : Rn → Rn carries each vector to itself and TAB : Rn → Rn carries each
vector to itself. This says that BA = In because In is the matrix of the transformation that sends any
input to itself as output, and similarly AB = In. This completes the proof that (a) implies (b).
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Now we show (b) implies (a). That is, assume there exists an n× n matrix B as in condition (b),
and we shall show that for every b ∈ Rn the vector equation Ax = b has a unique solution x ∈ Rn.
Given such a solution vector x, if we multiply both sides of the equation

Ax = b

by B then we obtain B(Ax) = Bb. The left side is equal to (BA)x, and BA = In due to how B was
chosen, so B(Ax) = (BA)x = Inx = x. We conclude that

x = Bb.

In other words, the only possible solution to Ax = b is x = Bb ∈ Rn. But does Bb really solve
this vector equation? Indeed it does, because the product AB in the other order is equal to In:

A(Bb) = (AB)b = Inb = b.

Thus, we have proved that condition (a) holds when condition (b) holds.

18.7. A visual interpretation of the 2-dimensional Newton’s method. For a function f : R2 →
R2 with component functions f1, f2 : R2 → R (i.e., f(x) =

[
f1(x)
f2(x)

]
) and a point

[
a
b

]
∈ R2, running

a step of Newton’s method yields as the output[
a
b

]
− ((Df)(a, b))−1

[
f1(a, b)
f2(a, b)

]
. (18.7.1)

We want to give a geometric interpretation of this construction that is similar in spirit to what was
seen in the 1-dimensional case in Figure 18.5.1. In the latter case we used a tangent line to the graph
of a single function f(x) and saw where it crosses the x-axis. For the 2-dimensional case, we will
consider tangent planes to surface graphs and there are two functions rather than one, namely f1 and
f2; we will use the graph of each of these.

Here are analogous descriptions of Newton’s method in the one-variable and two-variable cases:
• For the single-variable case (see Figure 18.5.1), if a is an approximate solution to f(x) = 0

and if f ′(a) ̸= 0 then at the point on the graph y = f(x) in R2 with x-coordinate a, the
tangent line there meets the x-axis at a point (b, 0), with b the next approximate solution to
f(x) = 0 in the method.

• For the two-variable case, if (a1, a2) is an approximate solution to f(x, y) = 0 and if
(Df)(a1, a2) is invertible then at the points on the two graphs z = f1(x, y) and z = f2(x, y)
in R3 with (x, y)-coordinate (a1, a2), the tangent planes there meet along a line that in
turn meets the xy-plane at a point (b1, b2, 0), with (b1, b2) the next approximate solution
to f(x, y) = 0 in the method.

Here is what is going algebraically in the visualization shown here to solve a pair of simultaneous
(typically non-linear) equations f1(x, y) = 0 and f2(x, y) = 0. (The video uses the notation rj(u1, u2)
rather than fj(x, y), and calls such values “residuals.”) Consider the surface graphs S1 = {z =
f1(x, y)} (blue) and S2 = {z = f2(x, y)} (red). The vertical line through (a, b, 0) meets S1 in the
point p1 = (a, b, f1(a, b)), and the same line meets S2 in the point p2 = (a, b, f2(a, b)). At each
of these points, the corresponding surface has a tangent plane: at p1 on S1 call the tangent plane P1

and at p2 on S2 call the tangent plane P2. Under the necessary assumption for Newton’s method that
(Df)(a, b) is invertible, we will show that P1 and P2 meet exactly along a line L, and that L meets the
xy-plane in exactly one point, and that point is (18.7.1)!
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To give a wider geometric context for what is going on in this visualization, we first note that two
planes in R3 (not necessarily through the origin) typically meet along a line: see Figure 21.4.1 for
a typical scenario. Likewise, a typical line in space (not necessarily through the origin) meets the
xy-plane in exactly one point. So the typical visualization for two planes along with the xy-plane as a
third plane is as shown in Figure 18.3.1. We claim that if (Df)(a, b) is invertible then the three planes
P1, P2, and the xy-plane indeed behave as in the typical situation in Figure 18.3.1, with the common

point of overlap of all three planes being (a′, b′, 0) where
[
a′

b′

]
is given by (18.7.1).

Now we shall show that the equations for P1 and P2 have a unique common solution in the xy-
plane. The xy-plane is given by the equation z = 0, so our algebraic task is to show that among points
of the form (x, y, 0), exactly one such point satisfies the equations for both of the tangent planes P1

and P2. We also need to show that this point is (a′, b′, 0) when
[
a′

b′

]
is given by (18.7.1). This will all

be done in the following algebraic work.
It is time to bring out the equations for the tangent planes P1 and P2. By (11.2.3), the tangent

plane P1 to the surface graph S1 = {z = f1(x, y)} at the point (a, b, f1(a, b)) is

z = f1(a, b) + (∂f1/∂x)(a, b)(x− a) + (∂f1/∂y)(a, b)(y − b)

and the tangent plane P2 to the surface graph S2 = {z = f2(x, y)} at the point (a, b, f2(a, b)) is

z = f2(a, b) + (∂f2/∂x)(a, b)(x− a) + (∂f2/∂y)(a, b)(y − b).

Setting z to be 0 in the equations for both P1 and P2, our goal is to show that the pair of equations

0 = f1(a, b) + (∂f1/∂x)(a, b)(x− a) + (∂f1/∂y)(a, b)(y − b),

0 = f2(a, b) + (∂f2/∂x)(a, b)(x− a) + (∂f2/∂y)(a, b)(y − b)

has a unique simultaneous solution
[
a′

b′

]
that moreover is given by (18.7.1).

Let’s reformulate these two scalar equations as a single matrix-vector equation:[
(∂f1/∂x)(a, b) (∂f1/∂y)(a, b)
(∂f2/∂x)(a, b) (∂f2/∂y)(a, b)

] [
x− a
y − b

]
=

[
−f1(a, b)
−f2(a, b)

]
= −

[
f1(a, b)
f2(a, b)

]
= −f(a, b).

The matrix on the left is the derivative matrix (Df)(a, b), and to make sense of Newton’s method we
have to assume that this derivative matrix is invertible. But then we can multiply both sides on the left
by the inverse matrix to arrive at the equivalent formulation of the equations as saying[

x− a
y − b

]
= ((Df)(a, b))−1(−f(a, b)) = −((Df)(a, b))−1f(a, b).

The left side is
[
x
y

]
−
[
a
b

]
, so adding

[
a
b

]
to both sides yields

[
x
y

]
=

[
a
b

]
− ((Df)(a, b))−1f(a, b)

as the unique solution. This shows the desired geometric property that the overlap of P1 and P2 meets
the xy-plane in exactly one point, and the formula we have obtained for that point is exactly the output
of one step of Newton’s method on the input (a, b).

The following result, applied to the tangent planes P1 and P2, links the preceding algebraic work
to the desired geometric interpretation of Newton’s method.
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Proposition 18.7.1. If two planes P and P ′ in R3 (not necessarily passing through the origin) have
overlap that meets the xy-plane in exactly one point p then P and P ′ meet along exactly a line and
this line meets the xy-plane in exactly p.

Remark 18.7.2. The hypotheses in this result hold for the pair of tangent planes P1 and P2 using the
point p given by (18.7.1).

PROOF. Since the planes P and P ′ in R3 meet in at least one point (namely, they have the point
p in common), they either meet along exactly a line or are the same plane. First, we rule out the
possibility P = P ′. If the planes coincide then their overlap is that same plane, but two planes in R3

(such as P = P ′ and the xy-plane) cannot meet in just a single point (two planes in R3 which meet
at all must at least meet along a line). But we are assuming that the overlap of P and P ′ meets the
xy-plane at precisely one point (so not a line!). Hence, the possibility P = P ′ is ruled out.

But P and P ′ meet in R3 in at least the point p, so these distinct planes cannot be parallel and
hence they indeed meet along exactly a line as desired. That line in turn meets the xy-plane in exactly
one point by our assumptions on where the overlap of P and P ′ meets the xy-plane. □

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 381



Chapter 18 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
A−1 inverse of an n× n matrix A Prop. 18.1.5, Def. 18.1.6
det(A) (for 2× 2 matrix A) determinant of A Rem. 18.2.6 and preceding few paragraphs

Concept Meaning Location in text
invertible function f f(x) = b has unique solution for each b; i.e.,

f has an unambiguous inverse
Examples 18.1.1–18.1.4

inverse function for a function f , this is a function g in the
opposite direction for which g(f(x)) = x
for all x and f(g(y)) = y for all y

Example 18.1.1

invertible linear transformation T T (x) = b has unique solution for each b Proposition 18.1.5(a)
invertible matrix, inverse matrix n × n matrix A for which AB = In = BA

for some B (called “inverse” of A)
Definition 18.1.6

determinant (n = 2) for A =

[
a b
c d

]
, it is ad− bc Definition 18.2.4

Result Meaning Location in text
invertibility of n × n matrix A in product
sense same as invertibility of TA

there is B with AB = In = BA precisely
when TA : Rn → Rn is invertible

Proposition 18.1.5

det criterion for invertibility (n = 2) A−1 exists precisely when det(A) ̸= 0 Example 18.2.1, Re-
mark 18.2.3

area meaning of | det(A)| (n = 2) TA : R2 → R2 distorts area by | det(A)| Remark 18.2.6

invertibility of n × n matrix A can be
checked “on one side”

AB = In precisely when BA = In Theorem 18.1.8

Ax = b influenced by invertibility of A if A invertible then A−1b is unique solu-
tion; if A not invertible either no solution
or infinitely many (depending on b)

Theorem 18.3.3

inversion swaps order of multiplication if A,B invertible then so is AB, with
(AB)−1 = B−1A−1

(ii) in big box at start
of Sec. 18.4

Newton’s method for zeros technique to approximate a solution to
f(x) = 0 for non-linear f : Rn → Rn

(“n equations in n unknowns”)

(18.5.2)

Skill Location in text
for general 2× 2 or diagonal n× n matrix A, check invertibility and find A−1 (18.1.1), (18.2.2), Ex. 18.2.2
for n× n matrix A, given A−1 use it to solve Ax = b Example 18.3.1

in n× n case, relate (AB)−1 to A−1 and B−1 Example 18.4.3

be aware of subtleties with matrix inverse big box at start of Sec. 18.4

run 1 step of Newton’s method for zeros when n = 2 Example 18.5.6
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18.8. Exercises. (links to exercises in previous and next chapters)

Exercise 18.1. In this exercise you will get some practice with matrix algebra involving inverses. Assume
that all matrices in this exercise have size n× n.

(a) Suppose A,B,C are invertible. Show that ABC is invertible by finding an explicit expression
for its inverse in terms of A−1, B−1, and C−1 (you should check your answer by multiplying it
by ABC separately on the left and on the right, verifying that you get In each way). Hint: try to
adapt the pattern in the case of a product of two such matrices in Example 18.4.4.

(b) Let D be an n× n matrix (not necessarily invertible). Simplify (ADA−1)12 as much as you can.
(Hint: (ADA−1)2 = ADA−1ADA−1 = ADInDA

−1 = AD2A−1; can you continue the pattern?)
This illustrates part of a (very useful) method for quickly computing large powers of matrices in
Chapter 24.

Exercise 18.2. In this exercise, you will see a quick way to verify the final assertion in Proposition 18.1.5.
Let A be an n × n matrix. Suppose B,B′ are “inverses” of A; that is, they both satisfy Proposition
18.1.5(b). By simplifying BAB′ in two different ways, show that B = B′. (This says that when A is
invertible, there is only one matrix satisfying the conditions to be an inverse to A).

Exercise 18.3.

(a) LetA =



1 2 5
2 3 8
2 5 13


. Verify thatA




1 1 −1
10 −3 −2
−4 1 1


 = I3 (so by Theorem 18.1.8, A is invertible

and A−1 =




1 1 −1
10 −3 −2
−4 1 1


).

(b) Using (a), find all simultaneous solutions to the following system of equations, and verify directly
that all solutions you find really do work:




x+ 2y + 5z = 4

2x+ 3y + 8z = 3

2x+ 5y + 13z = 2

.

Exercise 18.4.

(a) Let A =

[
2 3 1
−1 −2 0

]
and B =




2 3
−1 −2
0 0


. Check that AB = I2, but BA ̸= I3.

(b) Explain why part (a) does not violate Theorem 18.1.8.

(c) Any 3 × 2 matrix B′ for which AB′ = I2 must be of the form



−2x −1− 2y
x y

1 + x 2 + y


 for some

x, y ∈ R (you do not need to justify this). Without using Theorem 18.1.8, show that A is not
invertible. (Hint: check that the 3 × 3 product matrix B′A is never equal to I3, regardless of the
values of x, y.)

Exercise 18.5. LetA,B,C be n×nmatrices withA invertible. Decide if each of the following statements
is always true (i.e. for every possible A,B,C). If it is, justify your answer using rules of matrix algebra
(from Sections 15.3 and 18.4). If it isn’t, give a counterexample (for some n).

(a) (C + A−1)AB = CAB +B.
(b) If BC is the zero matrix then B or C is the zero matrix.
(c) If AB = BA, then ABA−1 = B.
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Exercise 18.6.

(a) Check that for any a ∈ R whatsoever, Ma =



1 a 0
0 1 0
0 0 1


 is invertible with inverse M−a =



1 −a 0
0 1 0
0 0 1


.

(b) Check that for any b ∈ R whatsoever, Nb =



1 0 0
0 1 b
0 0 1


 is invertible with inverse N−b =



1 0 0
0 1 −b
0 0 1


.

(c) Show that for any a, b ∈ R whatsoever,



1 a 0
0 1 b
0 0 1


 is invertible by giving an explicit expression

for its inverse. (Hint: write it as a product of matrices from parts (a) and (b), and be careful with
the order.)

Exercise 18.7. In this exercise, you will carry out a step of Newton’s method. Let f : R2 → R2 be given
by f(x, y) = (x3 − 3xy2 − 1, 3x2y − y3).

(a) Compute (Df)(x, y).
(b) Let a1 = (2/3, 1/3). Check that (Df)(a1) is invertible. Compute a2 = a1−((Df)(a1))

−1(f(a1))
exactly as a vector with fraction entries (as reduced fractions each entry has denominator 225),
and then use a calculator to give a decimal approximation to an accuracy of three digits beyond
the decimal point. (Hint: use the formula from Example 18.2.1.)

(c) Compute exact distances from each of a2 and the starting point a1 to the point (1, 0), and then use
a calculator to approximate those to an accuracy of two digits beyond the decimal point; which
of a1 or a2 is closer to (1, 0)? (Note that f(1, 0) = 0, so (1, 0) is one of the solutions to f(x) = 0.
It is a fact that Newton’s method in this case will converge to the solution (1, 0), but (b) shows
that this process doesn’t by any means take a “straight line” path towards that point.)

This example illustrates the extreme sensitivity of Newton’s method to the initial point. The function f
arises from thinking about the equation z3 − 1 = 0 for complex numbers z in terms of real and imaginary

parts; in this way one sees that the solutions to f(x) = 0 are the points
[
1
0

]
,

[−1/2√
3/2

]
,

[ −1/2

−
√
3/2

]
(vertices

of an equilateral triangle). If you tell your computer to color each point P ∈ R2 based on which of these
three solutions Newton’s method eventually converges to when it begins at P , it produces an astounding
fractal shown in Figure 18.8.1 and explored via some zooming in here.
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•
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•
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•a2

FIGURE 18.8.1. Each point P is colored (light blue, blue, dark blue) according to which
complex root of z3 − 1 is the limit of running Newton’s method starting at P . The roots of
z3−1 are red, and the points a1 and a2 from parts (a) and (b) are yellow near the red (1, 0).

The Wikipedia page on “Newton’s fractal” shows similar visualizations for other functions in place of
z3 − 1, and this video explores it (with fractal dynamics beginning here, for a 5th degree polynomial).

Exercise 18.8. Define f : R2 → R2 to be

f(x, y) = (x3 − y3 + 1, x2 + y3 − 2).

This vanishes at (0.75487 . . . , 1.12667 . . . ).

(a) Compute (Df)(x, y) symbolically and use this to give a symbolic expression in terms of matrices
and vectors for the output of one step of Newton’s method. You do not need to “simplify”
your expression (e.g., do not symbolically compute the inverse of the matrix that arises in this
expression).

(b) Compute the output of one step of Newton’s method for f on the input (1, 1) by using the expres-
sion you worked out in (a). An exact answer with fractions is fine, but if you prefer then it is also
fine to switch to decimal computation on a calculator after you have carried out the matrix-vector
product exactly with fractions, in which case please give your answer to at least 2 digits after
the decimal point. (After 3 steps of Newton’s method the output agrees with the zero mentioned
above to at least 4 decimal digits, and evaluating f on that output yields a vector whose entries
vanish to 10 decimal digits.)

(c) Compute the output of one step of Newton’s method for f on the input (1, 2) by using the expres-
sion you worked out in (a). The same rule on use of a calculator applies as for (b) (if you want to
use one). (After a few more steps this is also converging rapidly to the same point as in (b).)

(d) What happens if you try to run a step of Newton’s method for f on the input (1, 0)?

Exercise 18.9. Suppose A = BC with A an m×m matrix, B an m× n matrix, and C an n×m matrix.
In some special cases, we want to know when A can be invertible (recall that A must be square to be
invertible, by definition). This task is taken up more generally in Chapter 21 and Appendix B.

(a) Suppose m = 2 and n = 3. Find an example of a 2× 2 matrix A, a 2× 3 matrix B, and a 3× 2
matrix C for which the 2× 2 matrix A = BC is invertible. (There are many possible answers!)
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(b) Suppose m = 2 and n = 1. Let B =

[
b1
b2

]
and C =

[
c1 c2

]
. Show that the 2 × 2 matrix

A = BC is never invertible in such cases (regardless of the values of the bi’s and cj’s). (Hint:
show detA = 0.)

Exercise 18.10. Let A,B,C be n× n matrices for which A = BC. Assume that A is invertible.

(a) Show that B is also invertible by finding an expression for B−1 in terms of A,B,C, and A−1.
(Hint: use the equation A = BC to “solve” for B−1 assuming it exists, then show that your
expression is valid. To save effort, use Theorem 18.1.8.)

(b) Show that C is also invertible by checking that A−1B works. (Theorem 18.1.8 will again save
effort.)

Exercise 18.11. Suppose four quantities P, S, V, T arise in a scientific experiment, with each pair (P, S)
and (V, T ) expressible as a function of the other:

(P, S) = f(V, T ) = (f1(V, T ), f2(V, T )), (V, T ) = g(P, S) = (g1(P, S), g2(P, S))

for f : R2 → R2 and g : R2 → R2 inverse to each other. For example, f1 expresses P as a function of
V and T , and similarly for S via f2; we write ∂P/∂V and ∂P/∂T as shorthand for ∂f1/∂V and ∂f1/∂T .
(This situation arises in thermodynamics, with V, T, P, S corresponding to volume, temperature, pressure,
and entropy respectively.)

Any function U(V, T ) of V and T can be expressed in terms of (P, S) via g; that is, U(V, T ) =
(U ◦ g)(P, S). Hence, it makes sense to speak of ∂U/∂P , which really means ∂(U ◦ g)/∂P . (A case of
much interest in thermodynamics is with U the “internal energy”.) This exercise uses two applications of
the Chain Rule in terms of matrices to get a formula for ∂U/∂P in terms of the V -partials and T -partials
of P and S; doing this without the language of matrices is rather more complicated.

(a) Using the Chain Rule, explain why

(Dg)(P, S) = (Df)(V, T )−1 =

[
∂P/∂V ∂P/∂T
∂S/∂V ∂S/∂T

]−1

.

(Hint: (f ◦ g)(P, S) = (P, S).)
(b) Explain why ∂U/∂P is the left entry in the 1 × 2 matrix D(U ◦ g)(P, S), and then use the

Chain Rule and (a) to obtain a formula for ∂U/∂P as a ratio of expressions in the V -partials and
T -partials of U , P , and S.

Remark. In the context of thermodynamic applications, ∂(U ◦ g)/∂P is denoted (∂U/∂P )S and the
components of f are slightly involved functions but the components of g are a very messy. The point of
the exercise in that setting is that we avoid any explicit appearance of g in a formula for (∂U/∂P )S .

Exercise 18.12. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) Suppose A is an m × n matrix and B is an n × m matrix. If AB = Im then BA = In. (Try
m = 1, n = 2.)

(b) Suppose A is an n× n matrix and A2 − 2A+ 2In = 0. Then A is invertible.
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Part IV

Further matrix algebra and linear systems



“Rarely does anything understood deeply turn out to be useless, even though it may not serve the
purpose you had hoped.”

K. Smith, Keeler Professor of Mathematics (University of Michigan)

“Of course it is happening inside your head [. . . ], but why on earth should that mean it is not real?”
A. Dumbledore [Ro]

Overview of Part IV

This Part of the book, comprising Chapters 19-22, introduces additional notions in matrix algebra,
and discusses applications to linear systems; i.e., collections of equations that look like this:

3x− 4y + z − 7w = 1, 2x− y − z + w = 0, x+ y − z − 2w = 5.

The new concepts we introduce in matrix algebra are of two types: algebraic and geometric. In
Chapter 19 we introduce the algebraic notion of linear independence (a useful way of expressing that
a collection of vectors has “no redundancy”) and the related geometric algorithm called the Gram–
Schmidt process. This algorithm is a generalization of the higher-dimensional Pythagorean Theorem
(Theorem 2.3.1), and it solves the puzzle (which arises whenever trying to use the method in Theorem
6.2.1 to compute projections to a subspace of dimension ≥ 2) of how to build an orthogonal basis
of a general linear subspace of Rn. It is also pervasive in applications of linear algebra (e.g., the
QR-decomposition in Chapter 22), as well as in the arguments in the first section of the optional
Appendix B that justify many intuitive expectations about “dimension” (which we stated in earlier
parts of this book and have used throughout). For example, the Gram–Schmidt process provides us
with a systematic way of determining when the span of a given collection of k nonzero n-vectors has
dimension equal to k (rather than < k).

In Chapter 20 we introduce and explore the algebraic notion of matrix transpose and use it to
define the distinguished algebraic class of symmetric n × n matrices as well as describe the distin-
guished geometric class of orthogonal linear transformations Rn → Rn, each of which plays a role
later in the book. For instance, properties of symmetric matrices underlie the multivariable second-
derivative test in Chapter 26, and the geometry of orthogonal transformations underlies the singular
value decomposition (SVD) (a special case of which is called principal component analysis (PCA)) in
Section 27.3. The implementation of SVD has important applications in many fields: robotics, gene
expression analysis, machine learning, image compression, web search, quantum information, . . . . In
Chapter 20 we also introduce the algebraic concept of quadratic form, which arises naturally in the
study of energy for physical systems with many parts and whose connection to symmetric matrices
will be important for understanding both the multivariable second-derivative test as well as SVD.

In Chapters 21–22 we explore systems of linear equations using the algebraic and geometric tools
developed so far. (Such “linear systems” in many variables – far beyond just 3 variables – arise
everywhere, as we illustrate in Section 21.1.) Although finding an explicit numerical solution to a
linear system is a job usually best left to a computer, at least if the equations involve more than a
few variables, there is a conceptual framework behind the properties and behavior of linear systems
that is important to know, even when using software. Likewise, when aiming to explore the qualitative
behavior of solutions to large systems of linear equations, having “geometric intuition” for large linear
systems is very valuable. Understanding concepts underlying the calculations is what enables one to
do novel things.



19. Linear independence and the Gram–Schmidt process

The notions of dimension and basis for a linear subspace V of Rn were introduced in Chapters 4 and
5, but we have only seen how to verify that a given spanning set of k nonzero vectors v1, . . . ,vk for V
is of minimal size (and so is a basis) when k ≤ 3 (so the Dimension Criterion in Section 5.1 applies) or
when {v1, . . . ,vk} is a collection of orthogonal vectors (so Theorem 5.2.2 applies).

In this chapter, we will show how to construct a basis for any linear subspace V of Rn starting from
a spanning set for V . More precisely, we will construct an orthogonal basis for V ; the only input will
be a spanning set for V . As a bonus, we will be able to establish several reasonable-sounding geometric
properties of bases of subspaces that are suggested by a gridline picture in R3 (and that we would like to
hold in general).

The procedure for building an orthogonal basis from a spanning set is called the Gram–Schmidt pro-
cess, and it has been seen in the case of 2 nonzero vectors x,y in Theorem 7.1.1. (Strictly speaking, the
procedure in Theorem 7.1.1 requires first checking that x and y are not scalar multiples of each other, so
their span is really a plane. When that fails, the span is just a line.)

One merit of knowing an orthogonal basis of a plane is that it can be used to compute projections into
a plane, as we have seen and used in Chapter 7. In a wide array of contexts (such as in signal processing,
economics, and principal component analysis – one of the key algorithms in data science) it is useful to
be able to compute projections into a general subspace V of Rn, and we know how to compute ProjV in
terms of an orthogonal basis of V .

By the end of this chapter, you should be able to do the following for a collection of nonzero vectors
v1, . . . ,vk in Rn with span V :

• use the Gram–Schmidt process to compute an orthogonal basis of V and compute dimV ;
• determine whether or not dim(span(v1, . . . ,vk)) = k;
• relate the vi’s being a basis of their span to the vi’s being linearly independent.

19.1. Linear independence. In Definition 4.2.4, we defined the dimension of a nonzero linear sub-
space V of Rn to be the minimal size of a spanning set. However, if we are given a spanning set
{v1, . . . ,vk} for V , it isn’t apparent how to determine whether that spanning set is of minimal size among
all possible spanning sets for V . Revisiting Example 5.2.4 for some guidance, consider the three vectors

v1 =




3
−1
2


 , v2 =




0
2
−1


 , v3 =




2
−4
3




in R3. We saw in Example 5.2.4 that these lie inside a common plane in R3 (so their span is at most
2-dimensional rather than 3-dimensional), and that one of these vi’s belongs to the span of the others:

v3 = (2/3)v1 − (5/3)v2

(as can be verified directly, and discovered by the procedure in Example 5.1.7).
More generally, for the span V of k vectors v1, . . . ,vk ∈ Rn with k > 1, one reason dimV could

fail to equal k (i.e., the given spanning set could fail to be of minimal size) is that there is “redundancy”:
perhaps

vk = c1v1 + · · ·+ ck−1vk−1

for some scalars c1, . . . , ck−1 (i.e., vk belongs to the span of the other vj’s). Generalizing (5.2.3), V is
then spanned by v1, . . . ,vk−1 because any linear combination of v1, . . . ,vk can be written in terms of
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v1, . . . ,vk−1: by substituting the expression for vk in terms of the rest we get

a1v1 + · · ·+ akvk = (a1v1 + · · ·+ ak−1vk−1) + ak(c1v1 + · · ·+ ck−1vk−1)

=
k−1∑

j=1

ajvj +
k−1∑

j=1

akcjvj

=
k−1∑

j=1

(aj + akcj)vj.

There is nothing special about vk: for any 1 ≤ i ≤ k, if vi is a linear combination of the rest then it can
be dropped without affecting the span (so again dimV ≤ k − 1 < k).

This brings us to some questions, inspired by visualization in R3:

(i) if dimV < k then is that always “explained” by redundancy: some vi belonging to the span of
the others (a situation for which, as we saw above, it is always the case that dimV < k)?

(ii) Assuming (i) is correct and that dimV < k, remove from {v1, . . . ,vk} some vi that is in the
span of the rest. If the resulting collection of k − 1 vectors has a member belonging to the span
of the rest, remove that one and continue in this way. When this process stops, is what remains a
basis for V ? (If so, we will have found a basis for V inside any given spanning set for V .)

The answers to both questions turn out to be “yes”, but to make the answers algorithmic we need a
systematic procedure to built an orthogonal basis from a given spanning set. To begin, we need:

Definition 19.1.1. For k > 1, a collection of vectors {v1, . . . ,vk} in Rn is called linearly dependent
if some vi belongs to the span of the others. Otherwise it is called linearly independent (i.e., no vi

belongs to the span of the others). A collection {v} consisting of a single vector is called linearly
dependent when v = 0 and is called linearly independent when v ̸= 0.

The visualization of linear independence is that each vi contributes an “independent direction of mo-
tion” within the span of v1, . . . ,vk, whereas linear dependence expresses “redundancy” for the purpose
of spanning; see Figure 19.1.1. The separate treatment for k = 1 in Definition 19.1.1 may be annoying; a
formulation treating all k ≥ 1 uniformly will be given in Theorem 19.1.5.

v1

v2

v3

v1

v2

v3

FIGURE 19.1.1. Two collections of three vectors {v1,v2,v3} in R3; the first (edges of a
cube with a corner at 0) is linearly independent and the second is linearly dependent.
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Example 19.1.2. The vectors v1,v2,v3 in Example 5.2.4 are linearly dependent due to the equality

v3 = (2/3)v1 − (5/3)v2

that we have seen above. Multiplying through by 3 and bringing the v3-term to the other side yields

2v1 − 5v2 − 3v3 = 0.

This latter equation can be “solved” for either of v1 or v2 in terms of the rest, by bringing the other vectors
to the other side of the equation and dividing by the scalar multiplier:

2v1 = 5v2 + 3v3 implies v1 =
5

2
v2 +

3

2
v3, and − 5v2 = −2v1 + 3v3 implies v2 =

2

5
v1 −

3

5
v3.

One lesson we learn is that there is nothing special about v3 belonging to the span of v1 and v2 in this
example: we can also write v1 in terms of v2 and v3, and also write v2 in terms of v1 and v3. ■

Example 19.1.3. In general when {v1, . . . ,vk} is linearly dependent with k > 1, all we know (by defini-
tion) is that some vi is a linear combination of the others. When such an expression vi =

∑
j ̸=i ajvj has

all coefficients aj nonzero then we can write each vj in terms of the other v’s much as we did in Example
19.1.2. However, if some aj vanishes then we cannot conclude anything about writing the corresponding
vj as a linear combination of the other v’s and this may be impossible (so the lesson at the end of Example
19.1.2 shouldn’t be misunderstood). For instance, consider the vectors

v1 =




3
−1
2
4


 , v2 =




0
2
−1
1


 , v3 =




2
−4
3
1


 , v4 =




0
0
0
1


 .

One can check that v1 = (5/2)v2 + (3/2)v3 (this is closely related to Examples 5.2.4 and 19.1.2), so the
entire collection {v1,v2,v3,v4} is linearly dependent by using a coefficient of 0 for v4:

v1 = (5/2)v2 + (3/2)v3 + 0v4. (19.1.1)

(Via the device of coefficients of 0, any finite collection of vectors containing a linearly dependent sub-
collection is itself linearly dependent.) We claim it is impossible to express v4 as a linear combination of
v1,v2,v3 (i.e., v4 is not in the span of v1,v2,v3). The fact that (19.1.1) can’t be used to obtain such an
expression (due to v4 having a vanishing coefficient there) doesn’t imply this cannot be done; we need to
analyze the situation more closely to determine if this is truly impossible or not.

First, we simplify our task: if there were some expression av1 + bv2 + cv3 = v4 then via (19.1.1) we
could plug (5/2)v2 + (3/2)v3 in place of v1 in this expression for v4 to obtain

v4 = av1 + bv2 + cv3 = a((5/2)v2 + (3/2)v3) + bv2 + cv3 = ((5/2)a+ b)v2 + ((3/2)a+ c)v3,

so v4 would be in the span of v2 and v3. But if for some scalars x and y we really had an equality

v4 = xv2 + yv3

of 4-vectors then equating corresponding vector entries on both sides yields a system of 4 equations in x
and y that we’ll show has no solution (so there is no such expression for v4). The equations are

0 = 0x+ 2y, 0 = 2x− 4y, 0 = −x+ 3y, 1 = x+ y.

The first equation forces y = 0, and putting that into the second or third equation forces x = 0, but (x, y) =
(0, 0) violates the fourth equation. Hence, indeed v4 cannot be written in the form av1 + bv2 + cv3. ■

Remark 19.1.4. If v1, . . . ,vk is a collection of linearly independent vectors, then all vi’s must be nonzero!
Indeed, for k = 1 this is part of the definition of linear independence. If k > 1 and some vi is equal to 0
then vi =

∑
j ̸=i 0vj , expressing vi as a (not so interesting) linear combination of the others.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 391



It may seem mysterious how to determine if a given collection of nonzero vectors in Rn is linearly
dependent or linearly independent, since usually we can’t just guess how to express some vi as a linear
combination of the others (or see by inspection that this is impossible). We now give a criterion for linear
independence, inspired by the calculations in Example 19.1.2, that we can apply in some special examples
(and whose utility beyond special circumstances will be amply illustrated in Chapters 20 and 21).

Theorem 19.1.5. A collection of vectors v1, . . . ,vk ∈ Rn is linearly independent precisely when the
only collection of scalars a1, . . . , ak for which

a1v1 + a2v2 + · · ·+ akvk = 0

is a1 = 0, a2 = 0, . . . , ak = 0. In particular, any collection of mutually orthogonal nonzero
vectors w1, . . . ,wk in Rn is linearly independent.

Put another way, the collection of vi’s is linearly dependent precisely when there are coefficients
a1, . . . , ak not all equal to 0 for which

∑k
i=1 aivi = 0. (In this criterion for linear dependence we are

demanding that some coefficient ai isn’t equal to 0, not that all the ai’s are nonzero.)

PROOF. The proof is an adaptation the calculations in Example 19.1.2 to show linear dependence
is the same as the condition that the linear combination

∑k
i=1 aivi vanishes for some collection of

coefficients a1, . . . , ak that aren’t all equal to 0. At the end we address the orthogonality assertion.
If linear dependence holds and k > 1 then some vi is in the span of the rest, which is to say

vi =
∑

j ̸=i cjvj for some scalars cj (with j ̸= i). But then bringing vi to the other side, we have

0 = −vi +
∑

j ̸=i

cjvj = (−1)vi +
∑

j ̸=i

cjvj.

This is a vanishing linear combination for which the coefficient of vi is −1 ̸= 0. If linear dependence
holds and k = 1 then v1 = 0, so 1v1 = 0; this is a vanishing linear combination for which the
coefficient of v1 is 1 ̸= 0.

On the other hand, suppose
∑k

j=1 ajvj = 0 with some coefficient ai not equal to 0. Suppose
k > 1. Bringing the ith term to the other side yields

∑

j ̸=i

ajvj = −aivi.

Now we can multiply both sides by the scalar −1/ai (which makes sense since ai ̸= 0) to obtain
∑

j ̸=i

(−aj/ai)vj = vi,

expressing vi as a linear combination of the other vj’s. This establishes linear dependence when
k > 1. Suppose k = 1, so a1v1 = 0 with a1 ̸= 0 (since some coefficient is assumed to be nonzero
and now there is only one coefficient). Then we can multiply both sides by 1/a1 (which makes sense
since a1 ̸= 0) to obtain v1 = 0, so linear dependence holds (by its definition when k = 1).

Finally, suppose w1, . . . ,wk is a collection of mutually orthogonal nonzero n-vectors. To show
linear independence, we assume

∑k
i=1 aiwi = 0 for some scalars a1, . . . , ak and aim to prove each aj

vanishes. Applying dot product against wj to both sides yields
∑k

i=1 ai(wi · wj) = 0 · wj = 0. By
orthogonality wi ·wj = 0 for all i ̸= j, so the sum collapses to the term i = j: aj(wj ·wj) = 0. But
wj ·wj = ∥wj∥2 > 0 since wj ̸= 0, so we can divide by that to get aj = 0 as desired. □

Here are some illustrations of Theorem 19.1.5 in action.
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Example 19.1.6. Consider the standard basis {e1, e2, e3} of R3. Using the criterion in Theorem 19.1.5,
these are linearly independent since the condition



0
0
0


 = a1e1 + a2e2 + a3e3 =



a1
a2
a3




forces all ai’s to vanish. Alternatively, the ej’s are mutually orthogonal and nonzero, so they’re linearly
independent. ■

Example 19.1.7. In Example 4.1.13 we exhibited three vectors in R5 spanning a specific subspace W :

v1 =




−1
1

−2/3
0
0



, v2 =




1
0

−1/3
1
0



, v3 =




−2
0
1/3
0
1



.

We claim that this collection is linearly independent. Using the criterion in Theorem 19.1.5, we want to
check that the only way we can have

a1v1 + a2v2 + a3v3 = 0

is when the scalars a1, a2, a3 all vanish.
Writing out everything explicitly,

a1v1 + a2v2 + a3v3 =




−a1 + a2 − 2a3
a1

−2a1/3− a2/3 + a3/3
a2
a3



,

so by staring at the second, fourth, and fifth entries we see that the vanishing of this vector forces a1 =
0, a2 = 0, a3 = 0 as desired. ■

The two preceding examples as applications of Theorem 19.1.5 were tractable because the vectors
were very special: there were lots of entries equal to 0, enough so that when forming any possible linear
combination, each scalar coefficient wound up being isolated in its own entry in the linear combination
vector. We will rarely be so lucky in practice. Here is a more typical scenario to illustrate the shortcomings
of Theorem 19.1.5 at our present state of knowledge:

Example 19.1.8. Consider the vectors

v1 =




−2
1
5
3


 , v2 =




4
3
−3
1


 , v3 =




13
6

−15
−2




in R4. Are these linearly dependent? By staring at the vectors, we don’t see in any easy way that one of
these vi’s is in the span of the others, but that doesn’t mean no such expression is possible.

The criterion in Theorem 19.1.5 says that we should consider triples a1, a2, a3 for which

a1v1 + a2v2 + a3v3 = 0,
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and determine whether this can happen with some ai ̸= 0. In terms of explicit vectors, this equation says



−2a1
a1
5a1
3a1


+




4a2
3a2
−3a2
a2


+




13a3
6a3

−15a3
−2a3


 =




0
0
0
0


 ,

or in other words 


−2a1 + 4a2 + 13a3
a1 + 3a2 + 6a3

5a1 − 3a2 − 15a3
3a1 + a2 − 2a3


 =




0
0
0
0


 .

Equating corresponding entries on both sides, we get the following system of 4 equations in 3 un-
knowns.

−2a1 + 4a2 + 13a3 = 0

a1 + 3a2 + 6a3 = 0

5a1 − 3a2 − 15a3 = 0

3a1 + a2 − 2a3 = 0

Does it have a solution (a1, a2, a3) different from the uninteresting solution (0, 0, 0)? If so then linear
dependence holds, and if not then linear independence holds.

It isn’t at all clear by staring at this system of equations if it has a solution different from (0, 0, 0). It
turns out that there are other solutions, such as (−3, 5,−2), as you can verify by direct substitution into
the system of equations (though it shouldn’t be at all apparent how we found that triple). In other words:

−3v1 + 5v2 − 2v3 = 0

(as can be verified by direct calculation). This allows us to solve for each vi in terms of the others much as
in Example 19.1.2, exhibiting linear dependence in several ways that you probably couldn’t have guessed
from staring at the definitions of v1,v2,v3:

v1 = (5/3)v2 − (2/3)v3, v2 = (3/5)v1 + (2/5)v3, v3 = −(3/2)v1 + (5/2)v2.

(Please remember however the lesson from Example 19.1.3 that in general linear dependence for a collec-
tion of vectors x1, . . . ,xk with k > 1 does not mean that every xi is a linear combination of the others, but
only that some xi is a linear combination of the others.)

The upshot is that using Theorem 19.1.5 typically requires confronting a system of n equations in k
unknowns, a task that looks quite formidable in general (and which we will learn how to approach in a
systematic and efficient way in Chapter 22). ■

To circumvent the algebraic difficulties as in Example 19.1.8, we will next develop a geometric ap-
proach to computing the dimension of a linear subspace that will also determine without any reliance on
luck or cleverness whether a given collection of vectors v1, . . . ,vk ∈ Rn is linearly independent or lin-
early dependent. This involves solving the motivating problem posed at the start of this chapter (finding
orthogonal bases of linear subspaces), so we now turn to that topic.

19.2. Orthogonal bases and Gram–Schmidt. The Gram–Schmidt process is an algorithm (that a
computer can implement easily, and a person can carry out by hand when not too many vectors are in-
volved) to find an orthogonal basis w1,w2, . . . of a nonzero subspace V of Rn when given a spanning set
v1, . . . ,vk of nonzero vectors in V .
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When one has a basis for a subspace and it is an orthogonal basis, a variety of calculations are much
easier to do (either by hand or by computer). For instance, we’ve seen already that having an orthogonal
basis is quite useful for computing projections, which has many applications within mathematics (e.g., the
geometry involved in computing the closest point to a line or a plane) and outside of mathematics (e.g.,
linear regression, signal processing, economics, principal component analysis, quantum mechanics, and
much else). Thus, having an easily implemented algorithm for finding an orthogonal basis from a spanning
set is very useful.

Remark 19.2.1. Let’s briefly elaborate on the relevance in signal processing of finding an orthogo-
nal basis. When electronic signals are communicated across a channel, there is a collection of basic
signals out of which all others are built via linear combinations. The basic signals can be very “corre-
lated” with each other, making computations in terms of the basis of basic signals rather messy. The
merit of finding an orthogonal (or better yet, orthonormal) basis of the “signal space” is that it provides
a collection of signals that are “uncorrelated” with each other (this expresses the orthogonality condi-
tion) and consequently much better suited to a wide variety of computations. In particular, analogues
of the coefficient formula (19.2.1) below underlie the simplifications achieved in such computations.

We can’t get into specific details here since in the mathematical model one has to replace the
Euclidean spaces Rn we have been using with some “function spaces”, and the analogue of the dot
product is a certain integral. The resulting “squared distance” expresses the energy of a signal.

Remark 19.2.2. Having an orthogonal basis for a subspace is useful within the subject of linear algebra
itself. For example, when V is a subspace of Rn given by the span of k vectors {v1, . . . ,vk} then any
vector v ∈ V can be written as a linear combination

v = a1v1 + · · ·+ akvk

but the coefficients a1, . . . , ak may be rather difficult to compute. However, if we can find an orthogonal
basis {w1, . . . ,wm} of V (possibly m < k), we can also write v as

v = c1w1 + · · ·+ cmwm

with coefficients c1, . . . , cm that are easy to compute via the Fourier formula in Theorem 5.3.6:

ci =
v ·wi

wi ·wi

. (19.2.1)

Having discussed the merits of knowing an orthogonal basis of a subspace V of Rn, we now describe
the general procedure to find one when given just a spanning set of V . (The proof that the procedure below
works as claimed is given in Section B.1.) Figure 19.2.1 illustrates the geometry of what the procedure
does to 3 linearly independent vectors {v1,v2,v3} in R3 to produce an orthogonal basis {w1,w2,w3} of
R3.

w1 = v1

v2

v3

w1

v2

w2

v3

w1

w2

v3

w3

w1

w2

w3

FIGURE 19.2.1. Converting a basis {v1,v2,v3} to an orthogonal basis {w1,w2,w3}.
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Gram–Schmidt Process. Let v1, . . . ,vk be nonzero n-vectors with span V in Rn. Define:

V1 = span(v1), V2 = span(v1,v2), V3 = span(v1,v2,v3), . . . .

The following algorithm gives an orthogonal basis for the span V of all the vj’s.

• Let w1 = v1 and define B1 to be {w1} (an orthogonal basis for V1!).
• Let w2 = v2 − ProjV1

(v2) (= v2 − Projv1
(v2), with Projv1

(v2) defined in Proposition
6.1.1). If w2 ̸= 0 then B2 = {w1,w2} is an orthogonal basis for V2, and if w2 = 0 then
V2 = V1 and define B2 to be B1 (so again B2 is an orthogonal basis for V2).

• Let w3 = v3 − ProjV2
(v3) (computing ProjV2

as in Theorem 6.2.1 using the orthogonal
basis B2 of V2 found in the previous step!). If w3 ̸= 0 then the collection B3 consisting of B2

along with w3 is an orthogonal basis for V3, and if w3 = 0 then V3 = V2 and we set B3 to be
B2 (so again B3 is an orthogonal basis for V3).

• and so on, defining at the jth step wj = vj − ProjVj−1
(vj) (ProjVj−1

computed as in
Theorem 6.2.1 using the orthogonal basis Bj−1 found in the (j − 1)th step!), and Bj to
consist of Bj−1 along with wj when wj ̸= 0 whereas if wj = 0 then Vj = Vj−1 and define
Bj to be Bj−1.

After k steps, Bk consists of the nonzero wi’s and is an orthogonal basis of V ; the corresponding vi’s
are also a basis of V .

divide by lengths

w1

w2

w3

w′
1

w′
2

w′
3

FIGURE 19.2.2. Divide each nonzero wi by its length to obtain an orthonormal basis.

Example 19.3.2 gives a case when some wi vanishes. If we want an orthonormal basis of V , then at
the end of the Gram–Schmidt process replace each nonzero wj with w′

j = wj/∥wj∥ (the unit vector
pointing in the same direction as wj), as shown in Figure 19.2.2. When working by hand, it is easier to
do this replacement after an orthogonal basis is computed, since typically ∥wj∥ is an “ugly” number
involving square roots and there is no point in dragging along such a mess for the entire calculation.

This all may look complicated, though we hope that Figure 19.2.1 and Figure 19.2.2 convey the ideas.
In Section 19.3 many examples are worked out; we strongly encourage keeping the pictures in mind as a
guide to what motivates the calculation at each step. We will discuss the relationship between the algebraic
and geometric aspects of the Gram–Schmidt19 process in Remark 19.3.9.

19As with many results in mathematics, the history behind the naming of the “Gram–Schmidt process” is a bit complicated:
the result was actually known (albeit in a less convenient form) long before Gram and Schmidt were born. Gram published
the algorithm in 1883, and Schmidt rediscovered it in another context and published it in 1907. Schmidt’s paper brought the
significance of orthogonalization procedures to widespread attention, and the result has been named after them since around
1935. But the algorithm was already known to and used by Laplace in the period 1812-1820, expressed in a more complicated
form that made it difficult to perceive the underlying structure (see [Dry, Sec. 4]).
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Applying Theorem 5.2.2 to the output of the Gram–Schmidt process, one obtains the following result
(for which a proof is given in Section B.1).

Theorem 19.2.3. If V = span(v1, . . . ,vk) for k nonzero vectors v1, . . . ,vk ∈ Rn then dim(V )
equals the number of nonzero wi’s obtained from the Gram–Schmidt process. Moreover, the following
conditions are equivalent:

(i) dim(V ) = k (equivalently, {v1, . . . ,vk} is a basis of span(v1, . . . ,vk)),
(ii) all wi’s are nonzero,

(iii) the collection {v1, . . . ,vk} is linearly independent.

In particular, {v1, . . . ,vk} is linearly dependent precisely when some wi vanishes, and “basis” is the
same as “linearly independent spanning set” for any nonzero linear subspace of Rn.

Remark 19.2.4. Since dimRn = n (see Example 5.3.2), so the only n-dimensional subspace of Rn is
itself (by Theorem 4.2.8), the preceding theorem gives a computable criterion to determine when n given
nonzero vectors v1, . . . ,vn ∈ Rn are a basis of Rn: it is equivalent that all wi’s emerging from the
Gram–Schmidt process on these n vectors are nonzero. We illustrate this for n = 3 in Example 19.3.6.

Since we have seen that every nonzero linear subspace V of Rn has an orthogonal basis (feed a finite
spanning set of V into the Gram–Schmidt process and get out an orthogonal basis), we can now explain
some geometrically appealing facts concerning orthogonality:

Theorem 19.2.5. If V is a linear subspace of Rn then the collection V ⊥ of n-vectors orthogonal to
everything in V (we call V ⊥ the orthogonal complement of V ) is a linear subspace of Rn and

dimV ⊥ = n− dimV.

•

V

• V ⊥

•

FIGURE 19.2.3. A plane V in R3 passing through 0 and its orthogonal complement
line V ⊥, with dimV ⊥ = 1 = 3− dimV .

PROOF. First we handle some special cases. If V = {0} then V ⊥ = Rn and there is nothing to
do. If V = Rn then we are also done, since (Rn)⊥ = {0} (anything orthogonal to all of the “standard
basis vectors” e1, . . . , en has each of its coordinates equal to 0 and so must be the zero vector).

Hence, we now may assume that V is a nonzero subspace of Rn that is not equal to the entirety
of Rn, so there is some vector x ∈ Rn not belonging to V . In particular x cannot be equal to
ProjV (x) ∈ V , so the difference x − ProjV (x) ∈ V ⊥ is nonzero. In other words, now V and V ⊥

are both nonzero.
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Let v1, . . . ,vk be an orthogonal basis for V (so k = dimV and k < n). Letting {e1, . . . , en} be
the standard basis of Rn, the combined collection of nonzero vectors

B = {v1, . . . ,vk, e1, . . . , en}
spans Rn (as even the last n vectors in the collection do). Now run Gram–Schmidt on this spanning set
for Rn. Since the first k vectors in the collection are already pairwise orthogonal, the Gram-Schmidt
process has no effect on them! So when the Gram–Schmidt process is over, it yields an orthogonal
basis of Rn having the form

B = {v1, . . . ,vk,vk+1, . . . ,vn}
for some additional vectors vk+1, . . . ,vn.

Since the first k vectors in B constitute an orthogonal basis of V , we can give a very explicit
description of V ⊥: we claim that it is exactly the span of the orthogonal collection of nonzero vectors
vk+1, . . . ,vn. Once this is shown, it would follow that V ⊥ is a span of n − k vectors and so V ⊥ is a
linear subspace moreover with dimension n− k = n−dim(V ) by Theorem 5.2.2 (since we will have
exhibited V ⊥ as a span of a collection of that many nonzero orthogonal vectors).

So we just have to check that a vector x ∈ Rn is orthogonal to V precisely when it belongs to the
span of vk+1, . . . ,vn. Since B is an orthogonal basis for Rn, we have an expression

x =
n∑

j=1

cjvj (19.2.2)

for some scalars c1, . . . , cn. Then for any 1 ≤ i ≤ n we have

vi · x =
n∑

j=1

vi · (cjvj) =
n∑

j=1

cj(vi · vj) = ci(vi · vi) = ci∥vi∥2

since vi · vj = 0 whenever j ̸= i. Since ∥vi∥2 ̸= 0 (as vi ̸= 0), we see that vi · x = 0 precisely when
ci = 0.

By definition V ⊥ consists of precisely the vectors x orthogonal to v1, . . . ,vk, which by the pre-
ceding calculations is exactly the condition c1 = 0, . . . , ck = 0. This vanishing says exactly that the
first k terms on the right side of (19.2.2) vanish, which is to say

x = ck+1vk+1 + · · ·+ cnvn.

In other words, we have shown that V ⊥ is the span of vk+1, . . . ,vn, which is what we needed to
show. □

Example 19.2.6. If L is a line through the origin in Rn, which is to say the span of a nonzero vector

v =



a1
...
an


, then L⊥ consists of those x ∈ Rn satisfying v · x = 0: this is the solution set to the equation

a1x1 + · · ·+ anxn = 0

with coefficients a1, . . . , an not all equal to 0 (though some might vanish). By Theorem 19.2.5 applied to
the 1-dimensional L, we see that L⊥ is a linear subspace with dimension n − 1. In fact every (n − 1)-
dimensional linear subspace H in Rn (which we call a hyperplane) arises in this way, which is to say that
it is the orthogonal complement of a line (exactly in accordance with our visualization for n = 3). Indeed,
by Theorem 19.2.5 we have that dim(H⊥) = n − dim(H) = n − (n − 1) = 1, so L = H⊥ is a line
through the origin, and hence we just need to affirm that L⊥ = H , or in other words (H⊥)⊥ = H . If one
thinks about an orthogonal line and plane through the origin in R3 then such an equality is very plausible.
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More generally, if V is any linear subspace of Rn then V is contained in (V ⊥)⊥ (since anything in V is
perpendicular to anything in V ⊥, by the definition of V ⊥) and we claim this is always an equality of linear
subspaces (not just when dimV = n− 1). Using Theorem 19.2.5 twice, dim((V ⊥)⊥) = n− dim(V ⊥) =
n − (n − dimV ) = dimV. Thus, the containment of V in (V ⊥)⊥ involves linear subspaces of Rn with
the same dimension, so they must coincide (by Theorem 4.2.8)! ■

19.3. Examples of the Gram–Schmidt process. Our first worked example will transform a collec-
tion {v1,v2,v3} of 3 nonzero vectors in R4 into an orthogonal basis {w1,w2,w3} of V = span(v1,v2,v3).
This will be a natural generalization of the method for 2 nonzero vectors in Theorem 7.1.1.

Example 19.3.1. Let V be the span of the 4-vectors

v1 =




1
1
0
0


 v2 =




0
1
1
0


 , v3 =




1
0
1
1


 .

We shall construct an orthogonal basis {w1, . . . } of V .
We begin by defining w1 = v1. Then we subtract from v2 its projection along v1 = w1: define

w2 = v2 −Projv1
v2 = v2 −Projw1

v2.

Explicitly,

w2 = v2 −
v2 ·w1

w1 ·w1

w1 = v2 −
1

2
w1 =




0
1
1
0


− 1

2




1
1
0
0




=




−1/2
1/2
1
0


 .

Theorem 7.1.1 tells us that {w1,w2} is an orthogonal basis of V2 = span(v1,v2). Now comes the key
insight from the Gram–Schmidt process: we subtract from v3 its projection into V2, which we can compute
using the orthogonal basis {w1,w2} of V2 that we have already found. That is, we define:

w3 = v3 −ProjV2
v3 = v3 − (Projw1

(v3) +Projw2
(v3)).

The projection of v3 into V2 works out as follows:

ProjV2
v3 = Projw1

v3 +Projw2
v3

=
v3 ·w1

w1 ·w1

w1 +
v3 ·w2

w2 ·w2

w2

= (1/2)w1 + ((1/2)/(3/2))w2

= (1/2)w1 + (1/3)w2.

Hence,

w3 = v3 −ProjV2
v3 = v3 − (1/2)w1 − (1/3)w2 =




1
0
1
1


−




1/2
1/2
0
0


−




−1/6
1/6
1/3
0


 =




2/3
−2/3
2/3
1


 .

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 399



As a safety check on our work, by computing dot products we can verify directly that {w1,w2,w3} is
a collection of pairwise orthogonal nonzero vectors (i.e., w1 ·w2 = 0, w1 ·w3 = 0, w2 ·w3 = 0), and they
all lie in the span V of the vj’s by design (w1 = v1 and each wi for i > 1 is built as a linear combination
of vi and the previous w’s).

The crucial point is that we can unwind the process and also express the vj’s as linear combinations
of the wi’s. Indeed, by design we have v1 = w1, V2 = span(v1,v2) = span(w1,w2) (so v2 is a linear
combination of w1 and w2, or explicitly: since w2 = v2 − (1/2)w1, we have v2 = (1/2)w1 +w2), and

v3 = w3 +ProjV2
(v3) ∈ w3 + V2 = w3 + span(w1,w2),

which is contained in span(w1,w2,w3) (explicitly: since w3 = v3 − (1/2)w1 − (1/3)w2, we have
v3 = (1/2)w1 + (1/3)w2 +w3).

Since the vj’s all belong to the subspace span(w1,w2,w3) of R4, so does everything in the span V of
the vj’s. That is, V is contained in span(w1,w2,w3). But we have built every wi inside V , so likewise
the span of the wi’s lies inside V . In other words:

V = span(w1,w2,w3).

To summarize, the wi’s are a collection of pairwise orthogonal nonzero vectors whose span coincides
with V , so this collection is an orthogonal basis of V (by Theorem 5.2.2). ■

Example 19.3.2. For v1 =




2
0
1
0


, v2 =




0
1
1
1


, and v3 =




2
2
3
2


, define V = span(v1,v2,v3). Let’s find an

orthogonal basis of V .

To solve this, we use the Gram–Schmidt process. The process begins by defining w1 = v1 =




2
0
1
0


 and

w2 = v2 −Projw1
v2 = v2 − w1 · v2

w1 ·w1

w1 = v2 − 1

5
w1

=




0
1
1
1


 − 1

5




2
0
1
0




=




−2/5
1
4/5
1


 .

(As a safety-check on the calculation, one can directly compute that w1 ·w2 = 0, which is to say that w1

and w2 are orthogonal, as they’re meant to be.)
Let V2 = span(v1,v2) = span(w1,w2), so {w1,w2} is an orthogonal basis of V2 by design. The next

step in the Gram–Schmidt process is to define

w3 = v3 −ProjV2
v3 = v3 −Projw1

v3 −Projw2
v3.
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We now compute these projections:

Projw1
v3 =

w1 · v3

w1 ·w1

w1 =
7

5
w1 =

7

5




2
0
1
0


 =




14/5
0
7/5
0


 ,

Projw2
v3 =

w2 · v3

w2 ·w2

w2 = 2w2 = 2




−2/5
1
4/5
1


 =




−4/5
2
8/5
2


 .

Hence,

w3 = v3 −Projw1
v3 −Projw2

v3 = v3 −
7

5
w1 − 2w2

=




2
2
3
2


 −




14/5
0
7/5
0


 −




−4/5
2
8/5
2




=




0
0
0
0


 .

Since w3 = 0, an orthogonal basis for V is given by w1 =




2
0
1
0


 and w2 =




−2/5
1
4/5
1


. In particular,

even though V was initially described as the span of 3 vectors {v1,v2,v3}, it has as an orthogonal basis
{w1,w2} and so V is 2-dimensional and the corresponding vi’s – namely {v1,v2} – constitute a basis.

Geometrically, this means that the original vectors v1,v2,v3 are constrained to lie in a “plane” inside
R4, so according to Theorem 19.2.3 one of the vi’s is a linear combination of the others. It can be checked
by inspection that v3 = v1 + 2v2, though finding that relation may seem like magic. This can be found
systematically by going back to how the vanishing w3 was built in terms of projections:

0 = w3 = v3 − (7/5)w1 − 2w2 = v3 − (7/5)v1 − 2(v2 − (1/5)v1) = v3 − v1 − 2v2,

which again expresses that v3 = v1 + 2v2. This makes explicit that {v1,v2} is a basis of V . ■

Remark 19.3.3. If at any stage of the Gram–Schmidt process we obtain a nonzero wj which we regard
as “ugly” in some way (e.g., it has some fractional entries with big denominators), we can replace wj

with any nonzero scalar multiple w′
j = cwj we prefer. For instance, in the preceding example we could

have replaced w2 with w′
2 = 5w2 that has integer entries (which may simplify work when computing dot

products at later steps).
Multiplying some w’s by nonzero scalars is harmless because: it doesn’t change their span, it doesn’t

affect whether they are orthogonal to each other, and the projection operations Projw and Projw′ are
the same for any nonzero w and w′ = cw (since Projw only depends on the line spanned by w). In
more explicit terms, the agreement of projections is due to factors of c2 in a numerator and denominator
cancelling out:

Projw′(v) =

(
v ·w′

w′ ·w′

)
w′ =

(
v · (cw)

(cw) · (cw)

)
cw =

(
c(v ·w)

c2(w ·w)

)
cw =

( v ·w
w ·w

)
w = Projw(v).
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Many references require the Gram–Schmidt process to produce an orthonormal basis, which is to
say that they divide each nonzero wi by its length; please keep this in mind when you encounter the
Gram–Schmidt process outside this course. (One merit of orthonormality will arise in Section 22.4.) Our
formulation of the Gram–Schmidt process does not require turning each nonzero wi into a unit vector by
dividing by its length.

There are several reasons that we content ourselves with orthogonality rather than orthonormality.
First, for our needs an orthogonal basis is usually sufficient. Second, calculations and formulas would
become full of messy square roots if we require turning the nonzero wi’s into unit vectors during the
process, for no real gain since the projection Projw onto the line spanned by a nonzero vector w is
unaffected by replacing w with cw for any nonzero scalar c. Finally, if one really needs unit vectors for
the (nonzero) output, the division of each nonzero wi by its length can always be done after the entire
process is over rather than along the way (which would force one to drag along annoying square roots).

In homework and especially exams, we design all calculations to have the wj’s work out to have integer
entries or at worst a small single-digit denominator, so there is no need for the scaling trick as in Remark
19.3.3. But just to illustrate how it can be applied in a setting that isn’t messy, here is such an example:

Example 19.3.4. For the 4-vectors v1 =




1
1
0
0


, v2 =




0
1
1
0


, v3 =




1
1
1
1


, let’s compute an orthogonal basis

for their span V in R4 (in particular finding dimV ) and determine if the vi’s are linearly independent.

Define w1 = v1 =




1
1
0
0


, and then

w2 = v2 −
v2 ·w1

w1 ·w1

w1 = v2 −
1

2
w1 =




0
1
1
0


− 1

2




1
1
0
0


 =




−1/2
1/2
1
0


 .

There is no harm is replacing this with any nonzero scalar multiple, so to get rid of the fractions let’s
multiply it by 2: we define

w′
2 = 2w2 = 2




−1/2
1/2
1
0


 =




−1
1
2
0


 .

Finally, we calculate

w3 = v3 −
v3 ·w1

w1 ·w1

w1 −
v3 ·w′

2

w′
2 ·w′

2

w′
2 = v3 −

2

2
w1 −

2

6
w′

2 = v3 −w1 −
1

3
w′

2,

and substituting in the explicit vectors v3,w1,w
′
2 turns this into

w3 =




1
1
1
1


−




1
1
0
0


− 1

3




−1
1
2
0


 =




0
0
1
1


−




−1/3
1/3
2/3
0


 =




1/3
−1/3
1/3
1


 .
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Let’s multiply through by 3 to work with w′
3 = 3w3 =




1
−1
1
3


 instead. Thus, V has as an orthogonal basis




1
1
0
0


,




−1
1
2
0


,




1
−1
1
3


. (One should always do the safety check of computing dot products among these to

make sure they really are orthogonal, as works out in this case.) There are three such vectors (i.e., no
nonzero w’s), so dimV = 3 and the original three vectors v1, v2,v3 are linearly independent. ■

Next we give an example in which we get a vanishing wi in the middle of the process, rather than at
the end as in Example 19.3.2.

Example 19.3.5. For the 4-vectors v1 =




1
1
1
1


, v2 =




1
1
0
0


, v3 =




1
1
2
2


, v4 =




1
0
0
1


, let’s compute an

orthogonal basis for their span V in R4 (in particular, finding dimV ) and determine if the collection of
vi’s is linearly independent.

Define w1 = v1 =




1
1
1
1


, and then

w2 = v2 −
v2 ·w1

w1 ·w1

w1 = v2 −
2

4
w1 = v2 −

1

2
w1 =




1
1
0
0


− 1

2




1
1
1
1


 =




1/2
1/2
−1/2
−1/2


 .

To avoid fractional entries, we’ll work with w′
2 = 2w2 =




1
1
−1
−1


.

Next, we calculate

w3 = v3 −
v3 ·w1

w1 ·w1

w1 −
v3 ·w′

2

w′
2 ·w′

2

w′
2 = v3 −

6

4
w1 −

−2

4
w′

2 = v3 −
3

2
w1 +

1

2
w′

2,

and substituting in the explicit vectors v3,w1,w
′
2 turns this into

w3 =




1
1
2
2


− 3

2




1
1
1
1


+

1

2




1
1
−1
−1


 =




1
1
2
2


−




3/2
3/2
3/2
3/2


+




1/2
1/2
−1/2
−1/2


 =




0
0
0
0


 .

Thus w3 = 0.
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Finally, we calculate

w4 = v4 −
v4 ·w1

w1 ·w1

w1 −
v4 ·w′

2

w′
2 ·w′

2

w′
2 = v4 −

2

4
w1 −

0

4
w′

2 = v4 −
1

2
w1

=




1
0
0
1


− 1

2




1
1
1
1




=




1/2
−1/2
−1/2
1/2


 .

(There is no w3-term since w3 = 0.) Once again, to avoid fractions we’ll instead use w′
4 = 2w4 =




1
−1
−1
1


.

Thus, V has as an orthogonal basis

{w1,w
′
2,w

′
4} =








1
1
1
1


 ,




1
1
−1
−1


 ,




1
−1
−1
1







.

We conclude that dimV = 3, with the corresponding vi’s (namely: v1,v2,v4) as a basis too, and the
original four 4-vectors v1, v2, v3, v4 must be linearly dependent. More specifically, the vanishing of w3

encodes a dependence relation among v1,v2,v3, and we can even find it from the vanishing of w3:

0 = w3 = v3 −
3

2
w1 +

1

2
w′

2 = v3 −
3

2
v1 +

1

2
(2w2) = v3 −

3

2
v1 +w2

= v3 −
3

2
v1 + (v2 −

1

2
w1)

= v3 −
3

2
v1 + (v2 −

1

2
v1)

= v3 − 2v1 + v2. ■

In Examples 19.3.2 we saw a triple of n-vectors v1,v2,v3 for which one of the wi’s vanishes (and the
vj’s span a plane). In the next couple of examples of three n-vectors, such vanishing doesn’t occur (this is
the typical scenario: a random collection of three n-vectors is unlikely to live in a “plane” when n > 2).

Example 19.3.6. Consider the span V of the three nonzero 3-vectors

v1 =



1
0
2


 , v2 =



−1
1
−1


 , v3 =



−2
1
2


 . (19.3.1)

The collection of vi’s is far from orthogonal: all three dot products v1 ·v2, v1 ·v3, and v2 ·v3 are nonzero.
Running the Gram–Schmidt process on this triple will yield an orthogonal basis for their span V .

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 404



As usual, we begin with w1 = v1 =



1
0
2


, so to compute

w2 = v2 −Projw1
(v2) = v2 −

(
v2 ·w1

w1 ·w1

)
w1

we first evaluate some dot products:

w1 ·w1 = 5, v2 ·w1 = −1− 2 = −3.

Hence,

w2 = v2 −
−3

5
w1 =



−1
1
−1


+



3/5
0
6/5


 =



−2/5
1
1/5


 =

1

5



−2
5
1


 .

As a safety check on the arithmetic, one can directly verify the orthogonality w2 ·w1 = 0.
By the Gram–Schmidt process {w1,w2} is an orthogonal basis for V2 = span(v1,v2), so we can use

it to compute ProjV2
(as we shall need at the next stage):

w3 = v3 −ProjV2
(v3) = v3 − (Projw1

(v3) +Projw2
(v3)).

To evaluate

Projw1
(v3) =

(
v3 ·w1

w1 ·w1

)
w1, Projw2

(v3) =

(
v3 ·w2

w2 ·w2

)
w2

we need to compute some dot products:

w1 ·w1 = 5, v3 ·w1 = 2, w2 ·w2 =
30

25
, v3 ·w2 =

11

5
.

Hence,

w3 = v3 −
2

5
w1 −

11/5

30/25
w2 = v3 −

2

5
w1 −

11

6
w2.

Plugging in the numbers for v3,w1,w2, this becomes

w3 =



−2
1
2


−



2/5
0
4/5


− 11

30



−2
5
1


 =



−5/3
−5/6
5/6




(where the final equality involves some mechanical steps of adding fractions in each entry). As a safety
check on the arithmetic, one can directly verify the orthogonality w3 ·w1 = 0 and w3 ·w2 = 0.

All of the wj’s are nonzero, so {w1,w2,w3} is an orthogonal basis for V . Since there are three such
wj’s, we conclude that dim(V ) = 3, so the spanning triple {v1,v2,v3} for V must be a basis (and so must
be linearly independent). In particular, V = R3 by Remark 19.2.4, so the three vectors v1,v2,v3 actually
span R3. Note that this spanning has been established by geometric reasons, so for each v ∈ R3 we did
not need to explicitly find scalars c1, c2, c3 ∈ R for which v =

∑3
i=1 civi. This demonstrates the power of

using geometry alongside algebra.
Of course, if we do want to find those coefficients c1, c2, c3, the way to do it is first to expand v in

terms of the orthogonal basis of wj’s using the Fourier formula

v =
3∑

j=1

(
v ·wj

wj ·wj

)
wj

from Theorem 5.3.6 and then plug in the expression for each wj in terms of the vi’s by unraveling the
stages of the Gram–Schmidt process. This was carried out in an R4-setting in Example 5.3.8. To do the
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same here, after applying the Fourier formula (Theorem 5.3.6) to express a given v ∈ R3 as a linear
combination of the wj’s we get expressions for the wj’s in terms of the vi’s by going back to the Gram–
Schmidt process:

w1 = v1, w2 = v2 +
3

5
w1 = v2 +

3

5
v1,

and

w3 = v3 −
2

5
w1 −

11

6
w2 = v3 −

2

5
v1 −

11

6
(v2 +

3

5
v1)

= v3 −
11

6
v2 −

(
2

5
+

33

30

)
v1

= v3 −
11

6
v2 −

3

2
v1.

As an illustration, if we choose v =



1
2
3


 then how can we write v as a linear combination of v1, v2,

v3? First in terms of w1, w2, w3,

v =
3∑

j=1

(
v ·wj

wj ·wj

)
wj =

7

5
w1 +

11/5

6/5
w2 +

−5/6

25/6
w3 =

7

5
w1 +

11

6
w2 −

1

5
w3.

Plugging in the above expressions for the wj’s in terms of the vi’s yields


1
2
3


 =

7

5
v1 +

11

6
(v2 +

3

5
v1)−

1

5
(v3 −

11

6
v2 −

3

2
v1)

=

(
7

5
+

11

10
+

3

10

)
v1 +

(
11

6
+

11

30

)
v2 −

1

5
v3

=
14

5
v1 +

11

5
v2 −

1

5
v3.

As a safety check, plugging (19.3.1) into this final linear combination does indeed yield



1
2
3


 (check!). ■

Example 19.3.7. We now revisit the linear subspace W of R5 in Example 4.1.13, for which we found an
explicit spanning set consisting of the following three vectors:

v1 =




−1
1

−2/3
0
0



, v2 =




1
0

−1/3
1
0



, v3 =




−2
0
1/3
0
1



.

We verified their linear independence by a short calculation in Example 19.1.7 that relies on the special
arrangement of entries equal to 0 in this vector. Now we shall use the Gram–Schmidt process (which
involves more computational effort than in Example 19.1.7, but has the merit of being a robust method
that is applicable without regard to the special placement of 0’s as entries in the vectors) to give a different
verification that dim(W ) = 3.
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We have w1 = v1 =




−1
1

−2/3
0
0




, so to compute

w2 = v2 −Projw1
(v2) = v2 −

(
v2 ·w1

w1 ·w1

)
w1

we first evaluate the dot products

w1 ·w1 =
22

9
, v2 ·w1 =

−7

9
.

Thus,

w2 = v2 −
−7/9

22/9
w1 =




1
0

−1/3
1
0



+

7

22




−1
1

−2/3
0
0



=




15/22
7/22
−6/11

1
0



=

1

22




15
7

−12
22
0



.

(One can directly verify w1 · w2 = 0 as a safety check; for this purpose the scalar factor 1/22 can be
ignored.)

The pair of vectors {w1,w2} is an orthogonal basis of V2 = span(v1,v2), so

w3 = v3 −ProjV2
(v3) = v3 − (Projw1

(v3) +Projw2
(v3)) = v3 −

(
v3 ·w1

w1 ·w1

)
w1 −

(
v3 ·w2

w2 ·w2

)
w2

with the dot product evaluations

w1 ·w1 =
22

9
, v3 ·w1 =

16

9
, w2 ·w2 =

41

22
, v3 ·w2 =

−17

11
,

so

w3 = v3 −
8

11
w1 +

17/11

41/22
w2 =




−2
0
1/3
0
1



− 8

11




−1
1

−2/3
0
0



+

17

451




15
7

−12
22
0




=




−29/41
−19/41
15/41
34/41
1



.

(As a safety check on the arithmetic, one can directly verify that w3 ·w1 = 0 and w3 ·w2 = 0.)
Since wj ̸= 0 for every j, we conclude that dim(W ) = 3 (so the spanning set {v1,v2,v3} of W is

also a basis) by Theorem 19.2.3. ■
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Example 19.3.8. Finally, we revisit the linear subspace V of R5 in Example 5.2.3 that was defined as the
span of the three vectors

v1 =




1
0
3
2
1




v2 =




1
1
2
0
3



, v3 =




0
3
0
2
1



.

The Gram–Schmidt process applied to this triple gives w1 = v1 =




1
0
3
2
1




and w2 = v2 − Projw1
(v2) =

v2 − ((v2 ·w1)/(w1 ·w1))w1 with the dot products

w1 ·w1 = 15, v2 ·w1 = 10.

Thus,

w2 = v2 −
10

15
w1 =




1
1
2
0
3



− 2

3




1
0
3
2
1



=




1/3
1
0

−4/3
7/3



=

1

3




1
3
0
−4
7



.

Define w′
2 = 3w2 to get rid of the denominator. (As a safety check, one directly verifies w1 ·w′

2 = 0.)
The pair of vectors {w1,w

′
2} is an orthogonal basis of V2 = span(v1,v2), so

w3 = v3 −ProjV2
(v3) = v3 −Projw1

(v3)−Projw′
2
(v3),

and to compute the projections we evaluate some dot products:

v3 ·w1 = 5, w1 ·w1 = 15, v3 ·w′
2 = 8, w′

2 ·w′
2 = 75.

Hence, w3 = v3 −
5

15
w1 −

8

75
w′

2 = v3 −
1

3
w1 −

8

75
w′

2. Plugging in v3,w1,w
′
2 yields

w3 =




0
3
0
2
1



− 1

3




1
0
3
2
1



− 8

75




1
3
0
−4
7



=

1

25




−11
67
−25
44
−2



.

(It can be verified directly that w3 ·w1 = 0 and w3 ·w′
2 = 0, as a safety check.)

As in Example 19.3.7 we have wj ̸= 0 for every j, so dim(V ) = 3 and the spanning set {v1,v2,v3}
of V is a basis by Theorem 19.2.3. ■

Remark 19.3.9. Now that we have worked out many numerical examples of the Gram–Schmidt process,
it may be instructive to reflect on how the algebra of the calculations interacts with the geometry of the
vectors vi ∈ Rn, at least in the special case that {v1, . . . ,vk} is linearly independent. What information
about the vi’s actually intervenes in the calculation of the orthogonal basis {w1, . . . ,wk} of their span?

Nothing happens when we compute w1, and to compute w2 we have to compute Projw1
(v2) =

Projv1
(v2), which involves v1 · v1 and v2 · v1. The next step involves Projw1

(v3) and Projw2
(v3), so

in effect it requires computing the dot products

w1 ·w1, w1 · v3, w2 ·w2, w2 · v3. (19.3.2)
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By design w1 and w2 are built as explicit linear combinations of v1 and v2, so by the properties of dot
products as in Theorem 2.2.1(iii) we see that to compute the dot products in (19.3.2) we just need to know
dot products vi · vj for 1 ≤ i, j ≤ 3.

Continuing in this way, the only information about v1, . . . ,vk that enters into the Gram–Schmidt
process is knowledge of the dot products vi · vj . But taking i = j amounts to knowledge of each vi · vi =
∥vi∥2 or equivalently the length of each vi, so then for i ̸= j the knowledge of vi · vj is the same as the
knowledge of

vi · vj

∥vi∥∥vj∥
= cos(θij)

for the angle θij between vi and vj . Hence, we are really using a tremendous amount of geometric
information: the lengths of and angles between the vi’s.

If one knows the values of those dot products then one can (in principle) describe the process of com-
puting an orthogonal basis for the span in purely algebraic terms. This would lose the geometric insight
that motivates the process, so it would be rather less illuminating. Nonetheless, the actual mechanics of
the computation are pure algebra with the values of those dot products.

In the mathematical model for modern portfolio pricing mentioned in Example 4.1.9 with n assets, one
is in the above setting with k = n− 2 and a linearly independent collection {v1, . . . ,vk} in Rn about
which nothing is known (these are “random vectors”) except for the values of the dot products vi · vj

(which are fixed by economic data). Those dot products are all that one needs to find an orthogonal
basis {w1, . . . ,wk} for the span V of the vi’s, and hence to compute the projection operation

ProjV = Projw1
+ · · ·+Projwk

. (19.3.3)

This computation of ProjV on a specific n-vector is the entire content of the formula to solve the
modern portfolio pricing problem (as least in its most basic formulation). Hence, Gram–Schmidt
imbues that formula with geometric meaning (and even leads to a short derivation of it based on
(19.3.3) and a 1-line computation in probability theory [KK, Thm. 11(1), Thm. 10]).

19.4. Lagrange multipliers with multiple constraints. An interesting context for the notion of
linear independence is in the formulation of a version of Theorem 12.2.1 on Lagrange multipliers
for the case of multiple constraints. To formulate this, for a function f : Rn → R and r additional
functions g1, . . . , gr : Rn → R consider the problem of finding a maximum or minimum for f(x)
subject to the simultaneous constraints g1(x) = c1, . . . , gr(x) = cr for some scalars c1, . . . , cr. For
r = 1, this is the setup for Theorem 12.2.1. (The case where some of the constraints are inequalities
is a rather different type of problem, so we don’t discuss that here.) The generalization of Theorem
12.2.1 to multiple constraints is as follows.

Theorem 19.4.1 (Lagrange multipliers II). Let a ∈ Rn be a maximum (or a minimum) of f(x) subject
to the combined constraints gi(x) = ci for all i = 1, . . . , r. If the gradients (∇g1)(a), . . . , (∇gr)(a) ∈
Rn are linearly independent then

(∇f)(a) =
r∑

j=1

λj(∇gj)(a) (19.4.1)

for some scalars λ1, . . . , λr (called the “Lagrange multipliers”). In words: (∇f)(a) belongs to the
span of the (∇gj)(a)’s when the latter are linearly independent.

Since this result is often used as a way to find such extrema a (via (19.4.1)), you might think
the result is hard to use because we first need to verify the linear independence assumption on the
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gradients (∇gi)(a) at the point a that we don’t yet know. But in practice this is not a problem because
usually it turns out that the gradients (∇gi)(x) can be checked to be linearly independent for all x in
the constraint region (so one doesn’t need to make a special calculation for the point a that isn’t even
yet known).

Remark 19.4.2. Let’s see that in the case r = 1, Theorem 19.4.1 asserts exactly the same thing as
Theorem 12.2.1. An equivalent way we could state the result with general r is to omit the linear
independence hypothesis on the (∇gi)(a)’s and move its possible failure into the conclusion. That is,
we can state the same result in the following way: either (∇f)(a) belongs to the span of the (∇gi)(a)’s
or the (∇gi)(a)’s are linearly dependent. When phrased in this equivalent way, for r = 1 it becomes
literally the formulation of Theorem 12.2.1 because for a vector v ∈ Rn the condition that it vanishes
is exactly the condition that the collection consisting just of that single vector is linearly dependent
(by definition of “linear dependence” for a single vector; see Definition 19.1.1).

Example 19.4.3. An important application of Lagrange multipliers with three constraints (r = 3 in
Theorem 19.4.1) arises in statistical physics (a subject largely initiated by J.W. Gibbs and Ludwig
Boltzmann in the second half of the 19th century, after some initial work by J.C. Maxwell): determine
in terms of energy the most likely distribution of arrangements of atoms in a macroscopic sample of
matter at a fixed temperature and pressure. One of the Lagrange multipliers will cancel out in the
analysis below, and the other two multipliers will encode information about temperature and pressure.

Consider a sample of matter made up of N smaller portions, with N large. The smaller portions
each have the same size and contain the same types and numbers of atoms, with the atoms in different
microscopic arrangements. Label the possible arrangements of each portion by j = 1, 2, 3, . . . , r and
let Ej and Vj denote the respective energy and volume of the jth arrangement. Denote the number of
times the jth arrangement of a smaller portion occurs in the large sample as nj , so

r∑

j=1

nj = N. (19.4.2)

We are going to regard N as constant and the nj’s as varying subject to the constraint (19.4.2). The
total energyE and volume V of the large sample are each a weighted sum of the energies and volumes
of the arrangements of the smaller portions:

E =
r∑

j=1

njEj, V =
r∑

j=1

njVj, (19.4.3)

where E, V , and the Ej’s and Vj’s are constants.
For a given possibility (n1, n2, . . . , nr) of the number of smaller portions of each type, the number

of ways that the entire collection of N portions can have nj of them be of type j is a purely mathemat-
ical counting problem: in how many ways can a collection of N things be separated into batches of
sizes n1, n2, . . . , nr? (For example, if N = 119 and n1 = 26, n2 = 37, n3 = 19, n4 = 37 then we are
trying to count the number of ways that 119 objects can be separated into 4 batches with respective
sizes 26, 37, 19, and 37.) The answer to this problem is given by a formula from combinatorics,

N !

n1!n2! · · ·nr!
, (19.4.4)

where the notation m! (read as “m factorial”) for an integer m = 1, 2, 3, . . . denotes the product
of all integers from 1 to m (so 1! = 1, 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6, 4! = 1 · 2 · 3 · 4 = 24,
5! = 1·2·3·4·5 = 120, etc.). To determine the most likely distribution of matter is the same as finding
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(n1, . . . , nr) maximizing N !/(n1!n2! · · ·nr!) subject to the three constraints in (19.4.2) and (19.4.3).
The unknown nj’s are varying only through integer values and not a continuous range of options, so
this is not strictly a question for calculus (and m! has only been defined for m = 1, 2, 3, . . . ). But the
integers can be arbitrarily large by making the sample bigger and bigger, so they can be regarded as
closely spaced relative to their values. The deduction of scientific laws is not a strictly mathematical
process, so we’ll rewrite our optimization problem in a way that the equations make sense if we
pretend that the nj’s are continuous variables and then apply multivariable calculus anyway.

To solve our maximization problem with three constraints, we replace factorials with an expression
better suited to calculus. For this purpose, we shall use Stirling’s approximation ln(n!) ≈ n ln(n)−n
for large n. This approximation for large n is useful because we are interested in the limit that N
and the nj’s are all large, corresponding to our macroscopic sample being composed of a very large
number of each type of smaller portion (and the use of statistical ideas to explain properties of matter
is most appropriate in the limit of large numbers of particles). Because ln(x) is an increasing function
of x, maximizing (19.4.4) is the same as maximizing its logarithm. Using the laws of logarithms and
Stirling’s approximation, the logarithm of (19.4.4) is

ln

(
N !

n1!n2! · · ·nr!

)
= ln(N !)−

r∑

j=1

ln(nj!) ≈ N ln(N)−N −
r∑

j=1

(nj ln(nj)− nj)

= N ln(N)−
r∑

j=1

nj ln(nj),

where the final equality uses that −N +
∑r

j=1 nj = 0 by (19.4.2).
The upshot is that the most probable distribution of arrangements of atoms in a macroscopic sam-

ple of matter corresponds to (n1, n2, . . . , nr) maximizing the function N ln(N) − ∑r
j=1 nj ln(nj)

subject to the constraints in (19.4.2) and (19.4.3). The factorials have disappeared, and this formu-
lation makes sense mathematically if we pretend the nj’s are positive continuous variables and not
merely positive integers! In other words, for x = (x1, . . . , xr) with all xi > 0, we want to maximize
f(x) = N ln(N) −∑r

j=1 xj ln(xj) subject to the constraints that the function g1(x) =
∑r

j=1 xj is
equal to N and the functions g2(x) =

∑r
j=1 xjEj and g3(x) =

∑r
j=1 xjVj are equal to E and V

respectively. We compute the gradients

(∇g1)(x) =




1
1
...
1


 , (∇g2)(x) =




E1

E2
...
Er


 , (∇g3)(x) =




V1
V2
...
Vr




and in all applications these are linearly independent. Hence, Theorem 19.4.1 tells us that for any a
solving the optimization problem there are scalars α, β, γ for which

(∇f)(a) = α(∇g1)(a) + β(∇g2)(a) + γ(∇g3)(a) =




α + βE1 + γV1
α + βE2 + γV2

...
α + βEr + γVr


 ,

which is to say
∂f

∂xj
(a) = α + βEj + γVj for all j. Since the values of f are dimensionless, the

multipliers β and γ must be the respective reciprocals of an energy and a volume in order for βEj

and γVj to be dimensionless (as is needed for α + βEj + γVj to appear as it does). By inspection
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∂f/∂xj = (x ln(x))′
∣∣∣
x=xj

= −1 − ln(xj), so ln(aj) = (−1 − α) − βEj − γEj or equivalently

aj = e−1−αe−βEj−γVj . This solves our optimization problem in terms of the Lagrange multipliers α,
β, and γ that we don’t yet know.

Constraint (19.4.2) yields N =
∑r

j=1 aj =
∑r

j=1 e
−1−αe−βEj−γVj = e−1−α

∑r
j=1 e

−βEj−γVj , so
this gives a link between the Lagrange multipliers: if we know β and γ then α is determined. The role
of α will soon cancel out, but what can be said about β and γ? Mathematics has served its purpose,
and scientific input is now needed. In accordance with the “method of the most probable distribution”
in statistical physics, we are primarily interested in the fraction of smaller portions that are in the
jth type of arrangement of atoms within the most probable distribution. By the preceding work, this
fraction is

aj
N

=
e−1−αe−βEj−γVj

e−1−α
∑r

i=1 e
−βEi−γVi

=
e−β(Ej+(γ/β)Vj)

∑r
i=1 e

−β(Ei+(γ/β)Vi)
.

It is shown in thermal physics that β is the reciprocal of an energy proportional to the absolute tem-
perature of the sample: β = 1/(kT ) for a constant k called Boltzmann’s constant (and was introduced
by Max Planck). Additional physical arguments show that γ/β is the pressure p of the macroscopic
sample of matter (assuming no external forces are acting on it).

We conclude that for the atoms in a macroscopic sample at a given temperature T and pressure
p, the frequency of occurrence of the arrangements of type j within the most probable arrangement
decreases exponentially with the energy Ej of that arrangement. Thus, the higher the energy of an
arrangement of atoms needed for a particular chemical reaction to occur, the exponentially less likely
that reaction is to occur in the most probable arrangement at a given temperature and pressure but
increasing the temperature of the sample will increase the likelihood of that reaction (since e−1/x is
increasing in x). This behavior is observed experimentally, and was first explained in 1889 by the
Swedish scientist (and winner of the 1903 Nobel Prize in Chemistry) Svante Arrhenius, who worked
with Boltzmann during part of the year after earning his PhD.

For the exponent −β(Ej + pVj), as the pressure p is raised we see that pVj eventually dominates
over Ej and so for different j’s it is those with smaller volume that become more favorable to occur in
the most probable arrangement. In the case of pure carbon at 1 atmosphere of pressure (as encountered
at the surface of the earth), a less compact form called graphite (pencil “lead”) is more favorable to
occur, but above 16,000 atmospheres of pressure the more compact form of diamonds is favored. The
force of gravity on the overlying rock makes the pressure rise by around 300 atmospheres for each
kilometer of depth below the surface of the earth. Thus, deep enough in the earth diamonds are favored
over graphite.

Coming back to the balancing act between energy and pressure in e−(Ej+pVj)/(kT ), when T is room
temperature and p is 1 atmosphere the configurations of carbon atoms that must occur for diamond to
convert to graphite are too high in energy for such a reaction to happen in any reasonable time. But
another option is to make T very big: for any two distinct j and j′, the ratio of their frequency of
occurrence is

aj/N

aj′/N
=

e−(Ej+pVj)/(kT )

e−(Ej′+pVj′ )/(kT )
= e((Ej′−Ej)+p(Vj′−Vj))/(kT ) = (e1/(kT ))(Ej′−Ej+p(Vj′−Vj)),

which becomes closer to 1 as T grows. Hence, for a fixed pressure and sufficiently large temperature
we can make any two configurations more equally likely to occur (over a time period of reasonable
duration). For example, the conversion of diamond to graphite has been observed at 2800° F on a
time scale of hours. For nitroglycerin, the influence of high temperature on its atomic arrangement
underlies why a lit fuse causes dynamite to behave as it does, as discovered by Alfred Nobel. ■
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Example 19.4.4. A killer app for multiple-constraint Lagrange multipliers is the machine-learning
technique called “support vector machines” that we briefly introduced in Example 12.1.2. With the
concepts of linear independence and hyperplane ((n − 1)-dimensional linear subspace of Rn, as dis-
cussed in Example 19.2.6) now under our belts, we can describe the problem and its solution. We’ll
give the most bare-bones version; contemporary applications require many refinements.

Suppose data is given in the form of n-vectors (e.g., genomic sequences, strings of pixel intensities
encoding an image, etc.), and we want a computer to learn to classify each data point into one of two
types (see Example 12.1.2 for instances of such binary classification tasks). To begin, assume we have
a collection of “training data” t1, . . . , tr ∈ Rn whose classification into each type is already known.
Using this as input, we want a computer to discover a function of the form

ℓ(x) = w1x1 + · · ·+ wnxn − b = w · x− b

(for some “bias” b ∈ R and nonzero vector w ∈ Rn of “weights”) so that the two types of data are
“most reliably” distinguished by the conditions ℓ(x) > 0 and ℓ(x) < 0. For n = 2, this amounts to
a line that “best divides” the training data t1, . . . , tr into the two types (and the two sides of the line
classify new data into one of the two types). How can we find the “best” choice of ℓ; i.e., the “best” b
and w?

The condition ℓ(x) = 0, or equivalently w · x = b (where b may not be 0), is to be visualized as a
parallel translation of a hyperplane (it doesn’t pass through 0 if b ̸= 0) called an “affine hyperplane”
since ℓ is an affine function in the sense of Definition 13.2.1. For n = 3 this is the equation of a plane
in R3 that may not pass through 0, as studied in Chapter 3. The condition ℓ(x) = 0 divides Rn into
two halves, one on each side of this affine hyperplane (for n = 3, this is the situation in Example
3.1.2); ℓ is called a linear classifier.

Let’s call the two classes of data Type I and Type II, and aim to find the “best” function ℓ(x) =
w · x − b so that ℓ(x) > 0 characterizes Type I and ℓ(x) < 0 characterizes Type II. We assume that
there are training vectors of each type, and only consider ℓ for which no training vector lies exactly
on the affine hyperplane ℓ(x) = 0. We also assume that the two types of training vectors really can
be separated by an affine hyperplane. (This assumption can fail, with the data perhaps separated by a
non-linear equation such as a circle as shown on the left in Figure 19.4.1.

FIGURE 19.4.1. Two types of planar data on the left cannot be separated by a line,
but the data can be systematically put into R3 where it is separated by a plane.

Techniques called “kernel methods” discover non-linear separations by applying linear methods in
higher dimensions, illustrated by Figure 19.4.1. We will revisit this with more math in Section 24.5.)
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Define the sign sj = ±1 by the rule sj = 1 when tj is of Type I and sj = −1 when tj is of Type
II. Since ℓ(tj) > 0 when tj is of Type I and ℓ(tj) < 0 when tj is of Type II, sj is the sign of ℓ(tj).
Hence, sjℓ(tj) > 0 for all j. To define the “best” ℓ to fulfill that condition, we want the decision
boundary H = {x ∈ Rn : ℓ(x) = 0} (an affine hyperplane) to be between but as far as possible
from all training vectors: this says the nearest of the tj’s to H should have distance to H as large as
possible; this is illustrated by the red line in Figure 19.4.2 for the case n = 2.

FIGURE 19.4.2. The blue and red lines separate the two types of planar data (the
dotted line does not), with data of each type closest to each line indicated by segments
orthogonal to that line. The red line is “best”: it maximizes the minimal distance.

To find the distance from any x ∈ Rn to H , we use our visual skills from the study of projection
in Chapter 6: for the point p = ProjH(x) in H closest to x, the displacement vector x − p is along
the direction orthogonal to H . Writing an equation for the unknown H in the form w ·x = b where w
and b need to be found, the direction orthogonal to H is that of the line spanned by w (for n = 3, this
is the result in Chapter 3 for obtaining a normal vector to a plane in R3 from its equation). Hence, as
illustrated in Figure 19.4.3, if d is the distance ∥x− p∥ from x to H then x− p is a vector of length
d in the line span(w). In terms of the unit vector ŵ = w/∥w∥ in that line, this says x − p = ±dŵ,
where the sign corresponds to the side of H in which x lies. Note that w · ŵ = (w ·w)/∥w∥ = ∥w∥.

H

d

•

•
ŵ

x

p

FIGURE 19.4.3. Geometric relationship among x, p, w, and d when the direct path
from H to x points in the same direction as w (or equivalently, as ŵ = w/∥w∥)

For x = tj , we conclude tj − pj = sjdjŵ with pj ∈ H , so pj = tj − sjdjŵ. By definition
H = {y ∈ Rn : ℓ(y) = 0}, so

0 = ℓ(pj) = w · pj − b = w · (tj − sjdjŵ)− b = w · tj − sjdj(w · ŵ)− b = w · tj − sjdj∥w∥ − b.

Multiplying throughout by sj = ±1 and using that s2j = 1, solving for dj gives

dj = sj(ŵ · tj − b/∥w∥).
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Our aim is to maximize the minimal value among the distances dj > 0, which is to say we seek w and
b that maximize the minimal distance over all r of the training vectors:

m = min
1≤j≤r

dj = min
1≤j≤r

sj(ŵ · tj − b/∥w∥) > 0.

A positive scaling factor (e.g., 1/∥w∥) preserves the direction of inequalities, so it passes through
“min”: m = (1/∥w∥) min1≤j≤r(sj(w · tj) − b). Thus, for m′ = m∥w∥ = min1≤j≤r sj(w · tj − b),
we seek to maximize m′/∥w∥ (= m). For any collection of numbers c1, . . . , cr, their minimum is the
biggest number M satisfying cj ≥ M for all j. Hence, we seek to maximize m′/∥w∥ subject to the
condition

sj(w · tj − b) ≥ m′ for every j.
Dividing both sides by m′ > 0, this is the same as

sj((w/m
′) · tj − b/m′) ≥ 1 for every j.

But m′/∥w∥ = 1/∥w/m′∥, so since it is harmless to scale ℓ(x) = w · x − b by a positive scaling
factor (such as 1/m′) we can rename w/m′ as w and rename b/m′ as b to turn our problem into that
of maximizing 1/∥w∥ subject to the condition sj(w · tj − b) ≥ 1 for every j. Maximizing 1/∥w∥
is the same as minimizing ∥w∥. That in turn is equivalent to minimizing ∥w∥2, or even (1/2)∥w∥2.
We’ll use the latter because the factor 1/2 will simplify some algebra later.

For any b, define the functions gj,b(w) = sj(w · tj − b) − 1. We have finally arrived at a good
reformulation of our optimization problem, involving many inequality constraints:

among all (w, b) satisfying gj,b(w) ≥ 0 for all j, find (w∗, b∗) minimizing (1/2)∥w∥2. (19.4.5)

For all tj of Type I (so sj = 1), “gj,b(w) ≥ 0” says “b ≤ w · tj − 1”. Hence, b ≤ minsj=1(w · tj)− 1.
For all tj of Type II (so sj = −1), “gj,b(w) ≥ 0” says “b ≥ w · tj + 1”. Hence, we obtain b ≥
maxsj=−1(w · tj) + 1. It can be shown that for the optimum (w∗, b∗), both inequalities

b∗ ≤ min
sj=1

(w∗ · tj)− 1, b∗ ≥ max
sj=−1

(w∗ · tj) + 1 (19.4.6)

are equalities.

[To prove the inequalities in (19.4.6) are equalities when (w∗, b∗) is optimal, the first step is to
show the affine hyperplane H = {w∗ · x = b∗} solving our problem has the same minimal
distance from both types of training data. Suppose otherwise, so the least distance to the Type
I training data differs from that to the Type II training data. Sliding the hyperplane a small
distance parallel to itself (i.e., along its orthogonal line) away from the type of training vectors
with smaller minimal distance makes the minimal distance to the entire collection of training data
slightly larger, contradicting the assumed maximization property of H .

We conclude that among affine hyperplanes {x ∈ Rn : w∗ · x = b∗ + c} that are parallel to
H , the first ones on each side of H to touch training data have the form H± = {w∗ · x = b∗ ± c}
for a common c > 0, with H+ touching Type I and H− touching Type II. The inequalities (19.4.6)
respectively say b∗ ≤ (b∗ + c) − 1 and b∗ ≥ (b∗ − c) + 1, which each say c ≥ 1. If c > 1
then (w∗/c) · x− (b∗/c) fulfills the constraints yet ∥w∗/c∥ = (1/c)∥w∗∥ < ∥w∗∥, contradicting
the minimization property of ∥w∗∥ (or equivalently of (1/2)∥w∗∥2) under the constraints. This
shows c = 1, which says (19.4.6) is a pair of equalities.]

For mI(w
∗) = minsj=1(w

∗ · tj) (minimize over Type I) and mII(w
∗) = maxsj=−1(w

∗ · tj)
(maximize over Type II), we have shown b∗ = mI(w

∗) − 1 and b∗ = mII(w
∗) + 1. Since b∗ is equal
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to both of these expressions, it also equals their average:

b∗ =
mI(w

∗) +mII(w
∗)

2
. (19.4.7)

But what is w∗? A crucial observation is that in practice the number of j’s for which gj,b∗(w∗) = 0 is
small (compared to n). That is, few training vectors of Type I lie on the hyperplane w∗ · x = b∗ + 1
and few of Type II lie on w∗ · x = b∗ − 1 (we saw above that for the optimizing affine hyperplane
w∗ · x = b∗, its “nearest” parallel translates passing through training data of the respective types are
w∗ ·x = b∗±1). So for our optimization problem (19.4.5), equality gj,b(w) = 0 holds at the optimum
(w∗, b∗) for very few j’s; the corresponding tj’s are called support vectors. We don’t yet know which
those will be, but it is useful that such equalities hold for few j’s.

Now we can solve for w∗ by using the following variant of multiple-constraint Langrange multi-
pliers (Theorem 19.4.1) for the situation of inequality constraints:

Theorem 19.4.5 (Karush-Kuhn-Tucker Conditions, special case). Suppose a is a local minimum for
f(x) subject to conditions g1(x) ≥ 0, . . . , gr(x) ≥ 0. For the collection J of indices 1 ≤ j ≤ r with
gj(a) = 0, assume the gradients (∇gj)(a) for j ∈ J are linearly independent. Then

(∇f)(a) =
∑

j∈J
λj(∇gj)(a) (19.4.8)

for scalars {λj : j ∈ J} that are non-negative.

Remark 19.4.6. Since the only j’s for which gj plays a role (i.e., is “active”) in the gradient equation
(19.4.8) at a are those for which gj(a) = 0, the corresponding inequalities gj ≥ 0 are called the “active
constraints” at a. In applications one often knows, as above, that the number of active constraints at
a global minimum is small (compared to the ambient dimension n). Hence, the linear independence
hypothesis on the corresponding gradients in Theorem 19.4.5 is usually satisfied there.

Our situation is f(x) = (1/2)∥x∥2 and gj(x) = sj(x · tj − b) − 1 with b to be determined by
(19.4.7) afterwards. Since (∇f)(w) = w (thanks to the factor 1/2) and (∇gj)(w) = sjtj , (19.4.8) at
a = w∗ says w∗ =

∑
j∈J λjsjtj for some unknown “multipliers” λj ≥ 0 and set of indices J , where

moreover gj(w∗) = 0 for j ∈ J and gj(w∗) > 0 for j ̸∈ J . The linear independence of the support
vectors (in practice) ensures that J and the multipliers λj are uniquely determined.

To go further and formulate an algorithm to find the support vectors and the λj’s, we introduce an
important notion in the theory of optimization that arose in a primordial form in the optional Section
12.3 on shadow prices but which we take up from scratch here: consider the “Lagrangian”

L(w, b,λ) = f(w)−
r∑

i=1

λisi(w · ti − b) (19.4.9)

with w ∈ Rn, b ∈ R, and λ ∈ Rr subject to the conditions si(w · ti − b) ≥ 0 for all i and λi ≥ 0
for all i. The term being subtracted in (19.4.9) is always non-negative due to the constraints, so the
difference is largest when all λi’s vanish: maxλ L(w, b,λ) = L(w, b,0) = f(w). Hence, by varying
through all (w, b) in the constraint region, our problem is the same as “minimizing that maximum”.

In the theory of optimization, a result called Slater’s condition guarantees in our setting that the
value of the “minimized maximum” min(w,b) maxλ L(w, b,λ) over the entire constraint region of
(w, b,λ)’s is equal to an analogous “maximized minimum” maxλmin(w,b) L(w, b,λ). To be precise
about the latter expression, first for each λ it can be shown using techniques from convex analysis that
the minimum min(w,b) L(w, b,λ) is attained at a unique (w∗, b∗) depending on λ and that the gradient
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of L(w, b,λ) as a scalar-valued function of (w, b) ∈ Rn+1 vanishes at (w∗, b∗). By staring at the
definition of L, the contribution to its vanishing gradient from partials with respect to the wi’s yields
w∗ =

∑r
i=1 λisiti (similarly to our earlier calculation of w∗ under a linear independence hypothesis)

and the contribution from the b-partial yields
∑r

i=1 λisi = 0. Plugging this expression for w∗ into
the definition of the Lagrangian and using the vanishing of

∑r
i=1 λisi yields (after some algebraic

manipulations):

L(w∗(λ), b∗(λ),λ) =
r∑

i=1

λi −
1

2

r∑

i,i′=1

sisi′(ti · ti′)λiλi′ . (19.4.10)

Next, using more convex analysis, the Slater condition and the geometry of the original situation
guarantee several things: the “maximized minimum”

max
λ

L(w∗(λ), b∗(λ),λ) = max
λ

min
(w,b)

L(w, b,λ)

is attained at some λ∗, the corresponding (w∗, b∗) is what we sought above, and λ∗ is the correspond-
ing collection of non-negative “multipliers” (one per support vector, so that λ∗ is unique). Hence,
rather than focus on the original minimization problem in (19.4.5), we can instead focus on solving
the “maximized minimum” problem that is maximizing (19.4.10) under some constraints in λ. (This
change in perspective is an instance of the powerful method called duality in linear programming.)

In other words, our task has become to maximize
r∑

i=1

λi −
1

2

r∑

i,i′=1

sisi′(ti · ti′)λiλi′

subject to the constraints λ1, . . . , λr ≥ 0 and
∑r

i=1 λisi = 0. Observe that the original variables
w1, . . . , wn, b have entirely disappeared: we now have an optimization problem solely in terms of the
Lagrange multpliers λ1, . . . , λr; the SMO algorithm solves this problem in practice. The (unique)
solution λ has λi ̸= 0 only for a small collection J of the indices 1 ≤ i ≤ r, and in terms of the
corresponding support vectors tj for j ∈ J the computer computes w∗ =

∑
j∈J λjsjtj and then

computes b∗ in terms of w∗ via (19.4.7). Coming back to the original machine learning task, the
computer has “learned” a linear classifier: it classifies a new data point a as being of Type I or Type II
according as w∗ · a > b∗ or w∗ · a < b∗. We will revisit this situation with more math in further detail
in Section 24.5. ■
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Chapter 19 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
V ⊥ orthogonal complement of a linear subspace V of Rn Definition 19.2.5

Concept Meaning Location in text
linear dependence, linear inde-
pendence

mathematically precise sense in which a given
collection of vectors v1, . . . ,vk in Rn does or
does not have “redundancy” relative to its span

Definition 19.1.1

Gram–Schmidt process algorithm that constructs an orthogonal basis
for a linear subspace of Rn when given a span-
ning set of nonzero vectors

boxes before and after
Figure 19.2.2

orthogonal complement for linear subspace V of Rn, it is the collection
of all n-vectors orthogonal to everything in V

Theorem 19.2.5

Result Meaning Location in text
vectors in a linearly independent col-
lection are nonzero

if v1, . . . ,vk ∈ Rn is a linearly independent
collection then all vi’s must be nonzero

Remark 19.1.4

linear independence and dependence
via vanishing linear combination

for v1, . . . ,vk ∈ Rn, they are linearly indepen-
dent precisely when c1v1+ · · ·+ ckvk = 0 only
for c1 = 0, . . . , ck = 0 (so linearly dependent
precisely when

∑k
j=1 cjvj = 0 for some scalars

c1, . . . , ck at least one of which is nonzero)

Theorem 19.1.5

mutually orthogonal nonzero vectors
in Rn are linearly independent

if w1, . . . ,wk in Rn are nonzero and pairwise
orthogonal then {w1, . . . ,wk} is a linearly in-
dependent collection

Theorem 19.1.5

Gram–Schmidt process yields or-
thogonal basis and detects linear in-
dependence

for nonzero input v1, . . . ,vk, the output
w1, . . . ,wk has its nonzero members an orthog-
onal basis for the same span, so vi’s are lin-
early independent precisely when all wj’s are
nonzero

Theorem 19.2.3

good geometric behavior of orthogo-
nal complement

for linear subspace V of Rn, its orthogonal
complement V ⊥ is a linear subspace satisfying
dimV ⊥ = n− dimV and (V ⊥)⊥ = V

Theorem 19.2.5, Ex-
ample 19.2.6

Skill Location in text
relate linear independence to system of linear equations (not solve!) Examples 19.1.7, 19.1.8

carry out Gram–Schmidt process to make orthogonal (or orthonor-
mal) basis and check if linear independence holds or not

Examples 19.3.1, 19.3.2, 19.3.4–19.3.7

convert vanishing of some wj (Gram–Schmidt output) into explicit
linear dependence among vi’s (Gram–Schmidt input)

end of Examples 19.3.2 and 19.3.5

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 418



19.5. Exercises. (links to exercises in previous and next chapters)

Exercise 19.1. Apply the Gram-Schmidt process to the vectors

v1 =




2
1
−1


 , v2 =




1
−4
−8


 , v3 =




4
−2
8


 ,

and use this to explain why the vi’s are linearly independent. Also use your output to make an orthonormal
basis of R3. (The three vectors w1,w2,w3 that you get from the Gram-Schmidt process should all have
integer entries; as a safety check you may want to verify directly that they are pairwise orthogonal.)

Exercise 19.2. Define the vectors

v1 =




0
−1
2


 , v2 =




3
1
−2


 , v3 =




1
1
−2


 .

(a) Let {w1,w2,w3} be the output of the Gram-Schmidt process applied to V = span(v1,v2,v3).
Check that w3 = 0 whereas w1,w2 are nonzero, so V is 2-dimensional (i.e., a plane in R3

through the origin) with both {w1,w2} and {v1,v2} as bases. Use the definitions of w2 and w3

to write w2 as a linear combination of v1 and v2 with nonzero coefficients and to write w3 as a
linear combination of v1,v2,v3 with nonzero coefficients.

(b) Use the work in the Gram-Schmidt process to express each of v2 and v3 as a linear combination
of w1 and w2, and compute each such linear combination explicitly to confirm that you indeed
recover v2 and v3 respectively.

(c) Use the work in (a) to discover the relation 2v1−v2+3v3 = 0 (this will come from the vanishing
of w3), and find scalars a, b and a′, b′ so that v3 = av1 + bv2 and v1 = a′v2 + b′v3. Verify the
correctness of the scalars by computing each right side to check it recovers the left side.

Exercise 19.3. Consider the following three 4-vectors:

v1 =




0
2
3
−1


 , v2 =




−2
10
7
−1


 , v3 =




10
−6
10
4


 .

(a) Apply the Gram-Schmidt process to verify that the vi’s are linearly independent by finding an
orthogonal basis {w1,w2,w3} for their span V . (The vectors wi that you compute should all
have integer entries and be nonzero vectors; as a safety-check on your work you may wish to
verify by direct computation that they are pairwise orthogonal.)

(b) Use the work in (a) to express each wi as a linear combination of the vj’s, and to then express
each vj as a linear combination of the wi’s. Verify the correctness of your expressions for w3

and v3 by direct computation of the corresponding linear combination.
(c) Give an orthonormal basis of V .

Exercise 19.4. Let V be the span of the nonzero 4-vectors

v1 =




2
0
1
0


 , v2 =




−1
1
2
3




that are orthogonal (this could be the output of the Gram-Schmidt process, for example), so dimV = 2
and hence dimV ⊥ = 4− dimV = 4− 2 = 2. The aim of this exercise is to find an orthogonal basis for
V ⊥ by a systematic method.
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(a) For any linear subspace W in any Rn, define the difference vectors w′
j = ej − ProjW (ej) ∈

W⊥. If a vector x ∈ Rn is written as a linear combination x =
∑n

j=1 cjej , explain why x −
ProjW (x) =

∑
cjw

′
j . Using the fact that ProjW annihilates everything in W⊥, explain why

the vectors w′
1, . . . ,w

′
n span W⊥.

(b) Using the given orthogonal basis {v1,v2} for V , the vectors v′
j = ej − ProjV (ej) for j =

1, 2, 3, 4 span V ⊥ by (a). Compute v′
1 and v′

2, and verify directly that each is orthogonal to v1

and v2 (as a check on your work).
(c) Applying the Gram-Schmidt process to the spanning set for V ⊥ in (b) will yield a basis for V ⊥,

though in this case we can avoid it: explain why v′
1 and v′

2 found in (b) are linearly independent
and why it follows that they are a basis (though not orthogonal) for V ⊥.

Exercise 19.5. Let L be the line in R3 through the origin spanned by v =




2
−1
5


.

(a) For each j = 1, 2, 3, compute v′
j = ej − ProjL(ej) = ej − Projv(ej) (all perpendicular to L,

by general properties of projection), and as a safety check verify your answers are orthogonal to
v.

(b) The vectors in (a) lie in the plane P through the origin perpendicular to L. Verify that each pair
among the vectors v′

j is linearly independent (so each pair constitutes a basis of P ).
(c) Apply Gram-Schmidt to {v′

3,v
′
1} to find an orthogonal basis forL⊥ and make sure the two vectors

in your answer are orthogonal to each other. (Use v′
3 first, as suggested, for cleaner calculating.)

Exercise 19.6. Consider the 5-vectors

v1 =




1
−2
1
0
1



, v2 =




4
1
3
2
−2



, v3 =




−3
3
0
1
1



, v4 =




−12
6
−2
1
6



, v5 =




13
−11
6
0
−1



.

(a) Verify the two linear dependence relations

5v1 − v2 + 4v3 − 2v4 − v5 = 0, 3v1 + 5v2 − 13v3 + 3v4 − 2v5 = 0.

(b) By forming suitable linear combinations of these relations to eliminate v5, express v4 as a linear
combination of v1,v2,v3. Likewise express v5 as a linear combination of v1,v2,v3.

(c) Check the correctness of your answer in (b) by evaluating explicitly the linear combinations that
you obtained and checking that they recover v4 and v5.

Exercise 19.7. Consider the 4-vectors

v1 =




1
−1
3
2


 , v2 =




5
2
0
1


 , v3 =




9
5
−3
0


 , v4 =




−7
−7
9
4


 .

(a) Verify the two linear dependence relations

3v1 + 2v2 − 3v3 − 2v4 = 0, −5v1 + 6v2 − 2v3 + v4 = 0.

(b) By forming suitable linear combinations of these relations to eliminate v4, express v3 as a linear
combination of v1,v2. Likewise express v4 as a linear combination of v1,v2.

(c) Check the correctness of your answer in (b) by evaluating explicitly the linear combinations that
you obtained and checking that they recover v3 and v4.
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Exercise 19.8. This exercise explores how linear dependence and linear independence impact the behavior
of linear combinations. Suppose v1,v2,v3,v4 ∈ Rn are n-vectors that satisfy the linear dependence
relation

−3v1 + 7v2 − 5v3 + 2v4 = 0.

(a) Verify that for any scalars a1, a2, a3, a4 and any scalar t,

(a1 − 3t)v1 + (a2 + 7t)v2 + (a3 − 5t)v3 + (a4 + 2t)v4 = a1v1 + a2v2 + a3v3 + a4v4.

The lesson (using t ̸= 0) is that in the presence of linear dependence, two different choices of
coefficients for the vi’s can yield linear combinations that are equal as vectors.

(b) Using (a), give two different 4-tuples (b1, b2, b3, b4) and (c1, c2, c3, c4) that are both different from
(−2, 4, 3,−5) and yet satisfy

b1v1 + b2v2 + b3v3 + b4v4 = −2v1 + 4v2 + 3v3 − 5v4 = c1v1 + c2v2 + c3v3 + c4v4.

(There are many possible answers; you don’t have to know anything about the vi’s beyond their
linear dependence relation, which is all that is used in (a).)

(c) Now consider four vectors w1,w2,w3,w4 ∈ Rn that are linearly independent. The problem of
“non-unique coefficients” for a linear combination as in (b) never happens for such wi’s! Namely,
verify that the only way there can be an equality of vectors

a1w1 + a2w2 + a3w3 + a4w4 = b1w1 + b2w2 + b3w3 + b4w4

for scalars ai and bj is when they match term-by-term: a1 = b1, . . . , a4 = b4. This is an important
general feature of linear independence, done here for four vectors only for specificity; the method
here is completely general, working for any number of linearly independent n-vectors. (Hint:
subtract the right side from the left side and combine terms.)

Exercise 19.9. Let V be a nonzero linear subspace of Rn, and let B = {v1, . . . ,vk} be a basis of V ; i.e.,
a linearly independent spanning set. The spanning property means that each v ∈ V can be written in the
form a1v1 + · · · + akvk for some scalars a1, . . . , ak, and the linear independence ensures (by Exercise
19.8(c)) that there is only one such collection of scalars for a given v (whereas Exercise 19.8(b) illustrates
how that breaks down very badly in the linearly dependent case).

It is therefore meaningful to call (a1, . . . , ak) the “B-coordinates” of v; they are the coefficients that
arise when v is expressed in terms of the basis B. As shorthand, this k-tuple may be denoted [v]B for

convenience. (For instance, if V = Rn and B = {e1, . . . , en} is the standard basis, then any v =



c1
...
cn




has its B-coordinates [v]B equal to (c1, . . . , ck) since v =
∑n

j=1 cjej .) This is a tremendously important
idea in all scientific fields (“there is no preferred frame of reference”).

(a) Since w1 =

[
5
2

]
and w2 =

[
2
1

]
are nonzero and not scalar multiples of each other, they are

linearly independent and so give a basis B = {w1,w2} of R2. Check that w1 − 2w2 = e1 and
−2w1 + 5w2 = e2, and find [e1]B and [e2]B.

(b) Since
[
a
b

]
= ae1 + be2, use the answer to (a) to write each of the following vectors as a linear

combination of w1 and w2, and so thereby compute the B-coordinates of each:

w =

[
3
−5

]
, w′ =

[
1
2

]
, w′′ =

[
−2
3

]
.
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(c) Returning to V inside Rn, if v,v′ ∈ V are two vectors and they have respective B-coordinates

[v]B = (a1, . . . , ak), [v′]B = (a′1, . . . , a
′
k)

(i.e., v = a1v1 + · · · + akvk and v′ = a′1v1 + · · · + a′kvk), explain why 5v − 7v′ has as its
B-coordinates

(5a1 − 7a′1, . . . , 5ak − 7a′k) = 5(a1, . . . , ak)− 7(a′1, . . . , a
′
k);

there is nothing at all special about 5 and −7; they could be any scalars, and so this is saying that
working in terms of B-coordinates behaves well for forming linear combinations.

Use this to compute the B-coordinates in (b) in another way, using your knowledge of [e1]B
and [e2]B in (a).

Exercise 19.10. This exercise shows that we can create linear transformations Rn → Rm by specifying
them in whatever way we like on the vectors in a chosen basis. Let B = {v1, . . . ,vn} be a basis of Rn.

(a) Using the spanning property for B, explain why if two linear transformations T : Rn → Rm and
T ′ : Rn → Rm agree on the vi’s (i.e., T (v1) = T ′(v1), . . . , T (vn) = T ′(vn)) then T (x) = T ′(x)
for every x ∈ Rn. (Hint: write x as a linear combination of the vi’s and use that the linear T and
T ′ behave well with respect to linear combinations.)

(b) By linear independence for B and Exercise 19.8(c), each x ∈ Rn can be written in exactly one
way as a linear combination x =

∑n
j=1 ajvj . (Here, (a1, . . . , an) = [x]B in the notation of

Exercise 19.9.) Hence, for any fixed m-vectors w1, . . . ,wn ∈ Rm, it is unambiguous to define
the function L : Rn → Rm by the rule

L(x) =
n∑

j=1

ajwj

where (a1, . . . , an) = [x]B. Use Exercise 19.9(c) to show that this L really is linear.

Exercise 19.11. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) If {v1, · · · ,v5} is a linearly independent set then {v1, · · · ,v4} is also linearly independent.
(b) For a 3× 2 matrix A with linearly independent columns, Ax = 0 has a non-zero solution.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 422



20. Matrix transpose, quadratic forms, and orthogonal matrices

The notion of transpose is a further concept in matrix algebra that, among other things, enables us
to work more effectively with dot products. It will also give a way to define and work with a special
class of matrices called symmetric (that arise in many physical and statistical contexts) and to define and
invert a special class of matrices called orthogonal that have concrete geometric meaning (essential for all
3D graphics) and arise in many applications (e.g., solving systems of linear equations in Chapter 22, the
singular value decomposition in Section 27.3, and the fundamental QR algorithm in Appendix H).

By the end of this chapter, you should be able to:

• transpose a matrix and write the dot product as a 1× 1 matrix product involving transposes;
• for a “symmetric” matrix A, directly write out a function of the form q(v) = v⊤Av in terms

of the coordinates of v without carrying out the matrix multiplication;
• invert an orthogonal matrix and know that a product of orthogonal matrices is orthogonal.

20.1. The transpose. The transpose of a matrix swaps the roles of rows and columns. The transpose

of
[
1 2 3
4 5 6

]
is



1 4
2 5
3 6


. Written out more generally:

Definition 20.1.1. Given an m× n matrix

A =




a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn


 ,

its transpose, denoted as A⊤, is defined to be the n×m matrix obtained by turning rows into columns
and turning columns into rows. In other words, the ith row of A⊤ is the ith column of A:

A⊤ =




a11 a21 . . . am1

a12 a22 . . . am2
...

... . . . ...
a1n a2n . . . amn




Equivalently:
ij-entry of A⊤ = ji-entry of A.

The transpose can be visualized as “flipping a matrix across its diagonal”, so unsurprisingly ap-
plying transpose twice returns the original matrix: (A⊤)⊤ = A. Matrix transpose also respects matrix
addition: (A+B)⊤ = A⊤ +B⊤.

Example 20.1.2. Let A =

[
1 3
2 5

]
and B =

[
4 6
7 1

]
, so A⊤ =

[
1 2
3 5

]
and B⊤ =

[
4 7
6 1

]
. That (A⊤)⊤ =

A, (B⊤)⊤ = B, and (A + B)⊤ = A⊤ + B⊤ can be checked directly for this specific A and B (please do
it) and are similarly verified to hold in general (please try). ■

Why should anyone care about the transpose operation? At first sight, it may look artificial or at least
uninteresting. By far the most important reason for interest in the matrix transpose is that it encodes the
surprising way that a linear transformation moves “across” a dot product. Before we state the general
result, we look at a real-world example where the situation would arise.
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Example 20.1.3 (Production matrix). Let’s consider raw materials that are each used in the production of
two types of cars, and the price per unit of each raw material. Suppose the raw materials are steel, plastics,
and aluminum. Let the “quantity vector” q be the 2-vector whose jth entry qj is the number of cars being

made of the jth type; perhaps q =

[
200
50

]
(200 cars of type 1, 50 cars of type 2). Let the “price vector” p

be the 3-vector whose entries are the price in dollars of each unit of material, say p1 is the price of 1 kg of
steel, p2 is the price of 1 kg of plastics, and p3 is the price of 1 kg of aluminum.

To compute the total cost of the amount of these raw materials used to make the specified quantities of
both final products, we need more information: we need to know how much of each raw material is used
in the production of each type of car. This will be encoded in a 2 × 3 matrix: let A be the matrix whose
first row is the number of units of each type of raw material to make the first type of car, and whose second
row is the number of units of each type of raw material to make the second type of car. For instance, if

A =

[
750 120 180
1200 170 240

]

then the first type of car requires 750 kg of steel, 120 kg of plastics, and 180 kg of aluminum, and the
second row is the corresponding amount of each raw material required to make a car of the second type.

The total cost mentioned above can be found in two ways. First, the matrix-vector product

c = Ap =

[
750p1 + 120p2 + 180p3
1200p1 + 170p2 + 240p3

]
∈ R2

has its entries giving the cost of those raw materials used to make a single car of each type (do you agree?).

If we write
[
c1
c2

]
for this “cost vector” then the dot product q · c = q1c1 + q2c2 = 200c1 + 50c2 is the total

cost (why?). In other words, q · (Ap) is the total amount we sought to find.
But there’s another way to proceed: rather than break up the calculation according to each type of car,

we could instead focus on the amount of each type of raw material needed to make the specified quantities
of both types of cars and then take into account the price per unit for each raw material. For this approach,
the transpose A⊤ is more relevant: the matrix-vector product

A⊤q =



750q1 + 1200q2
120q1 + 170q2
180q1 + 240q2


 ∈ R3

has as its first entry the total number of units of steel needs to make the entire production amount of cars
of both types, and similarly with plastics and aluminum for the second and third entries respectively. This
is keeping track of the total raw materials used, so the dot product (A⊤q) · p which brings in the price per
unit of each raw material is also the total amount we sought to find.

Both dot products (A⊤q) ·p and q · (Ap) compute the same thing, so they are equal to each other. The
reason A was used in one approach and A⊤ was used in the other is because the total cost can be broken
down in two ways: the contribution from each type of car or from each type of raw material. ■

Theorem 20.1.4. For any m× n matrix A and vectors x ∈ Rn and y ∈ Rm,

(Ax) · y = x · (A⊤y).

In words: a matrix moves across a dot product via its transpose.
In particular, if A = A⊤ (called symmetric since it says aij = aji) then m = n (i.e., A is a square

matrix) and (Ax) · y = x · (Ay) for all x,y ∈ Rn.
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We prove this in Remark 20.1.10 via how transpose and matrix multiplication interact. Theorem 20.1.4
is an algebraic fact with no visual explanation (even though dot products have visual meaning).

Example 20.1.5 (GPT). For two collections q1, . . . ,qM and k1, . . . ,kN of n-vectors (M ̸= N is
allowed), consider the M × n matrix Q and N × n matrix K whose rows are the qi’s and kj’s
respectively (from top to bottom). The columns of K⊤ are the rows kj of K, so the entries of QK⊤

are exactly the dot products qi ·kj among all of the q’s and k’s. That is the reason such productsQK⊤

arise in the calculation of attention units within transformer models in machine learning (the “T” in
“GPT” stands for “transformer”); this 3Blue1Brown video discusses it further. ■

In Part V we will learn that matrices A that are symmetric (i.e., A⊤ = A; see Definition 20.3.5) satisfy
remarkable properties that hold the key to both the multivariable second derivative test and the entirety of
modern data analysis (image compression, machine learning, and much more). The essential feature of
symmetric matrices is the property “(Ax) · y = x · (Ay)” in the symmetric case of Theorem 20.1.4. It
may seem that this should have no relevance for the study of a general m × n matrix M (such as a big
matrix of data, which is essentially never a square matrix, let alone symmetric), but that is incorrect. The
link to symmetry is that for any M whatsoever, by Theorem 20.1.4 the squared length ∥Mx∥2 is equal
to Mx ·Mx = x · (M⊤M)x and the n × n product matrix M⊤M is always symmetric (see Theorem
20.3.8). The utility of that symmetry rests on a deep theorem about symmetric matrices to be discussed
later (Theorem 24.1.4), building on some further concepts introduced in Section 20.3.

Matrices of the form M⊤M (= NN⊤ for N = M⊤) as in the above discussion are called Gram ma-
trices. This class of symmetric matrices arises in: physical situations (see Examples 24.6.7 and 26.1.10),
data science (the “singular value decomposition” of M in Section 27.3 expresses features of M⊤M ), and
finance and statistics (if we record n measured features of each of m > 1 samples as rows of an m × n
matrix then upon recentering every column – the measurements of each feature – to have average 0 we get
an m× n matrix X , and the n× n product (1/(m− 1))X⊤X is the covariance matrix of the data).

Example 20.1.6. For A and B as in Example 20.1.2, we have the Gram matrices (please check):

AA⊤ =

[
1 3
2 5

] [
1 2
3 5

]
=

[
10 17
17 29

]
, A⊤A =

[
5 13
13 34

]
, B B⊤ =

[
52 34
34 50

]
, B⊤B =

[
65 31
31 37

]
.

So typically for a square matrixM we haveMM⊤ ̸=M⊤M, but the above examples illustrate thatMM⊤

and M⊤M are symmetric, as mentioned above (a feature we will come back to in Section 20.3). ■

Here are the general properties relating matrix transpose and matrix multiplication, the first of which
is reminiscent of what we have seen for matrix inversion (in Examples 18.4.3–18.4.4).

Matrix transpose has the following properties with respect to matrix multiplication:

(T1) It reverses the order of matrix multiplication: (AB)⊤ = B⊤A⊤.
(T2) If an n× n matrix A is invertible then so is A⊤, with (A⊤)−1 = (A−1)⊤.
(T3) It encodes the dot product: if v,w ∈ Rn are viewed as n× 1 (i.e., column) matrices then

v⊤w = the dot product v ·w (considered as a 1× 1 matrix). (20.1.1)

Example 20.1.7. To illustrate property (T1) numerically, for the specific A and B under consideration in
Example 20.1.2 let’s compute (AB)⊤, A⊤B⊤, and B⊤A⊤. Please check for yourself that

(AB)⊤ =

[
25 43
9 17

]
, A⊤B⊤ =

[
16 9
42 26

]
, B⊤A⊤ =

[
25 43
9 17

]
.

Observe that (AB)⊤ ̸= A⊤B⊤ but (AB)⊤ = B⊤A⊤ in this case.
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A justification for (T1) in general, for those who are interested, amounts to a direct comparison of
matrix entries on both sides by using the algebraic formulas defining transpose and matrix multiplication
(the ij-entries are (AB)⊤ij = (AB)ji =

∑
k ajkbki and (B⊤A⊤)ij =

∑
k(B

⊤)ik(A⊤)kj =
∑

k bkiajk, and
these sums are equal since the kth term in each is ajkbki = bkiajk). ■

Example 20.1.8. To illustrate property (T2), consider the matrix A =

[
2 −3
−1 1

]
, so

A⊤ =

[
2 −1
−3 1

]
, A−1 =

[
−1 −3
−1 −2

]
.

Thus,

(A−1)⊤ =

[
−1 −1
−3 −2

]
.

This is indeed inverse to A⊤ (i.e., (A⊤)−1 = (A−1)⊤ in this case), by computing a matrix product:

(A−1)⊤A⊤ =

[
−1 −1
−3 −2

] [
2 −1
−3 1

]
=

[
1 0
0 1

]
= I2.

■

The general fact recorded in (T2) and illustrated in a special case in Example 20.1.8 that A⊤ is in-
vertible with inverse equal to (A−1)⊤ for every invertible n× n matrix A can be seen by applying matrix
transpose to the equality A−1A = In and using the property (T1) of matrix transpose: in symbols,

A⊤(A−1)⊤ = (A−1A)⊤ = I⊤n = In.

If we apply the matrix transpose to the other equality AA−1 = In we likewise get the analogous inversion
relation between the transposes in the opposite order: (A−1)⊤A⊤ = In.

Example 20.1.9. For a numerical example of (T3), consider v =




2
−3
5


 and w =



3
1
4


. Then

v⊤w =
[
2 −3 5

]


3
1
4


 = [6− 3 + 20] = [23]

and v ·w is indeed equal to 23 (by essentially the same numerical calculation). ■

In general, (T3) is just a shorthand way of expressing how we multiply a 1×nmatrix (one row) against
an n× 1 matrix (one column) to get a 1× 1 matrix (a single number):

[
v1 v2 . . . vn

]



w1

w2
...
wn


 = [v1w1 + v2w2 + · · ·+ vnwn] = [v ·w].

Remark 20.1.10. Expressing dot products in terms of matrix algebra as in (T3) may seem too superficial
to be useful, so let us mention two applications. First, combining it with (T1) explains why the surprising
Theorem 20.1.4 holds: for x ∈ Rn and y ∈ Rm we have

x·(A⊤y) = (A⊤y)·x = (A⊤y)⊤x = (y⊤A⊤⊤)x = (y⊤A)x = y⊤(Ax) = y·(Ax) = (Ax)·y. (20.1.2)

Second, in Theorem 20.6.3 (in the optional Section 20.6) we combine (T3) with Theorem 20.1.4 to com-
pute ProjV for a linear subspace V of Rn using a general basis of V (not necessarily orthogonal!).
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Remark 20.1.11. The quantum computing work mentioned in Example 1.4.6 involved random quan-
tum circuits consisting of 53 “qubits”; such circuits were handled mathematically in terms of D-
vectors for D = 253 (in accordance with rules from quantum mechanics for the circuit design). Dis-
regarding some issues involving complex numbers, the quantum computational process was a matrix
operation on D-vector circuits, expressed [Aru2, IV.A, (2)] as a convex combination of matrices

ε a a⊤ + (1− ε)M

where a is a specific unit D-vector (a D × 1 matrix, so a a⊤ is a D × D matrix) encoding “ideal
output”, M is a D ×D matrix encoding errors, and ε is a small positive scalar. (In Example 1.4.6 we
spoke of D2-vectors rather than D ×D matrices because matrix language wasn’t yet available.) The
expression a a⊤ for unit vectors a shows up everywhere in quantum mechanics because it computes
projection to a line: (a a⊤)x = a(a⊤x) = a(a · x) = (a · x)a = Proja(x) (since ∥a∥ = 1).

20.2. Properties of matrix algebra (final round). Here is a final summary:

• (From before) A(B + C) = AB + AC, (A + B)C = AC + BC, A(BC) = (AB)C, and
AIn = A = ImA for an m× n matrix A. But AB ̸= BA in general!

• (From before) Sometimes matrices are invertible. When they are invertible, you can multiply
by their inverse to cancel them: for example, if AB = AC and A is invertible then B = C,
whereas if AB = CA (with invertible A) then you can’t conclude anything.

• (From before) Invertible matrices are always square; i.e., n×n for some n. Inversion reverses
the order of multiplication: (AB)−1 = B−1A−1 if A and B are both invertible.

• (New) The transpose of an m×n matrix is an n×m matrix, and transpose reverses the order
of multiplication: (AB)⊤ = B⊤A⊤.

• (New) If A is invertible so is A⊤, and (A⊤)−1 = (A−1)⊤.
• (New) For v,w ∈ Rn viewed as n×1 matrices, the 1×1 matrix product v⊤w equals [v ·w].

This yields efficient manipulation of dot products of many vectors at once via matrix algebra.

20.3. Symmetric matrices and quadratic forms. Matrix transpose is relevant to multivariable op-
timization via the analogue for multivariable functions f(x1, . . . , xn) of the second-derivative test from
single-variable calculus. As a warm-up to this, let’s first recall that second-derivative test.

In single-variable calculus, at a critical point a of a function f : R → R (i.e., f ′(a) = 0), the second
derivative f ′′(a) controls the behavior of f near a when f ′′(a) ̸= 0. The point is that the degree-2 Taylor
approximation to f at a says that for x near a we have

f(x) ≈ f(a) + f ′(a)(x− a) + f ′′(a)(x− a)2/2! = f(a) + (1/2)f ′′(a)(x− a)2

(since f ′(a) = 0), and so the sign of f ′′(a) determines whether the value of f(x) for x near (but different
from) a is > f(a) (when f ′′(a) > 0) or is < f(a) (when f ′′(a) < 0). This is the second-derivative test.
We have used our knowledge of the behavior of the function ct2 for nonzero c: a concave-up parabola for
c > 0 (with a minimum at t = 0), and a concave-down parabola for c < 0 (with a maximum at t = 0).

What is the analogue for a function f(x1, . . . , xn) of n variables near a point a = (a1, . . . , an) for
which all partial derivatives (∂f/∂xi)(a) vanish? In Chapters 25–26 we will take up this topic (a “multi-
variable second-derivative test”). The role of parabolas ct2 in the single-variable case will be replaced by
functions such as 7t21 − 2t22 + 3t1t2 for n = 2 and 8t21 + 5t22 − t23 + 2t1t2 + 7t1t3 − t2t3 for n = 3.

Definition 20.3.1. A function of the type q(t1, . . . , tn) = c1t
2
1 + · · · + cnt

2
n +

∑
i<j cijtitj is called a

quadratic form (since it involves products of two variables at a time).
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Example 20.3.2. The variance of a (linear) investment portfolio is a quadratic form in the weights of
the assets in the portfolio [Al, (I.2.23)], and various types of energy in multi-part physical systems are
quadratic forms in positions or velocities (see Example 20.3.14). ■

Example 20.3.3. The nicest quadratic form of all is t21 + · · · + t2n that computes the squared-length of
vectors in Rn. If we apply a linear change of coordinates then the formula for squared-length in the new
coordinates is still a quadratic form but typically different from “the sum of squares of coordinates”.

For example, consider describing vectors in R2 using the coordinates (x′, y′) arising from the basis
v′
1 = 2e1+e2 and v′

2 = e1+e2 (corresponding to a linear transformation of the plane distorting distances
and angles). The usual squared-length is expressed in terms of (x′, y′) as

∥x′v′
1 + y′v′

2∥2 = ∥x′(2e1 + e2) + y′(e1 + e2)∥2 = ∥(2x′ + y′)e1 + (x′ + y′)e2∥2

= (2x′ + y′)2 + (x′ + y′)2

= 5x′
2
+ 6x′y′ + 2y′

2
.

This is a quadratic form but looks very different from x′2 + y′2! ■

The geometry of level sets Q(x) = c of quadratic forms Q in n variables is quite rich beyond the case
n = 1 (for n = 2 it is the story of ellipses and hyperbolas). It turns out that the data of a quadratic form in
n variables can be encoded in terms of a special class of n×n matrices called “symmetric”. We shall now
discuss this link (using transposes extensively), the significance of which will be explained in Chapter 26.

Example 20.3.4. Consider the matrices

M =

[
2 −3
−3 1

]
, N =



1 0 7
0 −2 3
7 3 −1


 , N ′ =



1 0 7
0 −2 3
7 2 −1


 .

Check that M⊤ = M , N⊤ = N , and N ′⊤ ̸= N ′. If you think about the process of computing these
transposes, the features of M and N that make them equal to their own transpose but not so for N ′ is a
symmetry with respect to flipping across the diagonal: for each of M and N the (1, 2)-entry is equal to the
(2, 1)-entry, and in general the ij-entry is equal to the ji-entry for all i, j, whereas for N ′ the (2,3)-entry
and the (3,2)-entry are not the same. ■

The property of M and N above has a special name, already mentioned in Theorem 20.1.4:

Definition 20.3.5. A matrix A is called symmetric if A⊤ = A (or in other words, the ij-entry and the
ji-entry coincide for all i, j). Informally, A is “symmetric around its diagonal”.

A symmetric matrix is always square. (For example, if A is a 3 × 5 matrix then A⊤ is a 5 × 3

matrix and so certainly A cannot be equal to A⊤.) As further illustrations,
[
1 3
3 4

]
is symmetric but

[
1 3
5 4

]
isn’t symmetric. Also, for any f : Rn → R and a ∈ Rn, in Example 13.5.6 we saw that the

n× n derivative matrix (D(∇f))(a) is symmetric due to equality of mixed partials.

Example 20.3.6. Suppose M is a symmetric n × n matrix (so M⊤ = M ). Then (M2)⊤ = M⊤M⊤ =
MM =M2, so M2 is symmetric. For a 3× 3 example,

A =




2 13 −3
13 5 7
−3 7 11


 implies A2 =



182 70 52
70 243 73
52 73 179


 ,
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so A2 is also seen to be symmetric by inspection. But this goes further: every power M r is symmetric.
For example, since M3 = MM2 with each of M and M2 symmetric, we have (M3)⊤ = (MM2)⊤ =
(M2)⊤M⊤ = M2M = M3, so M3 is symmetric. Likewise, M4 = MM3 with both M and M3 symmet-
ric, so (M4)⊤ = (MM3)⊤ = (M3)⊤M⊤ =M3M =M4, so M4 is symmetric.

The same kind of argument can be carried out repeatedly to apply to all higher powers of M . For the
specific 3 × 3 matrix A above, it is much easier to check symmetry of A3 and A4 by the preceding short
conceptual argument for all M than to compute them explicitly, but in case you’re curious:

A3 =



1118 3080 516
3080 2636 2294
516 2294 2324


 , A4 =



40728 33546 23882
33546 69278 34446
23882 34446 40074


 .

■

Example 20.3.7. If M is an invertible n × n matrix then M⊤ is always invertible with inverse (M⊤)−1

equal to (M−1)⊤ (as we saw in Section 20.1). In the special case that M is also symmetric, it follows that
the n× n matrix M−1 is also symmetric. In words:

The inverse of a symmetric invertible matrix is always symmetric.

Indeed, (M−1)⊤ = (M⊤)−1 =M−1, verifying the very definition of symmetry for M−1. To see this in an
explicit example, one can check for the symmetric 3× 3 matrix A in Example 20.3.6 that the matrix

B =



−3/1219 82/1219 −1/23
82/1219 −13/2438 1/46
−1/23 1/46 3/46


 .

which is symmetric by inspection is inverse to A (e.g., compute that AB or BA is equal to I3). ■

In Example 20.1.6 we noticed for some specific 2× 2 matrices M that the matrix products M⊤M and
MM⊤ are actually symmetric. This is a general fact:

Theorem 20.3.8. For any m × n matrix M , the n × n matrix M⊤M and the m ×m matrix MM⊤

(called Gram matrices) are symmetric.

Remark 20.3.9. One way to understand the symmetry of M⊤M is to think about what its ij-entry means:
it is the dot product of the ith row of M⊤ and the jth column of M , but the rows of M⊤ are the columns
of M by another name! Thus the ij-entry of M⊤M is the dot product mi ·mj of the ith and jth columns
of M , so symmetry of M⊤M (i.e., insensitivity of its ij-entry to replacing ij with ji) expresses the
commutativity of dot products. The same holds for MM⊤ by using rows instead of columns. (A slicker
explanation of symmetry is the calculation (M⊤M)⊤ =M⊤(M⊤)⊤ =M⊤M , and similarly for MM⊤.)

Yet another class of examples arises from the following result (which is proved in Remark B.3.2):

Proposition 20.3.10. For a linear subspace V of Rn, the n×nmatrix for ProjV : Rn → Rn is symmetric.

Our interest in symmetric matrices is partly due to their role in the following important construction.
Let A be a symmetric n× n square matrix (such as A =M⊤M for any m× n matrix M ). For any vector
v ∈ Rn, the product v⊤Av is the 1 × 1 matrix with entry v · (Av). This construction will arise a lot in
the rest of the book, so we give it a special notation: define the function qA : Rn → R by the rule

qA(v) = v · (Av) = v⊤Av for v ∈ Rn. (20.3.1)

Let’s see what this function looks like in some examples, and then see the relevance of symmetry for A.
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Example 20.3.11. For the symmetric matrices

A =

[
5 −3
−3 7

]
, B =




2 13 −3
13 5 7
−3 7 11




check that

qA

([
x
y

])
=

[
x
y

]⊤
A

[
x
y

]
=
[
x y

]
A

[
x
y

]
= 5x2 + 7y2 − 6xy,

qB





x
y
z




 =



x
y
z




⊤

B



x
y
z


 =

[
x y z

]
B



x
y
z


 = 2x2 + 5y2 + 11z2 + 26xy − 6xz + 14yz. ■

More generally, if A is a symmetric n× n matrix, the function qA(x) for x ∈ Rn always looks like a
sum of terms involving either x2i or xixj , which is to say qA is a quadratic form (as in Definition 20.3.1).

It is worth memorizing how this works out for n = 2, 3, rather than multiplying explicitly each time:
[
x
y

]⊤ [
a u
u b

] [
x
y

]
= ax2 + by2 + 2uxy, (20.3.2)



x
y
z




⊤ 

a u v
u b w
v w c





x
y
z


 = ax2 + by2 + cz2 + 2uxy + 2vxz + 2wyz (20.3.3)

(as you can check by multiplying these out just once). This recovers Example 20.3.11 as special cases.
The general pattern in qA(x) for n×n symmetricA = (cij) is that the diagonal entry cii multiplies

against x2i and the off-diagonal entry cij = cji multiplies against xixj up to an additional factor of 2.
For instance, with n = 3 as shown in (20.3.3), the diagonal entries multiply against the corresponding
squares x2, y2, z2 while the common (1, 2)-entry and (2, 1)-entry is multiplied against xy up to a
factor of 2, the common (1, 3)-entry and (3, 1)-entry is multiplied against xz up to a factor of 2, and
the common (2, 3)-entry and (3, 2)-entry is multiplied against yz up to a factor of 2.

For any symmetric n× n matrix, if we know the diagonal entries cii and the entries cij above the
diagonal (i.e., i < j) then we know the entries below the diagonal due to the symmetry cji = cij; look
at the examplesA andB in Example 20.3.11 to see this explicitly. But a quadratic formQ(x1, . . . , xn)
in n variables is determined by the “same” amount of data: the coefficients of each x2i and of each
xixj for i < j. This allows us to find a unique symmetric A for which Q = qA.

Example 20.3.12. In Example 20.3.11, from qB we can read off B: the coefficients of x2, y2, z2 tell us the
diagonal entries of B, and the coefficients of the cross-terms xy, xz, yz tell us the off-diagonal entries of
B up to dividing by 2. We can carry out this reverse process for any quadratic form Q(x1, . . . , xn).

As an illustration, for Q(x, y, z) = 8x2+5y2−z2+2xy+7xz−yz we seek a symmetric 3×3 matrix
M for which qM = Q. There is exactly one such M , namely:

M =




8 1 7/2
1 5 −1/2
7/2 −1/2 −1


 .

Using (20.3.3), check for yourself that indeed qM = Q.
In general, for any quadratic form Q(x) in n variables x1, . . . , xn, we have Q = qA for the symmetric

n× n matrix A whose ii-entry is the coefficient of x2i in Q and whose ij-entry and ji-entry are each half
the coefficient of xixj inQ. A financial context with this reverse process for big n is in [Al, I.2.4.1-I.2.4.2],
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where: x is a vector of portfolio weights, Q is the variance of the returns, and A is the covariance matrix
of returns. A physical context for n = 3 is in [Feyn1, II, (31.1)-(31.8)], where: x is an electric field, Q is
the energy density of a polarized crystal, and A is the “polarization tensor” of the crystal.

For an example with n = 2, if Q(x, y) = 3x2 + 2y2 − 5xy then what is the symmetric 2× 2 matrix B

for which qB = Q? Check via (20.3.2) that B =

[
3 −5/2

−5/2 2

]
. ■

Remark 20.3.13. In 1968, Lars Onsager got the Nobel Prize in Chemistry for establishing the symmetry
of a matrix L of “kinetic coefficients” for many irreversible thermodynamic processes. The generality of
this Onsager reciprocal relation (or the “4th Law of Thermodynamics”) was unexpected. The value qL(x)
is the rate of entropy change in near-equilibrium situations for x encoding small thermodynamic forces, so
qL(x) ≥ 0 for small x (by the 2nd Law of Thermodynamics) and hence all x (since qL(x) = N2qL(x/N)).

The passage between symmetric matrices and quadratic forms is essentially linguistic so far. Example
20.3.14 below illustrates how quadratic forms are relevant to some mechanical situations, due to ener-
gies such as “(1/2)mv2” (kinetic energy) and “(1/2)kx2” (elastic energy) in physics being replaced by
multivariable quadratic forms for energies of mechanical systems consisting of many parts.

Example 20.3.14. The passage between symmetric matrices and quadratic forms arises in mechanical
engineering for vibrational mechanics (e.g., a moving car or other system involving many spring-like
components), structural analysis for strength of materials (with beams, etc.), and so on. For such a
system consisting of many parts interacting in a linear manner (as is often the case, though some
phenomena such as cracking tend to be non-linear), the differential equations describing the positions
of the parts as functions of time are most efficiently expressed in vector form using several n × n
matrices M,K,C respectively called the mass matrix, the stiffness matrix, and the damping matrix.

Here, n is the number of “degrees of freedom” for vibrational motion in the system (i.e., the
number of “independent” types of motion). It is determined by inspection of the physical structure.
For a system of masses linked among each other via springs that all move along the same line, this n
is the number of masses. The matrices M , K, and C are symmetric: for M this is by its definition,
but for K it is due to a physical reason called the Maxwell-Betti reciprocal work theorem.

Up to a factor of 1/2, the quadratic forms associated with these symmetric matrices encode specific
types of energy in the mechanical system, as we list below. In particular, one could regard each type
of energy as a means of encoding M , K, and C since a symmetric matrix can always be recovered
from the corresponding quadratic form via the pattern as in (20.3.2) and (20.3.3). This goes beyond
mere mathematical language: the ability to express energies in physical settings in terms of specific
symmetric matrices (via quadratic forms) encodes deeper properties of the mechanics once know
more about the remarkable mathematics of symmetric matrices, as we shall see in Example 24.6.4.

To express the link between quadratic forms and energy, we need to use a vector x(t) recording
the positions of all parts at time t as displacements from the rest position (so x(0) = 0); this is an
n-vector where n is the number of “degrees of freedom” for vibrational motion (as mentioned above).
The componentwise derivative x′(t) encodes velocities of all parts at time t.

• The mass matrix M encodes masses of all parts, and (1/2)qM(x′(t)) = (1/2)x′(t)⊤Mx′(t)
is the total kinetic energy (generalizing (1/2)mv2 from physics).

• The stiffness matrixK is a higher-dimensional version of the spring constant k from Hooke’s
Law in physics. It encodes the elastic potential energy in the system, and (1/2)qK(x(t)) =
(1/2)x(t)⊤Kx(t) is the total elastic potential energy of the system (generalizing (1/2)kx2

from physics with springs).
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• For the damping matrixC, (1/2)qC(x′(t)) = (1/2)x′(t)⊤Cx′(t) is the total dissipated energy
(energy lost to do more work in the mechanical system; e.g., via heat loss or other means).

■

20.4. Orthogonal matrices. The significance of the link between symmetric matrices and quadratic
forms for a multivariable second-derivative test (to determine when a critical point is a local extremum)
is discussed in Chapter 26. For now, we use quadratic forms to introduce a special class of matrices
whose geometric meaning is visualized in terms of “rigid motions” of space (as in a flight simulator)
but has practical importance far beyond rigid motions (for solving systems of linear equations, principal
component analysis of data, discrete Fourier transform of signals, etc.). We observed in Example 14.5.2
that the columns of a rotation matrix are orthogonal to one another and have length 1. In fact, the rows are
also orthogonal to one another and have length 1, and we can easily invert any rotation matrix! To explain
this, we’ll use the matrix transpose and the link between symmetric matrices and quadratic forms.

Suppose R is the matrix of a rotation of R3 around the origin. Note that Rv must have the same length
as v for any v ∈ R3, since one is a rotation of the other. That is: ∥Rv∥ = ∥v∥. Squaring gives ∥Rv∥2 =
∥v∥2; expressing this in terms of dot products written as matrix products says v⊤v = (Rv)⊤(Rv). Using
the rules for transpose and matrix multiplication on the right side yields

v⊤v = (v⊤R⊤)(Rv) = v⊤(R⊤R)v = qR⊤R(v) (20.4.1)

for all v ∈ R3, where the quadratic form on the right is associated with the matrix product R⊤R.
For a 3 × 3 matrix R, one way to guarantee that the equality v⊤v = qR⊤R(v) holds for all v is

that R⊤R = I3 (the 3 × 3 identity matrix), since qI3(v) = x2 + y2 + z2. But in fact this is the only
way that (20.4.1) can hold for all v ∈ R3! Indeed, we saw rather concretely in Example 20.3.12 that a
quadratic form in n variables arises from a unique symmetric n × n matrix, so since the quadratic form
Q(x) = ∥x∥2 is equal to qIn(x) for all x ∈ Rn it follows that the only symmetric n×nmatrix A for which
qA(x) = ∥x∥2 for all x ∈ Rn is A = In. Since R⊤R is always symmetric (for any 3 × 3 matrix R), the
condition qR⊤R(v) = ∥v∥2 for all v ∈ R3 forces R⊤R = I3, as claimed.

But the condition R⊤R = In for an n × n matrix R says exactly that R⊤ and R are inverse matrices
(due to the non-obvious Theorem 18.1.8), so we also get RR⊤ = In. This reasoning is very special – as
we saw in Example 20.1.6, in general we do not have M⊤M =MM⊤ for general square matrices M .

Any rotation matrix R on R3 satisfies R⊤R = I3. Equivalently: the inverse of R is its transpose R⊤.

Let us spell out the condition R⊤R = In for a general m × n matrix R. The computation (20.4.1)
still works and shows that this is exactly the condition that ∥Rv∥2 = ∥v∥2 for all v ∈ Rn (equivalently,
TR : Rn → Rm is a length-preserving linear transformation). But the ij-entry ofR⊤R is the dot product of
the ith and jth columns ofR (see Remark 20.3.9), so the fact thatR⊤R = In translates to the condition that
the columns of R are orthonormal (i.e., each column has length 1 and the dot product of any two distinct
columns vanishes). Thus, for m = n the non-obvious consequence noted above that then RR⊤ = In
translates to the rows of R being orthonormal.

The n columns of R are linearly independent m-vectors due to being an orthonormal collection, so
their span in Rm has dimension n and hence n ≤ dimRm = m; i.e, R is a “tall” matrix. To summarize:

Theorem 20.4.1. The following conditions are equivalent, for a general m× n matrix A.

• The associated linear transformation TA : Rn → Rm is length-preserving.
• A⊤A = In.
• (only when m = n) AA⊤ = In.
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• The n columns of A are an orthonormal collection of m-vectors (so n ≤ m; i.e., A is “tall”).
• (only when m = n) The rows of A are an orthonormal collection.

If these hold then TA is also angle-preserving, so when m = n it is a “rigid motion” of Rn fixing 0.

The reason for angle-preservation when the other equivalent conditions hold is that angles are deter-
mined by dot products and lengths (see Definition 2.1.6) yet dot products in turn can be computed in terms
of suitable lengths and vector sums:

x · y =
1

2
((x+ y) · (x+ y)− x · x− y · y) = 1

2
(∥x+ y∥2 − ∥x∥2 − ∥y∥2). (20.4.2)

Hence, since TA respects sums, when it preserves lengths it must preserve dot products and so also angles!

Definition 20.4.2. A square matrix A satisfying the equivalent conditions in Theorem 20.4.1 is called
an orthogonal matrix. (For example, the matrix of any rotation in R3 fixing the origin is an orthogonal
matrix. “Fixing the origin” cannot be dropped: without this, linearity fails.)

You might think such a matrix should be called “orthonormal” rather than “orthogonal”, but the ter-
minology in Definition 20.4.2 has been used in math and its applications throughout natural sciences,
computer science, and data analysis for a very long time and so we are stuck with it: an orthogonal matrix
is a square matrix with orthonormal columns. (There is no special name for a square matrix with merely
pairwise orthogonal columns, and this latter concept turns out to be useless.)

Example 20.4.3. In Section 14.5 the matrix

C =




1/2 −1/
√
2 1/2

1/2 1/
√
2 1/2

−1/
√
2 0 1/

√
2




was made by composing two rotations (see (14.5.2)), and in Example 14.5.2 it was discussed in two ways
(computational and geometric) that its columns are orthonormal. Theorem 20.4.1 says that its rows are
orthonormal: check this by direct computation. Orthonormality of the rows doesn’t have the same vivid
geometric meaning as does orthonormality of the columns. ■

Any “rigid motion” of Rn preserving the origin must be a linear transformation, by the characteriza-
tion of such operations in Section 14.2. Hence, by Theorem 20.4.1 such operations are the effect of an
orthogonal matrix. Orthogonal n× n matrices therefore express “rigid motions” of Rn fixing the origin.

Proposition 20.4.4. It is really easy to invert an orthogonal matrix: A−1 = A⊤. Moreover, if A and B
are orthogonal n× n matrices then both AB and BA are orthogonal.

The first assertion in Proposition 20.4.4 expresses one of the several equivalent characterizations of
orthogonality in the square case (namely: A⊤A = In). To illustrate the second assertion, if A and B are
matrices of rotations on R3 fixing 0 then BA represents the rigid motion obtained by doing first A and
then B, and AB is the other way around. In general, it holds because if TA and TB are length-preserving
then so are TA ◦ TB = TAB and TB ◦ TA = TBA, so AB and BA are orthogonal.

Orthogonal matrices arise in numerical analysis, including efficient matrix algebra withm×nmatrices
for largem and n via the “QR-decomposition” to be discussed in Chapter 22, and underlie the singular
value decomposition of matrices (which will be introduced in Section 27.3 and has tons of applications
throughout computer science, (e.g., data compression), signal processing, and much more).

Example 20.4.5. Returning to the orthogonal 3× 3 matrix C in Example 20.4.3, now we can write down
the inverse of C, since it is just C⊤. Check by direct matrix multiplication that C⊤ really is inverse to C,
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and observe that computing this matrix product amounts to exactly computing dot products among rows
(or among columns) of C. Hence, the equality C⊤C = I3 encodes precisely the orthogonality of C. ■

20.5. Application I: discrete Fourier transform. One of the most important applications of
orthogonal n × n matrices is the discrete Fourier transform (DFT), which is widely used in science
and engineering. The typical context is working with signals (or other continuous data) measured
at regular time intervals. The resulting collection of n measurements are arranged as entries in an
n-vector. What is of most interest is how each entry in the n-vector varies from the adjacent ones.
The idea behind DFT is to identify a useful basis of n-vectors corresponding to oscillations at specific
frequencies (the extreme cases being no oscillation or alternating signs: the n-vectors whose entries
are all 1 or alternating ±1).

When the n-vector of data is expressed as a superposition (i.e., linear combination) of the mag-
ical DFT basis, the coefficients that arise (in effect, the amplitude with which each of the “basis
frequencies” occurs in the data vector) can provide extremely useful information about the signal
that is difficult to perceive by direct inspection of the data n-vector. Some among the endless list of
applications include:

• spectroscopy to extract information about matter from measurements of electromagnetic ra-
diation (e.g., using light waves to determine the structure of molecules and the composition of
stars, MRI to determine spatial layout of human organs without surgery by harnessing density
measurements along lines, EEG’s for measuring heart activity and the design of pacemakers,
and gravity waves to analyze the merging of black holes),

• conversion of visual or audio information into electronic form, including video on portable
electronic devices, smartphone communication, and MP3 files for digital music,

• FM (frequency modulation) and AM (amplitude modulation) radio involve the manipulation
(“modulation”) of frequencies or amplitudes of wave components of audio signals to ensure
that different station’s signals can transmit without interfering with each other,

• denoising an audio signal or smoothing an image.
In many practical applications n is in the hundreds, thousands, or beyond. This poses a significant

problem for the utility of the discrete Fourier transform Fn on n-vectors because from its definition
(given below, as essentially n sums of n products), the time required to compute Fn(x) is on the order
of n2. But in 1965 something amazing happened: the discovery of the fast Fourer Transform (FFT),
an algorithm that computes Fn in time around n log2 n (so basically around the size n of the data,
since log2 n grows very slowly in n). That dramatic speed-up by a factor of around n times as fast has
been essential in everything we take for granted in electronics, and is the reason that FFT is on the list
of “Top Ten Algorithms of the (20th) Century” [DS]. FFT involves a lot of partitioning of the data
into halves, so in practice usually n is a power of 2 (and in particular, it is even).

In physical terms, it turns out that the power or energy of a signal x (which is x · x up to a
scaling factor) is identical to that of its DFT. By the equivalence of the first and second properties in
Theorem 20.4.1, the matrix computing DFT is therefore orthogonal. This has tremendous practical
importance because it allows one to invert the transform very easily since inversion for orthogonal
matrices M is so simple: M−1 = M⊤ (Proposition 20.4.4). For instance, removing high-frequency
terms beyond human hearing range in the transform of an audio signal is a compression of the data
for which inversion of Fn produces the same sound to human ears.

The standard definition of DFT involves complex numbers and so to convey the idea using real
numbers, we’ll give a variant encoding the same information. (There are other real-valued variants,
such as the discrete cosine transform that is widely used for data compression.) In terms of linear
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transformations, for even n > 2 (practical examples have n in the hundreds or more) the discrete
Fourier transform (DFT) Fn : Rn → Rn carries (x0, . . . , xn−1) ∈ Rn to (y0, . . . , yn−1) defined by:

y0 =
1√
n
(x0 + · · ·+ xn−1), yj =

1√
n

n−1∑

k=0

√
2 cos((2πjk)/n)xk for 1 ≤ j < n/2,

yn/2 =
1√
n

n−1∑

k=0

(−1)kxk, yj =
1√
n

n−1∑

k=0

√
2 sin((2πjk/n)xk for n/2 < j ≤ n− 1.

The definition of Fn looks complicated only because it is a real-number reformulation of something
simpler in terms of complex numbers. The fact that Fn is orthogonal is mysterious with the above
formulation but is more transparent in the complex-number version. The ugly factor 1/

√
n ensures

that F⊤
n Fn is the n× n identity matrix In (it would be nIn otherwise).

As an illustration for the special case n = 8, the matrix of F8 is

1√
8




1 1 1 1 1 1 1 1√
2 1 0 −1 −

√
2 −1 0 1√

2 0 −
√
2 0

√
2 0 −

√
2 0√

2 −1 0 1 −
√
2 1 0 −1

1 −1 1 −1 1 −1 1 −1

0 −1
√
2 −1 0 1 −

√
2 1

0 −
√
2 0

√
2 0 −

√
2 0

√
2

0 −1 −
√
2 −1 0 1

√
2 1




20.6. Application II: higher-degree curve fitting and projections via matrix algebra (op-
tional). As an application of the efficiency of the language of matrix algebra (such as matrix inverse
and transpose), we consider the problem of “least-squares” fitting of a curve to data points. Rather
than finding a straight line y = mx + b that best fits n given data points (xi, yi), sometimes one may
seek a higher-degree “best-fit” curve such as a parabola y = ax2 + bx+ c (as occurs for some models
of population growth as well as in physics). Similarly to Sections 7.3 and 10.3 that addressed a best-fit
line, for a best-fit parabola we seek to minimize the “sum of squared error” function

E(a, b, c) =
∑

i

(yi − (ax2i + bxi + c))2.

Let’s express this minimization problem in the geometric language of vectors. Similarly to the
notation in Section 7.3, form the associated vectors

1 =




1
1
...
1


 , Y =




y1
y2
...
yn


 , X =




x1
x2
...
xn


 , X′ =




x21
x22
...
x2n




in Rn. The desired triple (a, b, c) minimizes E(a, b, c) = ∥Y− (aX′+ bX+ c1)∥2, which is the same
as minimizing the distance ∥Y− (aX′+ bX+ c1)∥. In other words, we seek the point aX′+ bX+ c1
in span(X′,X,1) that is as close as possible to Y.

Assume we are not in the degenerate situation where the data points all lie on one or two vertical
lines (i.e., there are at least 3 different values among the xi’s). Then it can be shown that the vectors
X′, X, and 1 are linearly independent (if you are curious about the reason for this, which rests on

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 435



determinants, see Section E.5 beginning at Theorem E.5.5), so our task is an instance of the following
slightly more general problem. For Y ∈ Rn suppose we’re given linearly independent v1, . . . ,vm ∈
Rn and want to find the point Y∗ in span(v1, . . . ,vm) closest to the point Y. (The assumption that
the vi’s are linearly independent is very reasonable: it just says that the span is described without
redundancy.) The motivating situation is the special case m = 3 with v1 = 1, v2 = X, v3 = X′.

In Section 6.2 we discussed the geometric problem of finding the point in a linear subspace W of
Rn closest to a given point x ∈ Rn, where we called it the projection of x onto W , so

Y∗ = Projspan(v1,...,vm) Y.

Computing that projection can be done using an orthogonal basis for the subspace, which we learned
how to build in Chapter 19. Our next aim is to give a new way of computing it via using matrix algebra
involving the transpose; the resulting formula for the projection will not require having an orthogonal
basis (so the given basis v1, . . . ,vm may be used “as is”, whatever it may be).

For the discussion that follows, we will illustrate everything by carrying along an example with
m = 2 and n = 3:

v1 =




3
−2
1


 , v2 =



0
1
4


 , Y =



−2
1
4


 . (20.6.1)

We seek the point Y∗ ∈ R3 in the plane span(v1,v2) closest to Y. Although it can be computed
as the projection of Y into this plane, here we give a different approach to computing Y∗ via matrix
algebra.

We shall first give the general formula (which you should not memorize) and then work out what
it says in the above numerical setting. Let’s arrange the vectors v1, . . . ,vm (that we assumed to be
linearly independent) as the columns of a single n×m matrix V defined as follows:

V =




| | · · · |
v1 v2 · · · vm

| | · · · |


 (20.6.2)

For the running numerical example in (20.6.1), this is the 3× 2 matrix




3 0
−2 1
1 4


.

The transpose matrix V⊤ has its rows given by the columns of V that are just the vi’s, so

V⊤ =




v⊤
1

v⊤
2
...

v⊤
m


 .

For (20.6.1), this says V⊤ =

[
3 −2 1
0 1 4

]
. Since the vi’s are linearly independent, the m × m ma-

trix V⊤V is always invertible due to the following general result (and such invertibility is seen by

inspection in our running numerical example, for which V⊤V is the 2× 2 matrix
[
14 2
2 17

]
):

Theorem 20.6.1. Let A be an n×m matrix. The m×m matrix A⊤A is invertible precisely when the
columns of A are linearly independent.

A proof of Theorem 20.6.1 occupies the second half of Section 20.8.
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Example 20.6.2. To illustrate Theorem 20.6.1 with 3× 2 matrices, consider

A =




1 −3
4 1
−2 2


 , B =




1 −3
4 −12
−2 6


 .

The columns of A are linearly independent (neither is a scalar multiple of the other) but the columns
of B are linearly dependent (the second column is −3 times the first column). By direct calculation

A⊤A =

[
1 4 −2
−3 1 2

]


1 −3
4 1
−2 2


 =

[
21 −3
−3 14

]
,

and this has an inverse:
[
14/285 3/285
3/285 21/285

]
. In contrast,

B⊤B =

[
1 4 −2
−3 −12 6

]


1 −3
4 −12
−2 6


 =

[
21 −63
−63 189

]

is not invertible (ultimately because its columns are linearly dependent: the second is −3 times the

first, so the system of equations (B⊤B)x = 0 has a solution beyond just x = 0, such as x =

[
3
1

]
). ■

Having introduced the ingredients, here is a compact exact formula via matrix algebra to compute
projections and so to solve least-squares problems such as best-fit lines in a new way. (For those who
are interested, a proof of the following result is given in Section 20.8.)

Theorem 20.6.3. For linearly independent v1, . . . ,vm ∈ Rn spanning a subspace W of Rn and
the associated n × m matrix V whose jth column is vj , the projection of any x ∈ Rn into W is
ProjW x = c1v1 + c2v2 + · · · + cmvm where the coefficients c1, . . . , cm are the entries in the m-

vector




c1
c2
...
cm


 = (V⊤V)−1V⊤x.

Remark 20.6.4. As promised, the formula for ProjW x in this result works with any basis of W , not
just an orthogonal basis. In this respect, it is more convenient for some applications than the formula
in Theorem 6.2.1. However, it must be emphasized that the formula in Theorem 6.2.1 is also useful
in many practical applications where the notion of orthogonality plays a central role in mathematical
models (such as in Fourier analysis for signal processing and in quantum mechanics).

Example 20.6.5. In the running numerical example, V⊤V =

[
14 2
2 17

]
and V⊤x =

[
−4
17

]
. Hence,

Theorem 20.6.3 says
[
c1
c2

]
=

[
14 2
2 17

]−1 [−4
17

]
=

[
17/234 −2/234
−2/234 14/234

] [
−4
17

]
=

[
−17/39
41/39

]
. Thus,
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in this example, the projection of x =



−2
1
4


 into the plane span(v1,v2) is

c1v1 + c2v2 =
−17

39
v1 +

41

39
v2 =



−17/13
25/13
49/13


 ≈



−1.3077
1.9231
3.7692


 . ■

The general formula in Theorem 20.6.3 is convenient in the sense that we can easily apply it on a
computer. It may look easier to use than the formula in Theorem 6.2.1 whose applicability requires
first finding an orthogonal basis for the linear subspace, a task we saw how to solve in Chapter 19
using the Gram–Schmidt process. However, this apparent ease is a bit of an illusion because the
Gram–Schmidt process is lurking in the shadows of applying the formula in Theorem 20.6.3 on a
computer: it is hiding in the use of matrix inverses because in many (but not all) settings the way
a computer inverts a matrix rests on a procedure called the QR-decomposition (to be discussed in
Chapter 22) that is a repackaging of the Gram–Schmidt process.

20.7. Application III: reflections. A class of orthogonal transformations is given by the follow-
ing construction. For a nonzero vector v ∈ Rn, the reflection through v is the linear transformation
rv : Rn → Rn defined by

rv(x) = x− 2
(x · v
v · v

)
v = x− 2Projv(x); (20.7.1)

this is linear since Projv is linear.

v⊥

Rv

w = rv(w)

x

rv(x)

v

rv(v)

(0, 0, 0)

FIGURE 20.7.1. Reflection through a nonzero v leaves v⊥ unaffected and its effect on
the line span(v) = Rv is multiplication by −1 (flipping this line around the origin).

The reason for this name is that (20.7.1) has the geometric effect one wants: the subspace v⊥ of
vectors perpendicular to the line Rv = span(v) through v is unaffected by rv (since x · v = 0 for
such x), whereas on the line Rv the effect is negation since

rv(cv) = cv − 2
cv · v
v · v v = cv − 2cv = −cv,

for all c ∈ R. Thus, rv looks like reflection across the (hyper)plane v⊥, as is in Figure 20.7.1.
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(Many applied references say “Householder transformation” rather than “reflection” because the
numerical analyst A.S. Householder did pioneering work [Hou] in the late 1950’s using reflections to
improve numerical stability for computing the QR-decomposition discussed in Chapter 22. Reflec-
tions have been used by pure mathematicians since the early 20th century [Bou, Historical Note].)

Example 20.7.1. If v =




3
−2
2


 then

rv(x, y, z) =



x
y
z


− 2

3x− 2y + 2z

17




3
−2
2


 =



(−x+ 12y − 12z)/17
(12x+ 9y + 8z)/17
(−12x+ 8y + 9z)/17




=



−1/17 12/17 −12/17
12/17 9/17 8/17
−12/17 8/17 9/17





x
y
z


 .

As this shows, even though rv has nice geometric meaning, typically its explicit matrix is a real mess
(except in special cases such as v along the direction of a standard basis vector for Rn). ■

The visualization as “reflection through a (hyper)plane” suggests that rv is length-preserving and
hence orthogonal, and this can be verified in general via a calculation of dot products and in specific
cases via direct work with matrices. For instance, in Example 20.7.1 the orthogonality of the matrix

R =



−1/17 12/17 −12/17
12/17 9/17 8/17
−12/17 8/17 9/17




can be verified by hand (to check the columns are orthonormal) via a tedious calculation. Curiously,
the argument in general with dot products avoiding explicit matrices is cleaner and more efficient:

rv(x) · rv(x) = (x− 2
x · v
v · vv) · (x− 2

x · v
v · vv)

= x · x− 2
(x · v)2
v · v − 2

(x · v)(v · x)
v · v + 4

(x · v)2
(v · v)2 (v · v)

= x · x− 4
(x · v)2
v · v + 4

(x · v)2
(v · v)2 (v · v)

= x · x.
This preservation of the dot product expresses length-preservation, so rv : Rn → Rn is orthogonal.

Remark 20.7.2. In Example 20.7.1, the matrix for rv is not only orthogonal but also symmetric.
We now explain this geometrically as a feature of the matrix associated with any reflection (and an
algebraic proof can be given using Proposition 20.3.10, since rv = In − 2Projv).

The inverse of an orthogonal n × n matrix R is given by its transpose R⊤, and symmetry is the
condition R⊤ = R, so symmetry for an orthogonal matrix R amounts to the condition that the inverse
R−1 = R⊤ of R is equal to R, which is to say R2 = In. In the case of R corresponding to a reflection
rv, the symmetry of R as expressed by the matrix equation R2 = In says exactly that the composition
rv ◦ rv : Rn → Rn carries each x to itself. In other words, symmetry of the matrix for rv says exactly
that if we reflect twice through the same (hyper)plane then we wind up exactly where we began.
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v⊥

Rv

w = rv(w) = (rv ◦ rv)(w)

x = (rv ◦ rv)(x)

rv(x)

v = (rv ◦ rv)(v)

rv(v)

(0, 0, 0)

FIGURE 20.7.2. Reflecting through v twice brings x back to itself since rv(x) reflects to x

This is a plausible-sounding property in general due to the visualization for n = 3 as in Figure
20.7.2, and in general (for any n) it can be verified by a direct calculation using the linearity of rv:

rv(rv(x)) = rv

(
x− 2

(x · v
v · v

)
v
)
= rv(x)− 2

(x · v
v · v

)
rv(v) = rv(x) + 2

(x · v
v · v

)
v = x,

where the third equality uses “rv(v) = −v” and the final one expresses the definition of rv(x).

Remark 20.7.3. The fact that rotations around the origin in R3 are given by orthogonal 3×3 matrices
can be refined in a crucial way. All rotations have the additional property of being “orientation-
preserving” (which loosely means that they preserve one’s sense of how the directions up/down,
left/right, and forward/backward relate to each other, and cannot ever convert a physical object into
its mirror image). Not only is every rotation around the origin given by an orientation-preserving
orthogonal 3 × 3 matrix, but it works in reverse: the effect on R3 of every orientation-preserving
orthogonal 3 × 3 matrix is always a rotation around some line through the origin! The equivalence
between “rotation around the origin in R3” and “orientation-preserving orthogonal 3 × 3 matrix”,
and the further remarkable fact that all such motions are rotations around a line through the origin, is
proved in Remark E.5.3. This is a beautiful link between the geometry of space and the algebra of
matrices.

An interesting consequence is the non-obvious fact that the composition of rotations around two
lines through the origin in R3 is a rotation around a line through the origin. Indeed, the composition
is certainly orientation-preserving, and it is given by an orthogonal matrix (since a product of any two
orthogonal matrices is an orthogonal matrix), so it is a rotation around a line through the origin by the
results just mentioned.

20.8. Explanation of the matrix algebra formula for a projection. Where does Theorem 20.6.3
come from? We shall give a general argument, illustrating each step in terms of what it says for the
special case in (20.6.1) (with Y there in the role of x in Theorem 20.6.3). This rests on Theorem
20.6.1, so we also prove that.

Let x∗ denote ProjWx. A key property of ProjW , established in Section 6.2, is that x∗ − x is
perpendicular to every vector in W = span(v1, . . . ,vm). The perpendicularity of x∗ − x to each vi
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amounts to the conditions vi · (x∗ − x) = 0 for every i, which can be equivalently expressed as

vi · x∗ = vi · x for every i. (20.8.1)

In the setting of (20.6.1), this amounts to the two conditions


3
−2
1


 · x∗ =




3
−2
1


 ·



−2
1
4


 ,



0
1
4


 · x∗ =



0
1
4


 ·



−2
1
4


 . (20.8.2)

Now we make contact with the features of transpose by rewriting the collection of equations
(20.8.1) in matrix notation, using the relationship (20.1.1) between dot products and transposes: the
conditions in (20.8.1) say exactly v⊤

i x
∗ = v⊤

i x for every i. Assembling these conditions into the
entries of a vector, it is the same to assert the single vector equation



v⊤
1 x

∗

v⊤
2 x

∗

. . .
v⊤
mx

∗


 =




v⊤
1 x

v⊤
2 x
. . .
v⊤
mx


 (20.8.3)

in Rm. In (20.6.1), this is an equality of 2-vectors:
[
[3 − 2 1]x∗

[0 1 4]x∗

]
=

[
[3 − 2 1]x
[0 1 4]x

]
.

We shall now use V to rewrite (20.8.3) in a more useful form. Recall that for any column vector
b viewed as an m × 1 matrix and for any n × m matrix A, the matrix product Ab is the same as a
matrix-vector product. In other words, Ab is an n×1 matrix whose entries are the dot products of the
rows of A against the vector b. Applying this observation with b equal to either x or x∗, the equality
of vectors in (20.8.3) amounts to precisely the matrix equation

V⊤x∗ = V⊤x (20.8.4)

since the rows of V⊤ are precisely the v⊤
i ’s (i.e., the vi’s as rows). In the running numerical example,

this becomes an explicit condition on x∗ that is just a repackaging of (20.8.2):
[
3 −2 1
0 1 4

]
x∗ =

[
3 −2 1
0 1 4

]

−2
1
4


 . (20.8.5)

The unknown x∗ belongs to span(v1, . . . ,vm), so x∗ = c1v1 + c2v2 + · · · + cmvm for some

coefficients c1, . . . , cm that we do not yet know. In matrix language, this says x∗ = V ·



c1
...
cm


 .

Plugging that into the left side of (20.8.4) yields

V⊤V



c1
...
cm


 = V⊤x. (20.8.6)

In the running numerical example, this says:
[
3 −2 1
0 1 4

]


3 0
−2 1
1 4



[
c1
c2

]
=

[
3 −2 1
0 1 4

]

−2
1
4


 ,
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or equivalently (upon multiplying out the numerical matrix products)[
14 2
2 17

] [
c1
c2

]
=

[
−4
17

]
. (20.8.7)

Provided that the matrix V⊤V is invertible, we can multiply both sides of (20.8.6) by (V⊤V)−1

on the left to arrive at the solution 

c1
...
cm


 = (V⊤V)−1V⊤x. (20.8.8)

as asserted in Theorem 20.6.3. So it remains to confirm that V⊤V is invertible, and since the columns
v1, . . . ,vm of V are assumed to be linearly independent such invertibility is exactly the content of
Theorem 20.6.1. So to complete the proof of Theorem 20.6.3, it remains to prove Theorem 20.6.1.

Proof of Theorem 20.6.1. Letting A now be as in Theorem 20.6.1, with jth column denoted as
aj ∈ Rn, the easier part is to show that if the columns aj are linearly dependent then A⊤A is not
invertible. Say we have a linear dependence relation

∑
tjaj = 0 for some t = (t1, . . . , tm) ∈ Rm

different from 0 (i.e., some tj is nonzero). But At =
∑
tjaj and this vanishes by how we chose the

tj’s, so (A⊤A)t = A⊤(At) = A⊤0 = 0. Hence, A⊤A takes the different inputs t and 0 to the same
output 0, so A⊤A is not invertible.

Now suppose the columns aj of A are linearly independent. We want to show that A⊤A is invert-
ible, or in other words that A⊤Ax = b has a unique solution x ∈ Rm for any b ∈ Rm. First we check
uniqueness: if A⊤Ax′ = b = A⊤Ax for some x,x′ ∈ Rm then we claim that x′ = x. We have

A⊤A(x′ − x) = A⊤Ax′ − A⊤Ax = b− b = 0,

and our aim is to show that x′ = x or equivalently that x′−x = 0. Thus, the uniqueness aspect comes
down to showing that if A⊤Av = 0 then v = 0. For this we shall use the relationship of transpose
with dot products!

The vanishing of A⊤Av gives (with help from multiplicative properties of transpose) that

0 = v · (A⊤Av) = v⊤(A⊤Av) = (v⊤A⊤)(Av) = (Av)⊤(Av) = Av · Av = ∥Av∥2,
so Av = 0. But if v1, . . . , vn are the entries in v ∈ Rm then Av =

∑
vjaj , so the vanishing of Av

says
∑
vjaj = 0. By hypothesis the aj’s are linearly independent, so this forces all vj’s to vanish,

and hence v = 0 as desired.
For the m×m matrix M = A⊤A we have shown that the linear system Mx = b of m equations

in m unknowns has at most one solution for any given b ∈ Rm. We need to show that it actually has
a solution. The key observation is that the matrix-vector product Mx ∈ Rm is the linear combination
of the m columns of M in which the ith column is multiplied against the ith entry of x: if we write
v1, . . . ,vm for the respective columns of M then we are saying that Mx =

∑
xivi. This assertion

for a general m×m matrix M is just a matter of the explicit definition of matrix-vector products, and
is perhaps most readily grasped by working it out for m = 2 (the case of general m being the same
except for requiring more notation, and is illustrated in an example with m = 3 in (21.2.3)):[

a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
= x

[
a
c

]
+ y

[
b
d

]
.

Hence, we can reformulate our task in geometric terms: we want to show that the columns v1, . . . ,vm

span Rm. Letting V denote the span of these columns, by Theorem 4.2.8 applied to the containment
of V in Rm we have dimV ≤ m with equality precisely when V = Rm.
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The fact that Mx = 0 has as its only solution x = 0 is precisely the assertion that the only scalars
x1, . . . , xm for which

∑
xivi = 0 are x1 = 0, . . . , xm = 0. In other words, the vi’s are linearly

independent. But there are m of these vi’s, so their span has dimension m by Theorem 19.2.3. □
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Chapter 20 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
A⊤ for m× n matrix A transpose of A (it is an n×m matrix) Definition 20.1.1
qA(x) for n×n symmet-
ric matrix A

for x ∈ Rn, qA(x) = x⊤Ax ∈ R (20.3.1)

Concept Meaning Location in text
transpose of m× n matrix A the n×m matrix obtained by flipping A across

its diagonal
Definition 20.1.1

quadratic form in n variables expression in x1, . . . , xn involving sum of terms
cijxixj (with i ≤ j)

Definition 20.3.1, Exam-
ple 20.3.3

symmetric n× n matrix equal ij-entry and ji-entry for all i, j Definition 20.3.5
orthogonal n× n matrix A TA : Rn → Rn is length-preserving (same as

columns being orthonormal)
Definition 20.4.2

Result Meaning Location in text
transpose expresses how m × n matrix A
moves across a dot product

(Ax) · y = x · (A⊤y) for x ∈ Rn,
y ∈ Rm

Theorem 20.1.4

powers and inverse of symmetric n×nma-
trix A are symmetric

Ar symmetric for all r ≥ 1, A−1

symmetric if A invertible
Exs. 20.3.6, 20.3.7

Gram matrices and projection matrices are
symmetric

M⊤M symmetric for m × n matrix
M , for linear subspace V of Rn the
n× n matrix for ProjV : Rn → Rn

is symmetric

Thm. 20.3.8,
Prop. 20.3.10

characterizations of orthogonal n× n ma-
trices

list of equivalent geometric and alge-
braic conditions that define orthogo-
nality for an n× n matrix

Theorem 20.4.1

relation of orthogonal matrices to inver-
sion and products

A−1 is orthogonal if A is, AB or-
thogonal if A and B are

Proposition 20.4.4

Skill Location in text
relate transpose to multiplication (flips order!) and inversion, and
rewrite dot product as matrix product via transpose

box containing (20.1.1), Examples
20.1.7–20.1.9

determine by inspection if a matrix is symmetric Example 20.3.4

go both ways through the dictionary between n-variable quadratic
forms and n× n symmetric matrices (especially with n = 2, 3)

Example 20.3.11–20.3.12 and box con-
taining (20.3.2) and (20.3.3)

determine by inspection of columns if a square matrix is orthogonal orthonormality criterion in Theorem
20.4.1
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20.9. Exercises. (links to exercises in previous and next chapters)

Exercise 20.1. Consider the following

A =




2 1 −1
2 1 1
3 4 −1
2 −2 1


 x =



1
2
2


 .

Calculate:

(a) x⊤x
(b) xx⊤

(c) ∥Ax∥2
(d) x⊤A⊤Ax.

Exercise 20.2. For the following either find the quadratic form QA associated with the given symmetric
matrix A or find the symmetric matrix A associated with the given quadratic form Q.

(a) A =



1 2 2
2 2 1
2 1 3




(b) A =




1 0 0 2
0 0 0 0
0 0 0 1
2 0 1 1




(c) Q(x, y, z) = x2 + y2 + 3z2 + 2xy + 6xz
(d) Q(x1, x2, x3, x4) = x21 − x24 + x2x3

Exercise 20.3. For the following matrices in parts (a), (b), (c), decide if they are orthogonal. If they are,
find their inverse.

(a) A = (1/
√
5)

[
1 2
−2 1

]
=

[
1/
√
5 2/

√
5

−2/
√
5 1/

√
5

]

(b) B =




1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 1 1




(c) The matrix B′ which is given by dividing each column of B in (b) by its length.
(d) Use the matrix B′ to calculate the inverse of B.

Exercise 20.4. Let x = (1/3)



2
2
1


 and y = (1/

√
3)



1
1
1


 be two unit vectors. In this exercise, we will

calculate a rigid motion (i.e., an orthogonal 3 × 3 matrix M ) that carries x over to y (i.e., Mx = y); the
method we use can be adapted to the n× n case with any pair of unit n-vectors for any n.

(a) Let e1 =



1
0
0


 . Find an orthogonal matrix A with Ae1 = x. There are many possible answers.

(Hint: try a matrix whose first column is x, second column has the form



a
−a
0


 [automatically
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orthogonal to x, but also needs to be a unit vector], and third column has the form



b
b
c


 [auto-

matically orthogonal to the second column], where a, b, c need to be chosen to make the matrix
orthogonal.)

(b) Find an orthogonal matrix B with Bx = e1. (Hint: use (a))
(c) Find an orthogonal matrix C with Ce1 = y and use it to find an orthogonal matrix M with

Mx = y. Hint: Use (b) to pass from x to y by going via e1, expressing M as a product of two
explicit matrices (there is no need to carry out the matrix multiplication).

(By arguing more geometrically, one can describe answers M to (c) in a more vivid manner, but turning
that into an explicit 3× 3 matrix requires more work.)

Exercise 20.5. Apply the results of Section 20.2 to carry out the following:

(a) If A is any n × n matrix (not necessarily symmetric), show that 1
2

(
A+ A⊤) is a symmetric

matrix.
(b) If B is any m × n matrix, define q : Rn → R by q(x) = ∥Bx∥2. Find an n × n matrix M in

terms of B for which q(x) = x⊤Mx. Show that M is symmetric. (Note: this says that q is the
quadratic form associated with M .)

Exercise 20.6. In this exercise, we will find a 2-variable quadratic form giving the equation for a specific
“tilted” ellipse in R2, by applying a suitable linear transformation to a circle. (By the end of the course we
will see the huge significance of going in the other direction — i.e., from an equation of quadratic form to
determining its “shape” — in the context of optimization.)

Let E be a non-circular ellipse centered at the origin whose four “vertices” (i.e., endpoints of the two

axes) are given by the vectors ±w1 and ±w2. We shall work with w1 =

[
1
1

]
and w2 =

[
−2
2

]
as in Figure

20.9.1 below.

x

y

w2

w1

−w2

−w1

FIGURE 20.9.1. The ellipse E.

(a) Find a linear transformation T : R2 → R2 that transforms the standard basis vectors e1, e2 into
w1,w2 respectively; i.e., T (e1) = w1 and T (e2) = w2. Concretely, we seek a 2 × 2 matrix M

satisfying M
[
1
0

]
= w1 and M

[
0
1

]
= w2.

(b) Let C be the unit circle in R2 centered at the origin. Explain why T (C) = E; i.e., applying T
to the points of C yields exactly the points of E. (Hint: Find a rotation matrix R and a matrix
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S =

[
c1 0
0 c2

]
scaling in the coordinate directions for which M = RS; geometrically, T is a

composition of the stretching/shrinking via S followed by a rotation).
(c) Part (b) implies that applying M−1 to E yields C. But C consists of 2-vectors v satisfying

v · v = 1, so E consists of 2-vectors w =

[
x
y

]
for which (M−1w) · (M−1w) = 1. Use this to

write an equation for E in the form ax2 + bxy + cy2 = d, where a, b, c, d are (nonzero) integers.

Exercise 20.7. Consider the quadratic form Q(x, y, z) = 2x2 + 3y2 + (1/4)z2. Our goal is to sketch the
level set S = {Q(x, y, z) = 1} in R3.

(a) Calculate the points where S meets each of the coordinate lines: the x-axis, the y-axis, and the
z-axis.

(b) Sketch the curve along which S meets each of the coordinate planes: the xy-plane (i.e., z = 0),
the xz-plane (i.e., y = 0), and the yz-plane (i.e., x = 0).

(c) Sketch the surface S (which looks like a sphere that has been stretched in some directions and
squashed in others, since the analogous equation x2 + y2 + z2 = 1 given by setting all three
coefficients to be 1 is a sphere).

Exercise 20.8. Consider the quadratic form Q(x, y, z) = x2 + y2 − z2. In this exercise we investigate the
level sets S+ = {Q(x, y, z) = 1} and S− = {Q(x, y, z) = −1}, which turn out to differ from each other
in some crucial ways (so the seemingly innocuous change of sign on the right side is not as innocuous as
it may seem to be).

(a) Describe where S+ meets each of the coordinate planes, and draw a picture of each.
(b) Describe where S+ meets each horizontal plane z = a for each scalar a, and use this to explain

why S+ is carried into itself under any rotation around the z-axis.
(c) Use (b) to explain why S+ is obtained by rotating around the z-axis the curve where S+ meets the

half-plane x ≥ 0 in the xz-plane y = 0. Determine that curve and use it to describe and sketch
S+.

(d) Do the analogue of (b) for S−.
(e) Do the analogue of (c) for S−, and explain why S− consists of “two connected parts” (whereas

S+ consists of just one such part). Hint: visualize where the xz-plane meets S− and then think
about rotation around the z-axis.

Exercise 20.9. A quadratic form q : Rn → R is called positive-definite if q(x) > 0 for all x ̸= 0,
negative-definite if q(x) < 0 for all x ̸= 0, and indefinite if q takes on both positive and negative values.
For each of the following quadratic forms, determine which of the preceding three types it is.

(a) q(x, y, z) = 3x2 + 7y2 + 2z2

(b) q(x, y, z) = 5x2 − y2 + 11z2

(c) q(x, y) = −17x2 − 23y2

(d) q(x, y) = 8xy

Exercise 20.10. A quadratic form q : Rn → R is called positive-definite if q(x) > 0 for all x ̸= 0,
negative-definite if q(x) < 0 for all x ̸= 0, and indefinite if q takes on both positive and negative values.
For each of the following quadratic forms, determine which of the preceding three types it is.

(a) q(x, y, z) = −2x2 − y2 − 15z2

(b) q(x, y, z) = −19x2 + 6y2 − 237z2

(c) q(x, y) = −3xy
(d) q(x, y, z) = x2 + 7y2 + 10z2
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Exercise 20.11. Consider the plane P = span





1
0
2


 ,



1
2
0




 . Let x = e1 =



1
0
0


 .

(a) Calculate ProjP (x) by using the Gram–Schmidt process to find an orthogonal basis for P .
(b) Calculate ProjP (x) by finding a (nonzero) normal vector to P and then subtracting the projection

onto that.
(c) By applying the method from (b) to the other vectors e2 and e3 in the standard basis for R3,

compute the 3× 3 matrix A representing ProjP : R3 → R3.
(d) Calculate ProjP (x) by using the self-contained recipe in Theorem 20.6.3 (illustrated in Example

20.6.5).

Exercise 20.12. For nonzero n-vector v, the associated Householder matrix is the n× n matrix

Hv = In −
2

∥v∥2vv
⊤

where ∥v∥2 = v · v is the dot product of v with itself. This exercise explores some properties of these
matrices; they arise in a variety of important algorithms in applied linear algebra (e.g., in Chapter 22 you’ll
learn about the very important “QR-decomposition” of general matrices and how to compute it using the
Gram–Schmidt process, but a more numerically stable method for computing QR-decompositions rests
on extensive use of Householder matrices).

(a) Show that Hv is symmetric; i.e. H⊤
v = Hv. (Hint: don’t try to write out Hv explicitly; work with

its symbolic definition above in terms of matrix multiplication and transposes.)
(b) Show that Hv is orthogonal; i.e. H⊤

vHv = In. (Hint: to compute the left side, use (15.3.1) at the
end of Example 15.3.3, and recall that the 1× 1 matrix v⊤v is equal to v · v = ∥v∥2.)

(c) Show that Hv(cv) = −cv for any scalar c.
(d) Show that for any u perpendicular to v (i.e., u·v = 0),Hv(u) = u. (Combining this with part (c)

for c = 1, it can be deduced that Hv describes “reflection in the hyperplane in Rn perpendicular
to v” in the sense of the optional Section 20.7; for n = 3 this is reflection across the plane in R3

through 0 with normal vector v.)
(e) If n is a nonzero 3-vector normal to a plane P in R3 through 0, then Hn is “reflection” across

P : by (c) it negates the line span(n) perpendicular to P and by (d) it has no effect on P . Using
this general fact, compute the 3 × 3 matrix H that describes the “reflection” across the plane
2x− y + 2z = 0 in R3.

[As a safety check on your work, your H should be symmetric and HH⊤ should equal I3; we
aren’t asking you to include those verifications in your submitted work, but we encourage you
to check it holds for your answer. Remember that orthogonality amounts to the columns being
mutually perpendicular unit vectors.]

Exercise 20.13. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):

(a) Some 51× 52 matrix A is symmetric.
(b) If A is an orthogonal n× n matrix then A−1 is also orthogonal.
(c) If P is the n × n matrix representing projection to a nonzero linear subspace V of Rn with

dim(V ) < n then P is an orthogonal matrix.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 448



21. Linear systems, column space, and null space

At several points in this book, we have encountered systems of simultaneous linear equations, which
are often referred to as linear systems. To be completely specific, a “system of simultaneous linear equa-
tions” is a collection of linear equations in some unknowns x1, . . . , xn. For example, we might seek all
x, y, z ∈ R that satisfy all three equations

2x+ y − z = 1, x+ 2y + z = 4, −x− y + z = 2.

We have learned to express this more succinctly in matrix notation: find all



x
y
z


 ∈ R3 for which




2 1 −1
1 2 1
−1 −1 1





x
y
z


 =



1
4
2


 .

A general linear system (of m equations in n unknowns) takes the form

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm,

where the aij’s and bi’s are given constants; this can also be written in matrix form Ax = b with an m×n
matrix A, an m-vector b, and an unknown vector x ∈ Rn.

It would not be a stretch to say that the study of linear systems is the main problem of linear algebra.
Of course, as you have already seen, linear algebra goes in many directions and has a huge variety of
applications, many of which do not look like they involve linear systems. However, a closer inspection
shows that at the heart of all of these situations is some linear system. Many textbooks take linear systems
as the primary perspective for developing linear algebra. This book has chosen a different and broader
path, but it is important to recognize the centrality of linear systems.

The use of matrix notation to express a linear system is not only substantially more concise than writing
out the equations in full, but also suggests algebraic manipulations that might not occur to us otherwise.
For example, if the matrix A associated with some linear system is known to be invertible (so m = n)
then we learned in Section 18.3 that this system of equations can be solved by multiplying both sides by
the inverse matrix, leading to the unique solution x = A−1b. This holds for the linear system in (x, y, z)

at the start above, which has the unique solution



x
y
z


 =




2 1 −1
1 2 1
−1 −1 1




−1 

1
4
2


.

There remains the fundamental issue (when m = n) of determining when a given n × n matrix does
have an inverse, and if so then actually computing the inverse matrix. (For the case above with n = 3,
upon computing the 3 × 3 inverse matrix one obtains the unique solution (x, y, z) = (3,−4/3, 11/3).)
Furthermore, for many linear systems that arise in practice, the matrix A is not invertible. This happens
whenever A is not a square matrix; i.e., whenever m ̸= n. What do we do in such cases? Our goal in this
chapter is to develop some of the tools needed to answer questions such as:

(i) When does a given linear system Ax = b of m equations in n unknowns have a solution?
(ii) If there is a solution, is there more than one? How do we describe the set of all solutions?

(iii) Are there sometimes ways to “easily” determine if there is a solution or not?
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Ideally we would like practical algorithmic answers to these questions. In other words, we seek systematic
and efficiently computable algorithms, even when m and n are very large, that not only answer these
questions but also give us the answer in a useful way. We are going to answer (i) and partially answer (ii)
in this chapter, and say more about (ii) and give an approach to (iii) in Chapter 22.

By the end of this chapter, you should be able to:

• define the column space and null space of any matrix;
• compute an orthogonal basis of the column space of a general matrix A and use it to deter-

mine if Ax = b has a solution, and compute a basis for the null space for a 2× 2 matrix;
• know how to recognize overdetermined and underdetermined linear systems, and draw cor-

rect qualitative conclusions (e.g., 0, 1, or infinitely many solutions).

21.1. Examples of linear systems. Before proceeding to answer some of the questions posed above,
we provide a handful of examples to illustrate that systems of simultaneous linear equations in many
variables (i.e., where n is much larger than 3) arise in many natural and important situations that you are
sure to encounter no matter what you go on to study.

(1) Balancing chemical reactions and balancing forces in a mechanical system lead to linear
systems. The structural analysis of an arena roof, oil rig, or tall building via the “finite
element method” can involve linear systems in thousands of variables. Balancing problems
in chemistry are intractable without linear algebra if there are more than a few atoms. (See
[BV, 8.3.1, 11.4] for examples with chemical reactions, including conservation of charge.)

(2) In data science, finance, and signal processing one often works with Rn for very large n (e.g.,
an electrical signal expressed via many sinusoidal waves with varying amplitudes and phases,
managing a portfolio of many investments, or measurements made at many times for high-
frequency trading). Extracting useful information from a vector formulation of a problem (to
fit parameters in a financial model, rank webpages, denoise a signal, etc.) rests on ideas and
methods of linear algebra: artful manipulation of large linear systems and finding solutions
or approximate solutions with desired properties (see Example 22.5.3).

(3) Kirchhoff’s laws lead to a linear system relating the currents in different parts of a “linear”
circuit (see Example 14.2.3); this is an electrical analogue of balancing forces in a mechanical
system. For modern circuits, these linear systems can involve more than 100,000 variables!
(See [M, Sec. 2.6, Ex. 4.4.6–4.4.7] for how to recast every such circuit problem in terms of
linear algebra and a proof via the techniques in this chapter that all such problems have a
unique solution. Thus, Kirchhoff’s laws are a “complete” set of laws for circuits.)

(4) Determining the 3-dimensional structure of a protein from nuclear magnetic resonance (NMR)
or X-ray crystallography measurements leads to a large linear system (due to the large num-
ber of atoms involved).

(5) Very similar to (3), medical imaging (e.g., reconstructing images from the measurements
taken by CAT scans or MRI’s) is based on repeatedly solving very large linear systems.

(6) The input-output model for studying interdependencies among various components of an
economy (for which Leontief won the 1973 Nobel Prize in economics) amounts to formu-
lating a specific linear system and studying its solution(s). The novel feature of this model,
which was developed in the late 1930’s and early 1940’s, is that the interdependencies create
a feedback loop within the equations. This enables one to use techniques based on matrix
powers to (i) show that under economically reasonable assumptions there is always exactly
one solution, and (ii) rapidly approximate it. (See [M, Ex. 8.3.6] for a discussion of this
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model and how it is analyzed using ideas related to those underlying why the PageRank
algorithm works, and see [MB, Ch. 2] for an example-rich treatment of the model.)

(7) Many real-life calculus problems (e.g., climate modeling, analysis of structures in mechan-
ical engineering, wave propagation, etc.) are far too complicated to solve exactly; instead
one approximates them with a suitable linear system, often involving thousands or millions
of variables.

21.2. Column space. We now begin the systematic study of linear systems. Let’s write a system of
m linear equations in n variables x1, . . . , xn in matrix language as Ax = b where the m × n matrix A
encodes the coefficients and the m-vector b encodes the constants on the right side of the equations. A bit
more explicitly, this says:

A




x1
x2
...
xn


 =




b1
b2
...
bm


 . (21.2.1)

In the introduction to this chapter, we posed some fundamental questions concerning (21.2.1). We begin
with the first of these:

(i) Given A, for which b ∈ Rm does Ax = b have a solution x ∈ Rn?

Let us first revisit the example at the start of this chapter:



2 1 −1
1 2 1
−1 −1 1





x
y
z


 =



1
4
2


 ,

so in this case we have

A =




2 1 −1
1 2 1
−1 −1 1


 , b =



1
4
2


 . (21.2.2)

Observe that the matrix-vector product A



x
y
z


 equals

A



x
y
z


 =



2x+ y − z
x+ 2y + z
−x− y + z


 = x




2
1
−1


+ y




1
2
−1


+ z



−1
1
1


 . (21.2.3)

The expression on the left in (21.2.3) is just the initial set of linear equations (or rather, it is the “left side”
of those equations), but the right side of (21.2.3) provides a new interpretation: it exhibits the matrix-
vector product Ax as a linear combination of the columns of the matrix A. This is extremely important,
so please check to make sure you see why the right side of (21.2.3) is correct.

We can now reinterpret the original algebraic problem of solving 3 equations in 3 unknowns in geo-
metric terms: it is equivalent to ask whether the vector b in (21.2.2) lies in the span of the vectors given
by the columns of the 3× 3 matrix A in (21.2.2).

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 451



This same insight works in general: if the n columns of the m × n matrix A in (21.2.1) are denoted
a1, . . . , an ∈ Rm then (just as we saw in Theorem 13.4.1)

A




x1
x2
...
xn


 =



| |
a1 a2 · · · an

| |







x1
x2
...
xn


 = x1a1 + · · ·+ xnan. (21.2.4)

This leads to a first “answer” to the question we have posed: (21.2.1) has a solution precisely when the
vector b is a linear combination of the columns a1, . . . , an of A. In more geometric terms:

A solution exists for Ax = b precisely when b lies in the span of the vectors a1, . . . , an ∈ Rm.

The span of these vectors, a1, . . . , an (the columns of A) has a special name:

Definition 21.2.1. The column space of an m× n matrix A is the span in Rm of the columns of A; it
is denoted C(A). In other words:

C(A) = column space of A = span in Rm of the columns of A.

The column space C(A) is a linear subspace of Rm (recall that the columns of A are m-vectors),
and for b ∈ Rm the vector equation Ax = b (a system of m linear equations in n unknowns) has a
solution precisely when b ∈ C(A).

Please note that all that we have done here is give a linguistic reformulation of the problem. We have
not yet explained how you might determine if b lies in this span. This way of expressing the problem not
only gives a way to visualize what it means for there to be a solution of this linear system for a given b but
also will lead to ways to find the solution (or solutions).

Example 21.2.2. Consider the 2× 3 matrix

A =

[
6 1 2
2 1 3

]
.

By definition, the column space C(A) consists of those vectors x ∈ R2 that are a linear combination of the

three 2-vectors
[
6
2

]
,
[
1
1

]
,
[
2
3

]
. In particular, C(A) is a linear subspace of R2. (Make sure you understand

why C(A) here is a linear subspace of R2 rather than R3.)
Which subspace of R2 is C(A)? There is not much room in R2 since it is only 2-dimensional. Indeed,

since at least one of these column vectors is not the zero vector, C(A) is either a line through the origin or
all of R2. We claim that it cannot be a line, so C(A) must equal R2.

The only way that C(A) could be a line is if all three columns of A are scalar multiples of one another.

(If any two of them ‘point in different directions’ then their span is not just a line). In this example
[
6
2

]

lies on the line through the origin with slope 1/3, while
[
1
1

]
lies on the line through the origin with slope

1 (and the third vector
[
2
3

]
lies on the line through the origin with slope 3/2). Another way to say this is

that there are no scalars c, c′ for which the nonzero columns a1, a2, a3 satisfy a2 = ca1, a3 = c′a1. We
have thus shown that C(A) = R2.

Having shown thatC(A) = R2, we conclude that every vector b ∈ R2 lies inC(A); i.e., every b ∈ R2

is a linear combination of the columns of A. This means precisely that Ax = b has a solution (for every
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2-vector b). Be careful here: we are not saying that there is only one solution to the linear system Ax = b
for each b, only that there is at least one solution for each b. We will see later (in Examples 21.3.4 and
21.4.6) that this particular linear system has infinitely many solutions, no matter which b we choose! ■

We next consider an example whose column space C(A) is not the entire space Rm, so there definitely
exist choices of b for which Ax = b has no solution at all.

Example 21.2.3. The column space of the 3× 3 matrix

A′ =



2 1 4
4 2 3
6 3 1




is the set of all vectors in R3 that can be written as a linear combination

x1



2
4
6


+ x2



1
2
3


+ x3



4
3
1


 . (21.2.5)

In this particular case, the first and second columns of A′ are multiples of one another (the first is
twice the second), which means that we can combine the first two terms in (21.2.5) to rewrite that linear
combination as

(2x1 + x2)



1
2
3


+ x3



4
3
1


 .

What this says is that any linear combination of the three columns of A′ could just as well be written as a
linear combination (with some other scalar multiples) of just the second and third columns of A′ (or of just
the first and third columns). Can we condense it even further? Inspecting these second and third columns,
you can see via ratios of corresponding entries that they are not scalar multiples of one another, so these
two vectors are linearly independent. Hence, their span (which we have seen is the same as the span of all
three columns of A′) is a plane through the origin in R3. That is, C(A′) is 2-dimensional.

Now suppose b is a vector in R3 not in this plane. Then it is impossible to write it as a linear com-
bination of the columns of A′, so it is impossible to solve A′x = b. This is one of the central ideas in
this chapter (i.e., apply ideas of linear algebra, such as dimension, to the column space), so make sure you
understand it! Put another way, the linear system A′x = b of 3 equations in 3 unknowns has no solution
whenever b does not lie in the plane C(A′). On the other hand, this system does have a solution whenever
b does lie in this plane (it will even have infinitely many solutions: see Example 21.3.4). ■

For concreteness, we now state these conclusions for linear systems of 2 equations in 3 unknowns and
of 3 equations in 3 unknowns before we go to the general case. First, we introduce some useful notation.

Definition 21.2.4. For any two sets V and W of objects (e.g., linear subspaces of R7, each considered
as a collection of points), the notation “V ⊂ W ” read as “V is contained in W ” or “V is a subset of
W ” means that every object of the set V also belongs to the set W . (The case of a line V contained in
a plane W is a good one to have in mind.)

The most important instance of this notation for our purposes is when V and W are linear subspaces
of Rn, so then “V ⊂ W ” means that every vector belonging to V also belongs to W .

Proposition 21.2.5. LetA be a 2×3 matrix whose columns are all nonzero. The subspaceC(A) ⊂ R2

is a line when all columns are multiples of one another, or equivalently, “have the same slope”; if this
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is not the case then C(A) = R2. For any such matrix A and any b ∈ R2, the linear system Ax = b
of 2 equations in 3 unknowns has a solution precisely in the following circumstances:

• if C(A) is a line then there is a solution exactly when b lies on that line (or more concretely,
either b = 0 or the slope b2/b1 is the same as that of all nonzero vectors in the line C(A));

• if C(A) = R2 then there is a solution for any b.

Proposition 21.2.6. LetA be a 3×3 matrix whose columns are all nonzero. The subspaceC(A) ⊂ R3

is a line when all columns are scalar multiples of each other, it is equal to R3 when the three columns
are linearly independent, and in all other cases it is a plane.

For any such A and any b ∈ R3, the linear system Ax = b of 3 equations in 3 unknowns has a
solution precisely in the following circumstances (depending on dimC(A)):

• if C(A) is a line then there is a solution exactly when b lies in that line (more concretely, b
is a scalar multiple of any one of the three columns);

• if C(A) is a plane then there is a solution exactly when b lies in that plane;
• if C(A) = R3 then there is a solution for any b.

This gives us the first glimmer of an idea for how to determine whether Ax = b has a solution for a
given matrix A and vector b. We will first discuss this for linear systems of 3 equations in 3 unknowns
(i.e., m = n = 3), and then turn it into a general method (for any m and n). By definition, C(A) is a span
of three vectors in R3. From our experience in Section 5.1 computing the dimension of the span of three
vectors in R3, we can quickly determine which of the cases (in Proposition 21.2.6) we are in.

Even better, applying the Gram–Schmidt process to the collection of 3 columns of A produces an
orthogonal basis for their spanC(A): the nonzero vectors produced by the Gram–Schmidt process are such
a basis, so the number of such nonzero vectors is dimC(A). For instance, if the Gram–Schmidt process
produces only two nonzero vectors w and w′ then C(A) is a plane. Moreover, having an orthogonal basis
for C(A) leads to the following very useful additional feature which will readily adapt to general linear
systems below.

Suppose for example that C(A) is 2-dimensional, and Gram–Schmidt has produced an orthogonal
basis {w,w′} for C(A). For any linear subspace W of any Rm, a vector v ∈ Rm belongs to W precisely
when ProjW (v) = v (indeed, the output of ProjW always belongs to W , and anything in W is its own
closest point in W and so equals its projection into W ). Hence, if b is any vector in R3 then we can
check whether it lies in C(A) by computing ProjC(A)(b) and checking if this is equal to b (in which case
Ax = b has a solution) or is not equal to b (in which case Ax = b has no solution). The crucial point is
that we can compute ProjC(A)(b) since we have in hand an orthogonal basis of C(A) (namely, {w,w′})!
Explicitly,

ProjC(A)(b) = Projw(b) +Projw′(b), (21.2.6)

and we check if this is equal to b or not. Most b ∈ R3 don’t lie in the plane C(A), so “usually” the
equality (21.2.6) fails and correspondingly for “most” b the linear system Ax = b has no solution.

Let us see this in action:

Example 21.2.7. In Example 21.2.3 we saw that for the 3× 3 matrix

A′ =



2 1 4
4 2 3
6 3 1


 ,
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the column space C(A′) ⊂ R3 is the plane spanned by second and third columns that are linearly inde-
pendent (as they are not scalar multiples of each other, by inspection). In other words,

x =



1
2
3


 , y =



4
3
1


 form a basis for C(A′).

Using the recipe in Theorem 7.1.1, an orthogonal basis of C(A′) is {y,x′}, where x′ = x − Projy(x);
we compute

Projy(x) =
x · y
y · yy =

13

26
y =

1

2
y,

so

x′ = x−Projy(x) = x− 1

2
y =



−1
1/2
5/2


 .

(As a check on the work, it is a good idea to compute directly that x′ · y is indeed equal to 0.)
Thus, for any b ∈ R3, the linear systemA′x = b of 3 equations in 3 unknowns has a solution precisely

when

b = Projy(b) +Projx′(b)

where y and x′ are as above. Let us carry this out for two different b’s:

b1 =



−3
4
13


 , b2 =



−2
5
2


 .

We first compute the necessary dot products:

b1 · y = 13, b1 · x′ =
75

2
, b2 · y = 9, b2 · x′ =

19

2
.

Then

Projy(b1) +Projx′(b1) =
b1 · y
y · y y +

b1 · x′

x′ · x′ x
′ =

13

26
y +

75/2

15/2
x′ =

1

2
y + 5x′

=
1

2



4
3
1


+ 5



−1
1/2
5/2




=



−3
4
13


 ,

which is b1, so b1 ∈ C(A′).
This calculation tells us more: it gives an actual solution since the projection calculation exhibits a

description of b1 in terms of the 2nd column x and 3rd column y of A′. Indeed, the calculation yields

b1 =
1

2
y + 5x′ =

1

2
y + 5(x− 1

2
y) = 5x− 2y = A′




0
5
−2


 , (21.2.7)
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so x0 =




0
5
−2


 is a solution to A′x = b1 (as can be directly verified too). There are many other solutions,

such as




1
3
−2


 and



−2
9
−2


 (see Example 21.3.17 for how to find these and in fact all solutions).

On the other hand,

Projy(b2) +Projx′(b2) =
b2 · y
y · y y +

b2 · x′

x′ · x′ x
′ =

9

26
y +

19/2

15/2
x′ =

9

26



4
3
1


+

19

15



−1
1/2
5/2




=
1

195



23
326
685


 ,

which is not equal to b2, so b2 ̸∈ C(A′).
We have shown that A′x = b1 has a solution (and the method even gave us a solution) whereas

A′x = b2 has no solution. Since “most” 3-vectors b do not lie in the plane C(A′), A′x = b “usually”
has no solution. In Chapter 22 we will present a systematic method to find all solutions to linear systems
(when a solution exists). ■

Remark 21.2.8. Example 21.2.7 gives a good illustration of the fact that if C(A) is a proper subspace
(i.e., not the entirety) of Rm then Ax = b rarely has a solution. There is a solution precisely when
the m-vector b lies in the proper subspace C(A) ⊂ Rm (a “rare” event when C(A) ̸= Rm).

For anm×nmatrixA, the linear systemAx = b has a solution precisely when ProjC(A)(b) = b.
The projection ProjC(A)(b) can be computed using an orthogonal basis of C(A) found via applying
Gram–Schmidt to the columns of A. Unraveling the computation yields a solution to Ax = b when
one exists, as illustrated in (21.2.7).

The somewhat algebraic-looking concept of the column space C(A) of an m × n matrix A can be
thought about in a more visual manner in terms of the corresponding linear transformation f : Rn → Rm

defined by f(x) = Ax ∈ Rm for every x ∈ Rn, as follows.
The columns of A are precisely the outputs when we apply f to the standard basis vectors of Rn:

the first column a1 equals f(e1), the second column a2 equals f(e2), and so on (see Theorem 13.4.5).
Now consider a vector x1a1 + . . . + xnan in the span of these n columns of A. We can rewrite this as
x1f(e1) + . . .+ xnf(en), and the apply the rules of linearity to get that

x1a1 + . . .+ xnan = x1f(e1) + . . .+ xnf(en) = f(x1e1 + . . .+ xnen).

However,

x1e1 + x2e2 + · · ·+ xnen =




x1
0
0
...
0



+




0
x2
0
...
0



+ . . .




0
0
0
...
xn



=




x1
x2
x3
...
xn



,

which is just the vector which we have been calling x. So all of this just expresses anew the fact that as
we let x vary over all possible vectors in Rn, then Ax varies over all linear combinations of the columns
of A. Thus, C(A) consists of all the outputs of the linear transformation f . (This recovers in another way
the observation just after Definition 21.2.1 that C(A) consists of exactly those b ∈ Rm for which the
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vector equation Ax = b has a solution x ∈ Rn.) Since linear transformations can perhaps be visualized
slightly better than matrices (e.g., rotations or shears in R2), this gives a more visual way to think about
the outputs of f . There is even some terminology for this:

Definition 21.2.9. The image of a linear transformation f : Rn → Rm is the collection of vectors
b ∈ Rm obtained as output of f . In other words, the image of f consists of all vectors b of the form
b = f(x) for some x ∈ Rn. (This coincides with C(A) for the m× n matrix A associated with f .)

Although the “image” of a linear transformation is the same as the column space of the corresponding
matrix, the idea it suggests in your mind may be more vivid. The image is always a linear subspace,
since it is a column space by another name (or more specifically, it is the span of the collection of vectors
f(e1), . . . , f(en)). We give two examples: one geometric (to help with visualization) and one algebraic.

Example 21.2.10. If V is a linear subspace of Rn and A is the n × n matrix corresponding to the linear
transformation ProjV : Rn → Rn then the image of ProjV , or equivalently the column space C(A), is
equal to V . Indeed, by definition ProjV (x) ∈ V for every x ∈ Rn, so the image is contained in V , and
every v ∈ V is obtained in this way since v = ProjV (v) (indeed, the closest point in V to any v ∈ V is
certainly v). This is always a good example to have in mind when trying to visualize column spaces. ■

Example 21.2.11. Let us determine the image of the function f : R2 → R3 given by

f

([
x
y

])
=



1 −6
2 0
3 4



[
x
y

]
= x



1
2
3


+ y



−6
0
4


 .

As a first step, we describe the right side in words. Starting at the origin, walk with velocity



1
2
3


 for a

time x, and then turn and walk with velocity



−6
0
4


 for time y. In Chapter 3, we saw in many examples

that the vectors obtained this way constitute exactly a plane passing through the origin. So the image is
some plane. But which plane is it?

We learned in Chapter 3 a few ways to describe a plane. We use one of these and find an equation for
this plane by first finding a (nonzero) normal vector n to it. Recall that this is simply a vector n for which



1
2
3


 · n = 0,



−6
0
4


 · n = 0.

Writing n =



a
b
c


 for some as yet unknown numbers a, b, c, the orthogonality conditions amount to the

linear system,
a+ 2b+ 3c = 0, −6a+ 4c = 0

and we seek a solution (a, b, c) ̸= (0, 0, 0). Since the right side is zero for each equation, if n is one
solution then tn is also a solution for any scalar t. Thus, hoping that there is a solution with nonzero third
entry, we could take t to be the reciprocal of that entry and hence focus our search on a solution with
c = 1. The resulting conditions on a and b become “2 equations in 2 unknowns” as in your prior study of
algebra. In this case, we arrive at

a+ 2b+ 3 = 0, −6a+ 4 = 0.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 457



The second of these gives a = 4/6 = 2/3, and inserting this into the first then becomes (2/3)+2b+3 = 0,
or equivalently b = −11/6.

In other words, one such n is




2/3
−11/6

1


. Multiplying through by 6 to clear the denominators gives the

slightly cleaner choice of normal vector

n =




4
−11
6


 .

The equation of the plane is then

n ·



x
y
z


 = 0,

which is the same as 4x− 11y + 6z = 0.
To summarize: the image of f is the plane 4x− 11y + 6z = 0. ■

21.3. Null space. We now turn to question (ii) in the list of main questions to be addressed:

(ii) If Ax = b has a solution, is there more than one? How do we describe the set of all solutions?

To get started, consider the linear system Ax = b, where A is an m× n matrix and b ∈ Rm. Suppose
we have, by some method or another, found two different solutions, x0,x1 ∈ Rn. Is it possible that these
are the only two solutions, or must there be more? How might we have predicted that there would be more
than one solution?

To answer these two questions, observe that if we subtract the equation Ax0 = b from the equation
Ax1 = b then we get

A(x1 − x0) = Ax1 − Ax0 = b− b = 0.

In other words, the vector d = x1 − x0 solves Ad = 0. The fact that x0 ̸= x1 means that d ̸= 0, whereas
the right side of both equations was the same vector b, so when we subtracted we got 0 on the right side.

What we have shown is that if there are two different solutions to Ax = b, then there is necessarily a
nonzero solution d ∈ Rn to Ad = 0.

Example 21.3.1. In Example 21.2.7, with

A′ =



2 1 4
4 2 3
6 3 1


 , b =



−3
4
13


 ,

we gave you three different solutions to A′x = b:

x0 =




0
5
−2


 , x1 =




1
3
−2


 , x2 =



−2
9
−2


 .

By the calculation above, each of the nonzero difference vectors

x1 − x0 =




1
−2
0


 , x2 − x0 =



−2
4
0


 , x2 − x1 =



−3
6
0




satisfies A′x = 0 (please also directly check this!). ■
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All of this motivates the fact that understanding whether there is more than one solution to Ax = b is
very closely related to the question of whether there is any nonzero solution to

Ax = 0.

This latter equation is called the associated homogeneous system (“homogeneous” is a fancy word that
refers to the fact that scalar multiplication takes solutions to solutions: if Ax = 0 and t is any scalar
then A(tx) = t(Ax) = t0 = 0). Any homogeneous system always has one “obvious” solution, namely
x = 0, since A0 = 0 (note here that the 0 on the left is the zero vector in Rn and the 0 on the right is the
zero vector in Rm). So what we learned above can be restated as saying that if the original linear system
Ax = b has two different solutions then the associated homogenous system must have a nonzero solution.

We introduce some terminology for this:

Definition 21.3.2. The null space of A, denoted N(A), is the set of all solutions in Rn to the homo-
geneous system Ax = 0.

Note that, in contrast to the column space, the null space N(A) lies in Rn, not Rm.
A common question that arises is: how does one visualize null spaces? If we think about the associated

linear transformation TA : Rn → Rm defined by TA(x) = Ax then N(A) consists of everything that TA
sends to 0. So if TA is an invertible transformation (such as a rotation or a shear) then N(A) = {0}. An
important case for which null spaces are much richer and can be visualized is projections:

Example 21.3.3. Consider the n× n matrix A corresponding to the linear transformation ProjV : Rn →
Rn, where V is a linear subspace of Rn. We claim that N(A) is the orthogonal complement V ⊥ (this is
the collection of vectors x ∈ Rn that are orthogonal to every vector in V , as in Theorem 19.2.5). Since
Ax = ProjV (x), this claim can be restated by saying that ProjV (x) = 0 precisely when x ∈ V ⊥.
By Theorem 6.2.4, one of the characterizations of ProjV (x) is that it is the unique vector in V whose
difference from x is orthogonal to everything in V . But 0 ∈ V , so it follows that ProjV (x) = 0 precisely
when x− 0 is orthogonal to every vector in V , which is to say x ∈ V ⊥. ■

Here is a more algebraic example, to be built upon in our subsequent discussion about null spaces.

Example 21.3.4. For the matrix A in Example 21.2.2, you can check directly that N(A) contains the

vector v0 =



1/2
−7
2


, as well as any scalar multiple of this vector. Likewise, for A′ as in Example 21.2.3,

check that N(A′) contains all scalar multiples of the vector v′
0 =




1
−2
0


. In fact, these are the complete

descriptions of the null spaces in these two cases (i.e., if x lies in N(A), then it must be a scalar multiple
of v0, and similarly for A′ using v′

0), though that shouldn’t be apparent to you yet. ■

We have produced these nonzero vectors in the preceding null spaces N(A) and N(A′) out of thin air,
and also asserted that these give a “complete description” of the null space in these two cases. You may
wonder how we found these in the first place, and what it means in general to give a “complete description”
of the null space (hopefully something better than having to explicitly list every single vector in it).

In Chapter 22 we will provide a systematic method to find the vectors in the null space of any given
matrix A. We now say a bit about how to give a “complete description” of a null space. For any m × n
matrix A, the zero vector 0 ∈ Rn always lies in N(A). Furthermore, N(A) satisfies the same properties
as those listed for linear subspaces in Proposition 4.1.11:
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Proposition 21.3.5. For any m × n matrix A, the null space N(A) ⊂ Rn contains 0. Also, if
x1, . . . ,xk ∈ N(A) then any linear combination c1x1 + · · ·+ ckxk also belongs to N(A).

The argument for this is just a direct calculation, much as we did for linear subspaces. Indeed, if
TA : Rn → Rm is the linear transformation corresponding to A (i.e., TA(v) is the matrix-vector product
Av ∈ Rm for each v ∈ Rn) and x1, . . . ,xk ∈ N(A) then for any scalars c1, . . . , ck,

A

k∑

j=1

cjxj = TA

(
k∑

j=1

cjxj

)
=

k∑

j=1

TA(cjxj) =
k∑

j=1

cj TA(xj) =
k∑

j=1

cj Axj

=
k∑

j=1

(cj 0)

= 0,

so
∑k

j=1 cjxj ∈ N(A). It is no coincidence that Propositions 4.1.11 and 21.3.5 look so similar. In fact:

Proposition 21.3.6. The null space N(A) is always a linear subspace of Rn.
To be more specific, since we defined “linear subspace” to mean the span of a finite collection

of vectors, we are saying that N(A) is always the span of some finite collection of vectors. In other
words, there always exist finitely many solutions to Ax = 0 whose span gives all solutions.

There is a more general fact that explains why N(A) is always a linear subspace of Rn:

Theorem 21.3.7. Suppose that V is a subset of Rn with the following properties: 0 ∈ V , and for all
x1, . . . ,xk ∈ V and all scalars c1, . . . , ck the n-vector c1x1 + . . . + ckxk always belongs to V . Then
V must be the span of a finite collection of vectors, so (by definition) V is a linear subspace of Rn.

Remark 21.3.8. A shorthand way of stating Theorem 21.3.7 is that if V is a subset of Rn containing 0 that
is “closed” under scalar multiplication and vector addition (meaning that if x,y ∈ V and c is any scalar
then cx ∈ V and x+ y ∈ V ) then V is a linear subspace.

The characterization of linear subspaces in Theorem 21.3.7 is extremely useful in applications of
linear algebra. It is discussed further in Section B.2, where its utility is illustrated for null spaces (as
we have discussed here) and orthogonal complements, neither of which are obviously linear subspaces
(according to our definition of “linear subspace”). In Section B.2 we also prove Theorem 21.3.7 (see
Theorem B.2.6) for those who are interested. This answers what it means to give a “complete description”
of N(A): we produce a spanning set (even better, we might produce a basis for N(A), or best yet an
orthogonal basis by applying Gram–Schmidt to a spanning set).

Remark 21.3.9. In most textbooks on linear algebra, Theorem 21.3.7 is often taken as the primary defini-
tion of “linear subspace”. This has advantages and disadvantages. Since the most practical way we have
to describe subspaces is as spans of finite collections of vectors, we have chosen our more concrete defi-
nition to emphasize the fact that subspaces can be described in terms of a finite amount of data. However,
once we know Theorem 21.3.7, we can reap the benefit of both perspectives (i.e., the span definition and
Theorem 21.3.7); in some situations one perspective is easier to verify and in other situations the other is.

Now let us return to the main task of this section: describing all solutions to Ax = b with any b for
which some solution exists. We saw how two different solutions of the same linear system yield a nonzero
element d ∈ N(A). The reverse statement is true as well: if Ax0 = b and if d is some nonzero element

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 460



of N(A) then x1 = x0 + d is another solution to Ax = b. Indeed,

Ax1 = A(x0 + d) = Ax0 + Ad = b+ 0 = b.

So we have answered the main question: if there is more than one solution to Ax = b then N(A) must be
a nonzero subspace (by the subtraction technique) and in reverse if N(A) contains a nonzero vector and
Ax = b has at least one solution x0 (i.e., b ∈ C(A)) then there are different solutions corresponding to
every element of N(A) (namely, x0 + d for every d ∈ N(A)). Note that N(A) contains infinitely many
elements when it contains a nonzero vector (indeed, if d ∈ N(A) is a nonzero vector then any scalar
multiple of d also lies in N(A) and there are infinitely many of these). To summarize:

Proposition 21.3.10. For any m × n matrix A and b ∈ Rm for which the vector equation Ax = b
has some solution x0 ∈ Rn, the solutions to Ax = b are precisely the vectors of the form x0 + d for
d ∈ N(A). There are infinitely many solutions whenever N(A) contains a nonzero vector.

Let’s illustrate Proposition 21.3.10 algebraically, and then use it to give a helpful way to visualize what
the collection of solutions to Ax = b looks like (when there is some solution!).

Example 21.3.11. Consider the 4× 4 matrix

A =




2 1 3 3
−1 1 −3 0
5 −2 12 3
3 7 −1 10


 .

It turns out (using methods in Chapter 22) that the subspace N(A) ⊂ R4 is a plane, given explicitly as

N(A) = span(v,v′) = {cv + c′v′ : c, c′ ∈ R} for v =




−2
1
1
0


 , v′ =




−1
−1
0
1


 .

Hence, for any b ∈ R4 for which there exists a solution x0 to Ax = b, the collection of all solutions is
the set of all vectors of the form x0 + cv + c′v′ for c, c′ ∈ R.

Let us see what this tells us for a specific b, say b =




1
1
−2
7


. It turns out that this vector lies in C(A),

so Ax = b does have at least one solution. In Chapter 22 you will learn a systematic way to find solutions,

but x0 =




−2
2
1
0


 is a solution. Hence, the collection of all solutions to Ax =




1
1
−2
7


 is the set of all vectors

of the form

x0 + cv + c′v′ =




−2
2
1
0


+ c




−2
1
1
0


+ c′




−1
−1
0
1


 =




−2− 2c− c′

2 + c− c′

1 + c
c′


 for c, c′ ∈ R.

■

Let’s now use the relationship between N(A) and the set of all solutions to Ax = b to visualize the
collection of such solutions. As we have said in several different ways already, if A is an m × n matrix
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and b ∈ Rm is an m-vector for which Ax = b has some solution x0 then the collection of all solutions is
described as the vectors of the form x0 + v with v ∈ N(A). We can visualize this easily as follows when
n = 3 and N(A) is either a line or a plane; i.e., dimN(A) = 1 or 2. In either of these cases, as shown in
Figure 21.3.1, the solutions to Ax = b constitute either a line or a plane in R3 typically not going through
0 (except when b = 0).

•x0

v x0 + v

•0
•x0

v

x0 + v

•0

FIGURE 21.3.1. When n = 3, the collection of points x0 + v for all v ∈ N(A) is a plane
through x0 (left) when dimN(A) = 2 and is a line through x0 (right) when dimN(A) = 1.

We repeat a special case of our conclusions for emphasis:

If Ax = b has two different solutions (so N(A) is nonzero, by Proposition 21.3.10)
then it has infinitely many solutions: if x0 is a solution and v ∈ N(A) is nonzero
then the entire line {x0 + tv : t ∈ R} through x0 consists of solutions.

Example 21.3.12. For the 4 × 4 matrix A in Example 21.3.11, we exhibited a couple of nonzero vectors

in N(A), namely v =




−2
1
1
0


 and v′ =




−1
−1
0
1


. Hence, whenever Ax = b has some solution x0, we can

get infinitely many more via vectors of the form x0 + cv for c ∈ R, or x0 + cv′ for c ∈ R. (The vector
v+v′ also lies in N(A) and is nonzero by inspection, so the vectors x0 + c(v+v′) for c ∈ R are another
supply of infinitely many solutions to Ax = b.) ■

We conclude this section with a worked example of a linear system where we must first determine
C(A) and after that N(A), and then use these two subspaces to understand the solvability of the equation
Ax = b for some given b.

Example 21.3.13. Consider the system of linear equations

3x+ 5y − z = 7, −x+ y + 3z = 3, 2x+ 3y − z = 4,

which has the equivalent matrix formulation

A



x
y
z


 =




3 5 −1
−1 1 3
2 3 −1





x
y
z


 =



7
3
4


 .

Let us determine whether this vector equation has a solution, and if so then find all of them. We approach
this in 4 steps, using the general ideas discussed above.
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Step 1: compute C(A). The column space of A is the span of the three vectors

v =




3
−1
2


 , v′ =



5
1
3


 , v′′ =



−1
3
−1


 .

Is the span all of R3, or equivalently are these linearly independent? It happens to be the case that v′′ =
v′ − 2v (check); don’t worry about how one might have discovered this (linear dependence amounts to
some linear combination xv + yv′ + zv′′ = 0 with x, y, z not all 0, which is just another way of saying
that N(A) is nonzero; the task of actually computing N(A) systematically is addressed in Chapter 22).

Hence, any vector which can be written as a linear combination of these three vectors can be written
more simply as a linear combination of two of them:

xv + yv′ + zv′′ = xv + yv′ + z(v′ − 2v) = (x− 2z)v + (y + z)v′ = (x− 2z)




3
−1
2


+ (y + z)



5
1
3


 .

We can make x− 2z and y + z take on whatever two values we wish (e.g., set z = 0 and assign whatever
we want to x and y), so

C(A) = span(v,v′) = {cv + c′v′ : c, c′ ∈ R} =







3c+ 5c′

−c+ c′

2c+ 3c′


 : c, c′ ∈ R



 .

Step 2: use C(A) to check if some solution x0 exists. Now let us match this with our particular right

side b =



7
3
4


. A solution exists to Ax = b precisely when b ∈ C(A) = span(v,v′). There are two ways

to think about this: either explicitly that we can find c, c′ ∈ R for which b = cv + c′v′, which is to say


7
3
4


 =



3c+ 5c′

−c+ c′

2c+ 3c′


 ,

or alternatively that ProjC(A)(b) = b. The latter viewpoint is the systematic way to approach the task, as
we have discussed earlier, but it has the disadvantage (with our present state of knowledge) that it doesn’t
produce an explicit x0.

So in the present case where the dimensions are small we’ll use the former viewpoint that amounts to
3 equations in 2 unknowns:

3c+ 5c′ = 7, −c+ c′ = 3, 2c+ 3c′ = 4.

We can solve the first two of these simultaneously via the procedure from your prior study of algebra and
then check if it also satisfies the third condition too: the first two have as the simultaneous solution exactly
(c, c′) = (−1, 2), and this indeed satisfies the third condition. So the vector equation Ax = b does have a

solution x0 =



−1
2
0


 (corresponding to the expression −v + 2v′ + 0v′′ just obtained for b).

Step 3: compute N(A): Next we turn to the other part of the problem: describing all solutions when
at least one exists. Again following our general ideas, we first compute the null space of A; i.e., the set of
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all solutions to

A



x
y
z


 =



0
0
0


 . (21.3.1)

The systematic way to find N(A) will be discussed in Chapter 22. It turns out that N(A) ⊂ R3 is a line:

the span of




2
−1
1


 (this is related to the fact that the third column v′′ is equal to v′ − 2v, but don’t worry

about this).
Step 4: combine Steps 2 and 3 to write down the general solution. Finally, the solutions to the

original linear system are precisely the vectors of the form

x = x0 + d, where d ∈ N(A).

Using the numbers we have found, the vectors of the form

x =



−1
2
0


+ t




2
−1
1


 =



−1 + 2t
2− t
t




for t ∈ R are precisely the solutions. Breaking this down into components, any solution (x, y, z) is of the
form x = −1 + 2t, y = 2− t, z = t where t is the same number in all three expressions.

■

We summarize the conclusions reached so far, using the language introduced above.

Theorem 21.3.14. Let A be an m× n matrix. The equation Ax = b has:
(i) no solution if b does not belong to the column space C(A) of A,

(ii) exactly one solution if b ∈ C(A) and the null space N(A) consists of only the zero vector,
(iii) infinitely many solutions if b belongs to C(A) and the null spaceN(A) is nonzero (in which case

the solutions are precisely the vectors x0 + v for all v ∈ N(A), where x0 is any single solution).

To conclude our general discussion of null spaces, we would like to discuss a “conservation law” for
dimension that provides a precise sense in which the “size” of N(A) is tightly linked to the “size” of
C(A), where our sense of “size” will be taken to mean dimension. A numerical example conveys the key
intuition quite well:

Example 21.3.15. Let A be an 11× 7 matrix, so the associated linear transformation L = TA is a function
R7 → R11. The null space N(A) is a linear subspace of R7 (it consists of the vectors annihilated by L;
i.e., sent to 0), and the column space C(A) is a linear subspace of R11 (it consists of the output of the
transformation L; i.e., it is the image of L).

Certainly dimN(A) ≤ 7 and dimC(A) ≤ R11 since N(A) ⊂ R7 and C(A) ⊂ R11. But there is
something much better which can be said:

dimC(A) + dimN(A) = 7.

In particular, dimC(A) ≤ 7 (which might seem surprising: dimC(A) = 9 is impossible, for example)
and if we happen to know that dimC(A) = 4 (e.g., applying Gram–Schmidt to the columns of A to
compute dimC(A)) then we are claiming that automatically dimN(A) = 7− 4 = 3. Why is this true?

If we think in terms of the matrix A then this is rather baffling, but if we think visually in terms of
L : R7 → R11 then there is a very intuitive explanation in the spirit of a conservation law as follows.
The transformation L is applied to inputs from R7 that have 7 “degrees of freedom” (intuitively, “degrees
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of freedom” is the number of “independent” directions of motion; it is made precise by the mathematical
concept of dimension). By the meaning of N(A) as the space of vectors annihilated by L, when we apply
L to the input space R7 we lose dimN(A) degrees of freedom (more precisely, L(x) = L(x+ d) for any
d ∈ N(A), so L(x) only “remembers” x up to the ambiguity of N(A)). For example, if L annihilates
exactly a plane (i.e., dimN(A) = 2) then the output of L should have 2 fewer “degrees of freedom” than
the space R7 of inputs.

The upshot is that the space of outputs of L should have as its number of “degrees of freedom” exactly
dimN(A) less than the number of “degrees of freedom” of the space R7 of inputs. But the space of outputs
is C(A), so by interpreting “degrees of freedom” to really mean dimension this is saying dimC(A) =
7− dimN(A), or equivalently dimC(A) + dimN(A) = 7 as claimed. ■

There is nothing special about 7 (or 11) in the preceding example. By the same informal reasoning, if
A is any m × n matrix then the transformation L = TA : Rn → Rm applied to a space of inputs with n
degrees of freedom annihilates dimN(A) degrees of freedom, so the space C(A) of outputs of L should
have its number of degrees of freedom equal to dimN(A) less than the number n that we start with for
the input space. In other words, this suggests that dimC(A) = n− dimN(A), or equivalently:

Theorem 21.3.16 (Rank–Nullity Theorem). For every m× n matrix A, dimC(A) + dimN(A) = n.

(The name is due to dimC(A) being called the rank of A and dimN(A) being called the nullity of A.)
This theorem is proved in Section 21.5 if you are interested. Hopefully the preceding visualization for

this in terms of behavior of “degrees of freedom” under the effect of a linear transformation makes it very
plausible. Here is a nice application:

Example 21.3.17. Let’s revisit the linear system A′x = b1 from Example 21.2.7, for which we found a

solution x0 =




0
5
−2


. In that work, we determined dimC(A′) = 2, so the Rank–Nullity Theorem tells

us that dimN(A′) = 3 − 2 = 1; i.e., N(A′) is a line. The collection of all solutions consists of vectors
of the form x0 + v for v ∈ N(A′), and if we find a nonzero v0 ∈ N(A′) then the line N(A′) consists of
all scalar multiples tv0, so the solutions to A′x = b1 consist of the vectors x0 + tv0. By inspection of

A′ we see that the 1st column is twice the 2nd column, so the vector v0 =




1
−2
0


 belongs to N(A′). (In

Chapter 22 we will discuss systematic ways to describe null spaces, without requiring clever observations
or “inspection”.) Hence, the solutions to A′x = b1 are the vectors of the form

x0 + tv0 =




0
5
−2


+ t




1
−2
0


 =




t
5− 2t
−2




for t ∈ R. (The values t = 1 and t = −2 recover the two additional solutions beyond x0 that were
mentioned in Example 21.2.7.) ■

21.4. Overdetermined, underdetermined, and overfitting. There is a “rule of thumb” about when
we expect a linear system to have no solutions, a single solution, or infinitely many solutions. In very
broad terms, we say that a system of m equations in n variables is underdetermined if there are fewer
equations than unknowns (i.e., m < n), and overdetermined if there are more equations than unknowns
(i.e., m > n). We expect (but are not guaranteed!) that underdetermined systems have infinitely many
solutions and overdetermined systems have no solutions.
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One way to think about this is that each additional linear equation in the system reduces the “degrees
of freedom” (whatever that may mean) by 1. If we start out with no equations, then there are n degrees
of freedom (no equations means no restrictions on Rn); as we impose equations, we lower the degrees
of freedom. If we impose fewer than n equations (when there are n variables) then we expect to have
remaining degrees of freedom (n −m degrees of freedom for m equations with m < n), whereas if we
impose too many equations then we expect to have made too many requirements and so there should be
no solution.

Example 21.4.1. A typical linear system of 3 equations in 5 unknowns should have infinitely many solu-
tions (and 5 − 3 = 2 “degrees of freedom”, whatever that may mean), whereas a typical linear system of
5 equations in 3 unknowns should have no solutions (“too many equations on R3”). ■

But be careful, these are indeed only expectations. It is called a “rule of thumb” because counting the
number of equations and number of unknowns is too rough to give definite conclusions for any specific
linear system. When there are the same number of equations as unknowns, we expect that there is exactly
one solution. However, as we have been discussing at length, this need not be the case!

Definition 21.4.2. A linear system Ax = b with m equations and n unknowns (i.e., “variables”
x1, . . . , xn) is called:
• overdetermined if there are more equations than unknowns, which is to say m > n;
• underdetermined if there are fewer equations than unknowns, which is to say m < n.

Remark 21.4.3. For underdeterminedness, think about a pair of different planes in R3 (not necessarily
passing through the origin), corresponding to 2 equations in 3 unknowns (with 2 < 3). Typically these
will cross each other in exactly a line (the first picture in Figure 21.4.1), but in special circumstances the
planes may be parallel and so not touch at all (the second picture in Figure 21.4.1). Informally, this says
that 2 equations in 3 unknowns typically have lots of solutions (a line where the planes cross), but in
special cases there is no solution (so the “rule of thumb” fails).

L

FIGURE 21.4.1. A pair of planes in R3 (not necessarily through the origin) is underdeter-
mined: usually they meet along a line L (left), but in rare cases they don’t touch (right).

For overdeterminedness, think about a pair of different lines in R3 (not necessarily passing through the
origin), as in Figure 21.4.2. Each line in R3 corresponds to two simultaneous equations in 3 unknowns,
so a point on both lines corresponds to a solution to a combined system of 4 equations in 3 unknowns.
This combined system is overdetermined (4 > 3), and typically such lines don’t touch at all, as in the first
picture in Figure 21.4.2; this expresses the rule of thumb that overdetermined systems usually have no so-
lution. But in special circumstances such a pair of distinct lines do meet at a point, as in the second picture
in Figure 21.4.2, so in such cases there is a solution (and hence the “rule of thumb” on overdetermined
systems can fail, though such circumstances are “special”).
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•

•

•

•

•

FIGURE 21.4.2. Two lines which don’t meet (left), and two lines which do meet (right).

Remark 21.4.4. Our concept of dimension gives a way to provide precise reasons underlying the expec-
tations in the overdetermined and underdetermined cases, as follows.

In the overdetermined case (m > n), we claim that for dimension reasons necessarily the column
space C(A) ⊂ Rm is a proper subspace (i.e., it does not exhaust the entirety of Rm, so the visualization
is like a line or plane through the origin in R3). To see this, first observe that C(A) is always spanned by
the n columns of A, so dimC(A) ≤ n. Hence, for overdetermined cases we have dimC(A) ≤ n < m, so
indeed C(A) cannot be all of Rm. To visualize such C(A) inside Rm, think about a line or plane through
the origin in R3, outside of which are “most” of the vectors in R3; likewise in general “most” vectors
b ∈ Rm lie outside the lower-dimensional C(A), and Ax = b has no solution in such cases. Informally,
there are too many equations for the number of unknowns, so a solution x can (and “usually” does) fail to
exist.

In the underdetermined case (m < n), we claim that for dimension reasons necessarily the null space
N(A) is nonzero. To see this, observe that the condition for a vector x ∈ Rn to lie in N(A) is the same as
x being orthogonal to each of the m rows of A. In other words, if V ⊂ Rn is the span of the m rows then
N(A) = V ⊥. But dimV ≤ m since V is spanned by m vectors, so by the relationship in Theorem 19.2.5
between the dimensions of a linear subspace and its orthogonal complement in Rn we have

dimN(A) = dimV ⊥ = n− dim(V ) ≥ n−m > 0. (21.4.1)

This shows that N(A) contains nonzero vectors. By definition, then, the associated homogenous system
Ax = 0 has nonzero solutions. Hence, if Ax = b has a solution x0 then it has infinitely many solutions
(add to any single solution x0 the scalar multiples of a nonzero vector in N(A)).

Keep in mind however that even if m < n, there might be no solutions (i.e., there may be no x0 with
which to get started)! This can happen if the equations are mutually inconsistent, as occurs for the system

x+ y = 5, 2x+ 2y = 6

(a pair of parallel lines). Observe that the solutions of each of these two equations individually is a line in
R2, and the inconsistency is that these lines are parallel and so do not intersect, which means that there is
no simultaneous solution.

We need to know that there is some solution x0 toAx = b before we can use thatN(A) contains many
vectors in order to build infinitely many solutions (as x0 + v for v ∈ N(A)). To summarize:

Remark 21.4.5. (i) In the overdetermined case, the linear system Ax = b often fails to have any
solutions at all (namely, whenever b lies outside the linear subspace C(A) ̸= Rm). Informally,
there are too many equations (but in special circumstances there can still be a solution). This
occurs a lot in applications, and then we seek a “best approximate solution”; see Example 22.5.3.
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(ii) In the underdetermined case, if Ax = b has a solution then it automatically has infinitely many
solutions. (Informally, there are too few equations, so they do not pin down the values of all of
the unknowns, if there is some solution at all.)

Example 21.4.6. Example 21.2.2 corresponds to 2 equations in 3 unknowns, so it is underdetermined.
This is consistent with the fact that its null space is nonzero (an explicit nonzero vector in the null space
for this case is (1,−14, 4)), which enables us to build infinitely many solutions to Ax = b whenever there
is at least one solution x0 (by adding to x0 any nonzero scalar multiple of a chosen nonzero v0 ∈ N(A)).

In contrast, consider the system 3x+5y = 7, −x+ y = 3, 2x+3y = 4 of 3 equations in 2 unknowns.

In matrix language, this is Ax = b for A =




3 5
−1 1
2 3


 and b =



7
3
4


. This is overdetermined, so for

“typical” b′ ∈ R3 we expect that Ax = b′ has no solution at all. For the specific b we have chosen, a
solution does exist: (x, y) = (−1, 2). This is really quite special: the column space C(A) ⊂ R3 is the
span of the two columns of A which (by inspection) are nonzero and not scalar multiples of each other,
so C(A) is a plane. Hence, for b′ outside that plane (which is “typical” for vectors in R3), the vector
equation Ax = b′ has no solution. (Explicitly, this plane turns out to consist of those vectors b′ ∈ R3

satisfying 5b′1 − b′2 − 8b′3 = 0, a condition that is indeed satisfied by b = (7, 3, 4).) ■

Remark 21.4.7 (online resource). A nice dynamic visual overview of the concepts introduced in this
chapter is given in this video at “Essence of Linear Algebra”.

Example 21.4.8 (Overfitting). A significant consequence of this analysis is the danger of overfitting.
This refers to the fact that if you have a mathematical model for some situation which is written as
a linear system but the model has more unknowns than equations, then you will (usually) find many
solutions but these are almost surely “physically meaningless”. The error in designing the model is
that you have incorporated too many variables for the number of equations.

Here is an example. To beat the stock market, let’s predict the value of a specific stock on Decem-
ber 31 by imagining that it depends linearly on the highest temperatures at each day of the same year
between January 1 and December 25 (giving us 6 days at the end of the year to use this prediction
to buy or sell stocks in this company). This is an absurd idea: there should be no correlation at all
between temperatures and stock prices. But suppose we stubbornly go ahead and try to find such a
model fitting many years of data (and then make “predictions”!).

Ignoring leap years, mathematically what we are doing is seeking 359 (= 365 − 6) scalars
a1, . . . , a359 for which

stock price on Dec. 31 = a1t1 + a2t2 + · · ·+ a359t359, (21.4.2)

where tj is the maximum temperature on the jth day of the year. Say we have temperature data for the
past 50 years as well as records of the stock’s price on December 31 of each of these same 50 years.
We do not know values of the aj’s, but if we can find such values fitting the historic data then when
we get to December 25 of this year, we’ll use (21.4.2) to “predict” the stock’s price several days later.

Fitting the historic data amounts to a system of 50 linear equations in 359 unknowns a1, . . . , a359.
This is vastly underdetermined and so nearly always (i.e., except for the types of incompatibilities we
mentioned above, which are rare) there will be infinitely many solutions. Upon choosing one of these
solutions (a1, . . . , a359), the stock price “predicted” by (21.4.2) would work for the past 50 years (due
to how we found the aj’s!) but it would be insane to rely on such a “prediction” for this year. ■
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We can often create a mathematical model with some number of equations and unknowns, but if
this model has too many unknowns for the number of equations then solutions fitting a lot of data are
typically “forced to exist” for purely mathematical reasons that have no real meaning in terms of the
model and so have no real significance for the intended applications of the model.

Overfitting can occur in many situations, not just for linear systems. There are instances across
many fields where one is tempted to fit data using an overly complex model that contains too many
unknowns relative to the number of (hopefully meaningful) constraints imposed. This is a huge prob-
lem in machine learning (e.g., see [Ta]) and a source of many investment scams [St]. Don’t be fooled
by “big data” hype!

Example 21.4.9. Here is another example of overfitting. It is easy to find coefficients (using a setup similar
to the one in Example 21.4.8) that will predict the result of every Presidential election from 1788 to the
present (“no Democrat has won without state X”). However, there have not been so many Presidential
elections since 1788; i.e., not so many equations. So if we incorporate many variables in our model then
we will be able to make (meaningless) “predictions” that fit all past elections! A humorous example of the
pitfalls of this is given here. ■

21.5. The Rank–Nullity Theorem. At the end of Section 21.3 we discussed an important and
very useful result for the study of linear systems, Theorem 21.3.16, a kind of “conservation law” for
dimension. To recall the statement of this result and then prove it, we introduce some terminology:

Definition 21.5.1. For an m × n matrix A, the dimension of C(A) is called the rank of A and the
dimension of N(A) is called the nullity of A.

For instance, A has rank equal to 1 when the column space is 1-dimensional, or in other words, all
of its columns lie along a common line through 0 (and some column is nonzero). Also, A has positive
nullity when its null space contains a nonzero vector.

Example 21.5.2. In Example 21.3.13, the rank of A is 2 and the nullity of A is 1, since C(A) is the
span of 2 linearly independent vectors (so its dimension is 2) whereas N(A) is the span of a single
nonzero vector (so its dimension is 1). ■

Informally, the rank of A is the number of “degrees of freedom” among the vectors b ∈ Rm for
which Ax = b has at least one solution (specifically, b must belong to the linear subspace C(A) ⊂
Rm whose dimension is the rank by definition). On the other hand, the nullity of A is a measure
of how large the totality of all solutions to Ax = b is provided there is at least one solution (more
specifically, if some solution x0 exists then the solutions are precisely the vectors x0 + v where v
varies in the linear subspace N(A) ⊂ Rn whose dimension is the nullity of A by definition).

At the end of Section 21.3 we used informal reasoning with “degrees of freedom” and linear
transformations to guess the following result, which we shall illustrate and then actually prove.

Theorem 21.5.3 (Rank–Nullity Theorem). If A is an m× n matrix (so TA is a linear function Rn →
Rm) then

rank(A) + nullity(A) = n (= dimRn = dim(space of inputs for TA)).

Example 21.5.4. Let us see what the Rank–Nullity Theorem is asserting in some cases that we have
already calculated.

For the 2 × 3 matrix A in Example 21.2.2 we have seen that C(A) = R2, so the rank is 2. The
Rank–Nullity Theorem says that the sum of its rank and nullity is 3, so the nullity must be 1; i.e., the
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linear subspace N(A) ⊂ R3 is a line through the origin. An explicit nonzero vector in N(A) was

mentioned in Example 21.4.6, namely




1
−14
4


, so the Rank–Nullity Theorem says that N(A) is the

span of that vector.
For the 3 × 3 matrix A in Example 21.3.13, we have seen that the rank is 2 and the nullity is 1,

and 2 + 1 = 3 in accordance with the Rank–Nullity Theorem in this case.
For the 4×4 matrixA in Example 21.3.11, we mentioned there that (via methods in Chapter 22) its

null space is the span of 2 explicit linearly independent vectors, so its nullity is 2. The Rank–Nullity
Theorem then tells us that its rank is 4− 2 = 2; i.e., the column space C(A) ⊂ R4 is 2-dimensional.
This can be seen rather directly as follows. If we denote the first column as w and the second as w′

then the third column is 2w − w′ and the fourth column is w + w′ (these can be checked directly;
give it a try, and don’t worry about how one would discover such relations). Hence, when forming the
span of all 4 columns the 3rd and 4th are redundant (they are obtained already from the span of w and
w′), so C(A) = span(w,w′). By inspection the columns

w =




2
−1
5
3


 , w′ =




1
1
−2
7




are nonzero and not scalar multiples of each other, so they are linearly independent. Hence, these two
vectors are a linearly independent spanning set for C(A), so they constitute a basis for C(A); this
reaffirms that dimC(A) = 2, which is to say that the rank of A is 2. ■

We now prove the Rank–Nullity Theorem.

PROOF. Our goal is to show that the dimension of N(A) plus the dimension of C(A) must always
equal n (which equals the number of columns in A). If A is the m× n zero matrix then C(A) = {0}
and N(A) = Rn, so rank(A) = 0 and nullity(A) = n, confirming the result in this case. Hence, we
can assume A is not the m× n zero matrix, so C(A) is nonzero.

Let r = rank(A) = dimC(A) > 0, and pick a basis w1, . . . ,wr for C(A). Though there are n
columns of A, typically the collection of columns has some “redundancy”; i.e., r ≤ n and we could
certainly have r < n. For each 1 ≤ i ≤ r, each wi belongs to the column space C(A) ⊂ Rm and so
by the interpretation of C(A) as the image of TA we can write wi = Axi for some xi ∈ Rn (there
may be many solutions to the vector equation Ax = wi, but just pick one solution xi for each i). The
collection of xi’s inherits linear independence from the collection of wi’s. Indeed, if

∑r
i=1 cixi = 0

for some c1, . . . , cr then applying TA to both sides yields
∑r

i=1 ciwi = 0, which forces all ci’s to
vanish due to linear independence of the wi’s (since they have been chosen as a basis of C(A)).

Let k = dimN(A) denote the nullity of A, so we want to show r + k = n. Since all bases of Rn

have size n, to show r + k = n it suffices to build a basis of Rn consisting of r + k vectors. In case
k = 0 (i.e., N(A) = {0}) we will show that the collection {x1, . . . ,xr} of r vectors is a basis of Rn

(so r = n = n + 0), and in case k > 0 and we pick a basis y1, . . . ,yk for N(A) ⊂ Rn then we will
show that the collection

{y1,y2, . . . ,yk,x1, . . . ,xr}
of r + k vectors is a basis of Rn.

As a first step, we will show that the desired basis of Rn is at least a spanning set, and then we
will check that it is a linearly independent collection (hence a basis of its span Rn, as desired). To
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prove the spanning property, pick any x ∈ Rn. We know that Ax ∈ C(A), yet by design C(A) is the
span of the wi’s, so

Ax = c1w1 + · · ·+ crwr

for some scalars c1, . . . , cr. We can rewrite this as

Ax = c1Ax1 + . . .+ crAxr = A(c1x1 + · · ·+ crxr).

This shows that both x and c1x1 + . . .+ crxr yield the same output in Rm upon applying A. Passing
to the difference as we did early in Section 21.3 yields

A(x− c1x1 − c2x2 − · · · − crxr) = Ax− A(c1x1 + · · ·+ crxr) = Ax− (c1w1 + · · ·+ crwr) = 0,

so by definition of N(A) we have

x− c1x1 − c2x2 − · · · − crxr ∈ N(A). (21.5.1)

If N(A) = {0} then this says x− c1x1 − · · · − crxr = 0, so x = c1x1 + · · ·+ crxr. This shows x
is in the span of the xj’s in such cases, as desired. Suppose instead that N(A) is nonzero, so we have
chosen a basis y1, . . . ,yk for the null space. Hence, the vector in (21.5.1) is a linear combination of
the yj’s:

x− c1x1 − c2x2 − · · · − crxr = d1y1 + · · ·+ dkyk

for some scalars d1, . . . , dk. This yields that

x = c1x1 + · · ·+ crxr + d1y1 + · · ·+ dkyk, (21.5.2)

so x belongs to the collective span of the xi’s and yj’s, as desired.
We have established the desired spanning property in general, and it remains to prove the linear

independence property. In the case k = 0 there is nothing to do because we have already shown that
the collection of xi’s is linearly independent in general. Hence, we can assume k > 0, and our aim is
to show linear independence of the collection of xi’s and yj’s. In other words, if

r∑

i=1

cixi +
k∑

j=1

djyj = 0 (21.5.3)

in Rn then we want to show that all the coefficients ci and dj vanish. Applying A to the vanishing
sum (21.5.3) and using that

∑
djyj ∈ N(A) then gives the vanishing of

A(
∑

cixi +
∑

djyj) = A(
∑

cixi) + A(
∑

djyj) = A(
∑

cixi) + 0 =
∑

ciA(xi) =
∑

ciwi

(we have A(
∑
djyj) = 0 since

∑
djyj ∈ N(A)). But the wi’s are a basis for C(A), so the vanishing

of
∑
ciwi forces all ci’s to vanish.

Since every ci is equal to 0, (21.5.3) says
∑
djyj = 0. But the yj’s have been chosen as a basis of

N(A), so they’re a linearly independent collection. Hence, the dj’s all vanish too, so we are done. □

21.6. Applications of Rank–Nullity Theorem: matrix rank and recommender systems (op-
tional). There is an astonishing property of matrices that we do not need in this course but occurs
in applications, relates the column space and null space in an essential way, and nicely illustrates the
synthesis of geometric and algebraic aspects of linear algebra. We now discuss it and indicate its
significance for certain applications.

Recall some terminology from Definition 21.5.1: the dimension of C(A) is called the rank of A
and is denoted rank(A). This is the “number of independent columns” in A. Since the n columns
a1, . . . , an of A live in Rm, certainly rank(A) ≤ dimRm = m.
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When rank(A) = m, one says A has “full rank”; this occurs precisely when C(A) = Rm, which
is to say that the equation Ax = b has a solution for every b ∈ Rm. At essentially the opposite
extreme, rank(A) = 1 when the columns all lie along the same line (and there is some nonzero
column). We note that matrices with rank 1, or at least with very small rank, play an essential role in
many techniques of applied math such as rank reduction and principal component analysis that will
be discussed in Example 27.3.8 and Example 27.3.11 respectively (and are one of the main tools in
certain approaches to image compression).

In certain applications (e.g., Example 21.6.3 below) the rows are of more immediate interest than
the columns. We define the row rank of A to be the dimension of the span of the rows and may then
call the number we defined earlier, rank(A), the “column rank”. Since rows ofA become the columns
of the transpose A⊤, the row rank of A is the same thing as rank(A⊤).

Now comes the big surprise:

Theorem 21.6.1. For every m × n matrix A, rank(A) = rank(A⊤); i.e., row rank equals column
rank!

From the purely algebraic perspective of a matrix being an array of numbers, this equality is
an unbelievable miracle. (One of the authors still remembers being stunned upon first encountering
this fact as the outcome of a complicated algorithm.) You may even see this equality called the
“Fundamental Theorem of Linear Algebra” in other references, but that name is far from universally
accepted. The main mathematical point we wish to explain below is that by using our geometric view
of linear algebra via dimension as a precise version of “degrees of freedom” (the informal idea of
“independent” directions of motion), this apparent miracle can be demystified.

Remark 21.6.2. It is sometimes said that the rank of a matrix is its “information content”. One reason
for this is that if an m× n matrix A has rank k then to distinguish between two vectors in the span of
the rows or two vectors in the span of the columns we only need to make at most k measurements even
though the rows live in Rn and the columns live in Rm with m and n possibly vastly bigger than k.
Indeed, granting Theorem 21.6.1, the span of the rows is a k-dimensional subspace of Rn and the span
of the columns is a k-dimensional subspace of Rm, and in general if V is a k-dimensional subspace
of RN then to describe a vector v ∈ V involves specifying its k coefficients as a linear combination
of a fixed choice of basis of V (which has nothing to do with the specific v ∈ V under consideration).

Before we carry out the demystification of Theorem 21.6.1, we digress to explain why this result
is so useful in applications. Granting such equality, we may unambiguously speak of the “rank” of a
matrix: using either rows or columns. Where does the rank (and especially the flexibility to interpret
it in terms of either rows or columns) arise in practical applications of linear algebra?

We now give a ubiquitous example, but it is the tip of the iceberg (there are many more, in image
compression, search engines, classifiers, video tracking, sensor networks, evolutionary history, etc.).

Example 21.6.3 (Rating matrices). Lots of companies (Amazon, Netflix, Spotify, Apple, etc.) want to
recommend future purchases to you (of books, movies, songs, etc.) based on your past purchases or
search history. It is very important to these companies that their automated recommendation systems
work reasonably well (e.g., the million-dollar Netflix Prize wasn’t offered out of a sense of altruism).
But how does an automated recommender work, and how is matrix rank (in both the sense of rows
and the sense of columns) relevant? We now explain the basic idea for movie recommendations in
Netflix, but the same circle of ideas applies much more widely. (As Neil Hunt, an early employee of
Netflix, once said: “There’s a whole lot of Ph.D.-level math and statistics involved” [Aul, p. 58].)
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On Netflix, each user can rate a movie they watch with the ratings 1, 2, 3, 4, 5 (5 = excellent, 1 =
very bad). Imagine a “ratings matrix” R whose ij-entry Rij is the rating that the ith user would give
to the jth movie if every user were to rate every movie. (The rows of R correspond to users, and the
columns of R correspond to movies.) Of course, nobody knows the matrix R exactly, because no user
ever rates more than a tiny fraction of the huge database of all movies at Netflix. So what Netflix has
is rather limited knowledge of R, by knowing some of the entries thanks to ratings provided by its past
users. (Some users never rate any of the movies that they watch, but let’s ignore that here.) The goal
is to do a good job of filling in the rest of the matrix in order to make recommendations to each user.

There are many thousands of movies in the Netflix system and there are many millions of users, so
the number m of rows and number n of columns in R are each huge. How can one sensibly fill in the
many unknown entries inR? As a purely mathematical problem, it seems hopeless since each missing
entry could be pretty much anything from 1 to 5. However, things should not be so random, because
the number of “types” of movies isn’t remotely on the order of the many thousands of movies that
Netflix provides and the number of “types” of people (as far as movie-watching habits are concerned)
isn’t remotely on the order of many millions of people who are users of Netflix.

So to a very good approximation, the number of actual “degrees of freedom” among the rows
(users) and among the columns (movies) should each be rather small (compared to m and n). To
make this informal idea of “degrees of freedom” precise, we’ll use the concept of dimension in linear
algebra: the row space V = C(R⊤) ⊂ Rn and the column space W = C(R) ⊂ Rm of the m × n
matrix R should each have rather small dimensions compared to n and m. (Strictly speaking, what
we really expect is that all rows should be rather close to some low-dimensional subspace of Rn,
and all columns should be rather close to some low-dimensional subspace of Rm, but for the sake of
discussion we’ll pretend that V and W are themselves exactly low-dimensional.)

Denote by k the common row rank and column rank of R (Theorem 21.6.1!). In the spirit of
Remark 21.6.2, we believe that the row vector vi ∈ V ⊂ Rn for the ith user is determined by k
measurements rather than requiring n measurements. Likewise, we believe that the column vector
wj ∈ W ⊂ Rm for the jth movie is determined by k measurements rather than requiring m mea-
surements. This idea of “k measurements” is vague, since it entails a choice of basis and there is no
particular basis that leaps out at us in either V or W (nor do we even know the value of k).

Now comes a great idea, which shows up all over the place in classifier problems and machine
learning more broadly: we imagine that all movies are classified according to k categories C1, . . . , Ck

which we don’t know at all. This is a classification problem for which neither the actual categories
nor even the exact number of them are known! (The role of such categories Ci is solely motivational
for us. In other situations with recommender systems, one really wants to discover what are such
Ci’s, including the number k of them; that is the focus of the machine learning technique called “topic
modeling”.) We will use the idea of such Ci’s to “define” hypothetical bases for V and W , which in
turn will lead us to a well-posed mathematical strategy to sensibly guess how to fill in the unknown
entries in R (at which point the motivation that led to the strategy is no longer logically needed).

The “type” of a movie should be a k-vector whose ath entry pa (for 1 ≤ a ≤ k) is a number
between 0 and 1 that measures how well the movie fits into the category Ca. (There might be many
pa’s close to 1, and also many close to 0.) Associating to each column wj ∈ W the corresponding k-
vector [wj] ∈ Rk that is the “type” of the jth movie should underlie a specific linear identification of
the k-dimensionalW with Rk and thereby encode a natural basis ofW (corresponding to the standard
basis of Rk). Switching attention to the user side, the “movie taste” of a user should be a k-vector
whose ath entry xa (for 1 ≤ a ≤ k) is a number between 1 and 5 that measures how well movies
in category Ca are typically rated by that user. Associating to each row vi ∈ V the corresponding

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 473



k-vector [vi] ∈ Rk that is the ith user’s “movie taste” should specify a natural basis of V similarly to
what we saw with W .

Having now “defined” hypothetical bases for V and W in order to view each as Rk (via the k
coefficients when expressing a vector as a linear combination in the hypothetical basis vectors), it
makes sense to form the dot product [vi] · [wj] ∈ R of k-vectors (whereas it makes no sense at all, and
certainly not in any way that would ever be useful for our purposes, to define a dot product between
general n-vectors v and m-vectors w). The crucial observation is that, if you think about the meaning
of xa and pa for a minute, this dot product

∑k
a=1 xapa ought to be the ith user’s rating of the jth movie

(on the 1-to-5 scale)! That is, we should have [vi] · [wj] = Rij . If we now define M to be the m× k
matrix whose ith row is [vi] and N to be the k × n matrix whose jth column is [wj], this says

MN = R. (21.6.1)

This is all rather informal at the moment: we don’t know exactly what k is, nor what the categories
Ca are (let alone exactly how to transform row and column data into k-vectors); up to now it is just a
theoretical consideration inside our head.

But there is a precise outcome of this informal reasoning: (21.6.1) suggests that whatever R may
be, there should be some unknown but not-too-big k, some m× k matrix M , and some k × n matrix
N for which MN agrees well with R in even the limited range of entries that Netflix does know.
Precisely because M and N are “low-rank” matrices (N has row rank at most k, and M has column
rank at most k), this outcome already turns out to be extremely restrictive on the possibilities for k,M ,
and N ! When combined with an array of advanced statistical methods and a rich body of techniques
for working with “low-rank” matrices (a topic we will come back to in Example 27.3.8), it turns out
that there is a good way of finding a “best” such k, M , and N . The resulting product MN then
provides a reasonable guess for filling in the unknown entries in R. (Moreover, once we have found
such k, M , andN , we can use them to make operational definitions of the categories C1, . . . , Ck. This
arises in a lot of work on classifier problems.)

We emphasize that for N it is literally the row rank that is small whereas for M it is literally the
column rank that is small. Only because of the equality of row rank and column rank of a matrix is
it unambiguous to speak of a matrix having “low rank”, and the intrinsic nature of this concept (not
prejudiced towards rows or columns!) is essential to the success of algorithms with such matrices. ■

Now let’s come back to the task of explaining why the equality of row rank and column rank (The-
orem 21.6.1) is much more plausible than it may initially appear to be. Applying the geometrically
reasonable Theorem 19.2.5 to the subspace C(A) ⊂ Rm shows rank(A) = m− dimC(A)⊥. Unrav-
eling definitions gives that C(A)⊥ is the null space of A⊤ (please check for yourself; it really involves
nothing more than unraveling definitions), so rank(A) = m − dimN(A⊤). Hence, the miraculous-
looking assertion rank(A) = rank(A⊤) says equivalently that rank(A⊤) = m − dimN(A⊤), or in
other words

m
?
= dimN(A⊤) + rank(A⊤)

for the n×m matrix A⊤. Ah, but this is just the Rank–Nullity Theorem (from Section 21.5) applied
to A⊤!

So the Rank–Nullity Theorem and the geometric Theorem 19.2.5 together contain the entire con-
tent of the equality of row rank and column rank. Many references explain the equality of row rank
and column rank as an outcome of a long algorithmic process called “row reduction”, but the vi-
sual approach as above in terms of linear transformations and orthogonality provides a more intuitive
understanding.
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Chapter 21 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
C(A) column space of anm×nmatrixA (subspace of Rm) Definition 21.2.1
N(A) null space of an m× n matrix A (subspace of Rn) Definition 21.3.2
V ⊂ W V is a subset of W box above Prop. 21.2.5

Concept Meaning Location in text
column space of m× n matrix A span in Rm of the columns in A Definition 21.2.1
image of linear f : Rn → Rm all vectors in Rm obtained as output of f Definition 21.2.9
null space of m× n matrix A all vectors x ∈ Rn for which Ax = 0 Definition 21.3.2
overdetermined, underdetermined
for system of linear equations

more equations than unknowns (“tall” matrix) is
overdetermined, fewer equations than unknowns
(“wide matrix”) is underdetermined

Definition 21.4.2

Result Meaning Location in text
Ax = b has solution precisely when
ProjC(A)(b) = b; existence of solu-
tion is rare when C(A) ̸= Rm

having solution says b ∈ C(A), same
as ProjC(A)(b) = b

Remark 21.2.8

distinct solutions to Ax = b differ by
nonzero solution to Ax = 0

ifAx0 = b = Ax1 thenA(x0−x1) =
0, and x0 − x1 ̸= 0 if x0 ̸= x1

Example 21.3.1

null space is a linear subspace though defined by a system of equa-
tions (admitting 0 as a solution), it is
span of finitely many solutions

Proposition 21.3.6

linear subspaces of Rn are precisely
the collections V of vectors for which:
0 ∈ V and any linear combination of
vectors in V is in V

characterize linear subspaces in terms
of properties rather than a description
(as a span)

Theorem 21.3.7

general solution to Ax = b is built
from a particular solution x0 and N(A)

describe all solutions in terms of x0

and solutions to Ax = 0
Prop. 21.3.10, Thm. 21.3.14

Rank–Nullity Thm (a “conservation
law” for dimension)

interpreting Ax = b in terms of TA :
Rn → Rm, compares dimension of
output and input in terms of N(A)

Ex. 21.3.15, Thm. 21.3.16

Skill Location in text
understand why Ax = b has a solution precisely when b ∈ C(A) (21.2.4)

compute ProjC(A)(b) to check if Ax = b has a solution Example 21.2.7

visualize image of linear transformation Examples 21.2.10, 21.2.11

from particular solution and basis of N(A), describe all solutions to
Ax = b in parametric form

Example 21.3.13

visualize the ideas of overdetermined and underdetermined Figure 21.4.1, Figure 21.4.2, Remark
21.4.5, Example 21.4.6.
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21.7. Exercises. (links to exercises in previous and next chapters)

Exercise 21.1. For each of the following matrices, give a concise description of its column space as a
subspace of a specific Rd (e.g., if the column space is a line in R4, you could explain why it is such a line
and then give a basis vector for that line).

(a) A =

[
1 −2
2 −4

]
.

(b) B =



2 2
2 2
2 2


.

(c) C =

[
3 1
−4 −1

]
.

Exercise 21.2. For each of the matrices

A =

[
1 −2
2 −4

]
, B =



1 −3 0 1
2 5 −1 0
3 2 −1 1


 , C =

[
3 1
−4 −1

]

do the following:
(a) Determine the space Rd to which the null space belongs (write down the value of d for each matrix).
(b) Write down a homogeneous system of linear equations whose set of solutions is the null space of the

matrix.
(c) Find all solutions to the system you give in (b), and thereby give a concise description (e.g., a basis if

it is nonzero) for the null space. (Hint for B: the third row is the sum of the first two rows.)

Exercise 21.3. For each of the following linear systems, say whether it is overdetermined or underde-
termined. Use your answer to give a “rule of thumb” prediction about the number of solutions (do not
perform any computations).

(a)
[
2 2 5
0 −1 3

]

x
y
z


 =

[
5
6

]
.

(b)




33 25
−23 12
5 7



[
x
y

]
=



0
0
0


. Does the fact that this system is homogeneous give you any information

about the correctness of the rule of thumb in this case (again, without doing any computations)?

(c)
[
1 0 1 2
1 0 1 2

]



w
x
y
z


 =

[
1
−1

]
. By comparing the first and second rows, do you get any information

about the correctness of the rule of thumb in this case? (Write out the equations and stare at them.)

Exercise 21.4. Let A be an m × n matrix and v ∈ Rm some vector. Let A′ be the m × (n + 1) matrix
made from A by appending v as the (n+ 1)th column: A′ =

[
A v

]
.

(a) Explain why C(A′) is spanned by C(A) and v, and why dimC(A′) is equal to either dimC(A) or
1 + dimC(A).

(b) Explain why C(A) = C(A′) precisely when v ∈ C(A) (“precisely when” means that if either condi-
tion holds then so does the other, so there are two implications to explain).

(c) Explain why N(A′) ̸= {0} when the condition “v ∈ C(A)” in (b) is satisfied. (You have to use the
condition v ∈ C(A) to create a nonzero solution to the linear system A′x′ = 0. Think about the case
n = 2 as a warm-up.)
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Exercise 21.5. Let A be an m× n matrix and v ∈ Rn. Suppose we form the (m + 1)× n matrix A′′ by

appending the row vector version v′′ of v to A as the (m+ 1)th row: A′′ =

[
A
v′′

]
.

(a) Without knowing anything about v, explain why N(A′′) consists of the vectors in N(A) that are
orthogonal to v (so in particular N(A′′) ⊂ N(A)).

(b) In the case m = 1 and n = 2, show by giving an example for each case each possibility N(A) =
N(A′′) and N(A) ̸= N(A′′) can occur. (There are many possible answers.)

(c) Although C(A) ⊂ Rm and C(A′′) ⊂ Rm+1 do not live in the same ambient space, there is a link
between their dimensions: dimC(A′′) ≥ dimC(A). Explain why this holds. (Hint: suppose the
columns ai1 , . . . , aik of A form a basis for C(A), so k = dimC(A). Explain why the corresponding
columns a′′

i1
, . . . , a′′

ik
in A′′ are also linearly independent, and use this to conclude that dimC(A′′) ≥

k = dimC(A) by relating linearly independent collections to a basis in linear subspaces of Rm.)
(d) In the casem = 1, n = 2 show, by giving an example for each case, that each possibility dimC(A′′) =

dimC(A) and dimC(A′′) > dimC(A) in (d) can occur. (There are many possible answers.)

Exercise 21.6. Let A,B,C be matrices satisfying A = BC. Assume that A has size m× n.
(a) Explain why C(A) ⊂ C(B). (Hint: use the interpretation of the column space of A as the “image” of

the linear transformation TA to show that any vector in the image of TA is also in the image of TB.)
(b) Explain why N(C) ⊂ N(A). (Hint: show that any vector x ∈ N(C) must satisfy Ax = 0.)

Exercise 21.7. Consider a linear system Ax = b for

A =




1 2 1 −1
3 13 17 −10
−1 −3 −3 2


 , x =




x1
x2
x3
x4


 ∈ R4, b ∈ R3.

This exercise uses the projection method from Example 21.2.7 to analyze the solutions x for some b.

(a) Let a1 =




1
3
−1


 and a2 =




2
13
−3


 respectively denote the first and second columns of A. Observe that

the third column a3 equals −3a1+2a2 and the fourth column a4 equals a1−a2 (such relations among
columns could be found by running Gram–Schmidt on the collection of columns, for example). Build
an orthogonal basis for C(A) of the form {a1, a

′
2} (in particular, dimC(A) = 2, so dimN(A) =

4 − 2 = 2 by the Rank–Nullity Theorem), and explain why the preceding linear relations among

the columns express that




−3
2
−1
0


 ,




1
−1
0
−1


 ∈ N(A) (so these two vectors in N(A), visibly linearly

independent, must constitute a basis for N(A) since dimN(A) = 2).
(b) Using the orthogonal basis for C(A) found in (a) to compute ProjC(A)(b) for each of the following

3-vectors b, determine if Ax = b has a solution and when it does then use your projection work to

find a solution and verify your solution works: b1 =



1
6
8


, b2 =



−5
−1
3


, b3 =




1
−4
0


.

(c) In the cases in (b) for which you found a solution, use the basis ofN(A) in (a) to describe all solutions
in a “parametric form”.

Exercise 21.8. Each m × n matrix A below arises in the indicated earlier place in the book, where
dependence relations among its columns a1, . . . , an were (either partially or fully) analyzed. Determine
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dimC(A), dimN(A) (use the Rank–Nullity Theorem), and a basis of N(A). You do not need to do any
intricate computational work (nothing beyond arithmetic readily worked out by hand with small numbers,
and in particular no new Gram–Schmidt calculations).

(a)




2 0 2
0 1 2
1 1 3
0 1 2


 (the work in Example 19.3.2 provides the necessary information).

(b)




1 4 −3 −12 13
−2 1 3 6 −11
1 3 0 −2 6
0 2 1 1 0
1 −2 1 6 −1




(the statement of Exercise 19.6 provides the necessary information).

(c)




1 5 9 −7
−1 2 5 −7
3 0 −3 9
2 1 0 4


 (the statement of Exercise 19.7 provides the necessary information).

Exercise 21.9. Let A be a nonzero 2× 2 matrix (so at least one column is nonzero). This exercise gives a
direct verification of the Rank–Nullity Theorem for such A (so do not appeal to that general result in your
solution!).
(a) Explain why C(A) is either a line through the origin or the entirety of R2, and why N(A) is either a

line through the origin or just the origin.
(b) Explain why C(A) is a line exactly when the columns ofA are linearly dependent, and whyN(A) is a

line exactly when the columns ofA are linearly dependent. In particular, this gives that dimC(A) = 1
precisely when dimN(A) = 1 (as each is equivalent to the same condition: linear dependence of the
columns). You may find it convenient to treat separately the case when some column is 0.

(c) By exhausting dimension possibilities, deduce from (a) and (b) that C(A) = R2 precisely when
N(A) = {0}. (You have to explain two things: why N(A) vanishes when C(A) = R2, and why
C(A) = R2 when N(A) vanishes. These are not the same task twice, so there are really two argu-
ments to be given.)

Exercise 21.10. This exercise illustrates (in some small cases) the sense in which “most” linear systems of
n equations in n unknowns have a unique solution and “most” overdetermined systems have no solutions.
Here, you should think of “most” as meaning something like “the overwhelming majority,” as opposed
to merely “more than half” (this is important because any overwhelming majority of an overwhelming
majority of some set is still an overwhelming majority of the original set, whereas half of half is just 1/4).
As usual, we should still take care when dealing with any specific linear system, since “most” is not the
same as “always.”

(a) Consider a system Ax = b with 2 equations and 2 unknowns: A =

[
a1 a2
a3 a4

]
, and b =

[
b1
b2

]
. Use

Theorem 18.3.3 to show that if the system does not have a unique solution (i.e., no solution or more
than one) then a1a4 − a2a3 = 0.
[Since “most” choices of the ai’s do not satisfy this equation, it follows that “most” systems with 2
equations and 2 unknowns have exactly one solution. The same applies to system of n equations in n
unknowns for n > 2, but that involves the n× n notion of determinant.]
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(b) Consider a system Ax = b with 3 equations and 2 unknowns: A =



a1 a2
a3 a4
a5 a6


, and b =



b1
b2
b3


. Let’s

temporarily ignore the last equation to obtain a linear system with 2 equations and 2 unknowns. By

(a), “most” such systems have exactly one such solution, say
[
x0
y0

]
. Suppose this is the case in our

situation. Write down an equation for a5, a6, b3 in terms of x0, y0 that must be satisfied in order for
Ax = b to have at least one solution.
[Since the overwhelming majority choices of a5, a6, b3 will not satisfy this equation, we can thus
conclude that “most” systems with 3 equations and 2 unknowns do not have a solution.]

Exercise 21.11. This exercise illustrates (in some small cases) the sense in which “most” underdeter-
mined systems have infinitely many solutions. Here, you should think of “most” as meaning something
like “the overwhelming majority,” as opposed to merely “more than half” (this is important because any
overwhelming majority of an overwhelming majority of some set is still an overwhelming majority of the
original set, whereas half of half is just 1/4). As usual, we should still take care when dealing with any
specific linear system, since “most” is not the same as “always.”

Consider a system Ax = b with 2 equations and 3 unknowns: A =

[
a1 a2 a3
a4 a5 a6

]
, and b =

[
b1
b2

]
.

(a) Use the recipe in Example 18.2.2 to argue that the matrix A′ =

[
a1 a2
a4 a5

]
is invertible for “most”

values of the ai’s.
Assume for the next two parts that A′ is indeed invertible.
(b) Multiply both sides of the system Ax = b on the left by (a1a5 − a2a4) · (A′)−1. Write down the

resulting (equivalent) linear system. (The nonzero scalar factor detA′ = a1a5 − a2a4 is included to
avoid ugly denominators in the answer.)

(c) By writing an explicit expression (no need to simplify), show that for any value of z ∈ R, your

system from part (b) has a solution of the form x =



x
y
z


. In other words, solve for x, y in terms

of z (involving the ai’s and bj’s; it is fine to carry along the expression detA′ in your work without
expanding it out).

Thus, by varying z in (c), in “most” cases a system with 2 equations and 3 unknowns has infinitely many
solutions (expressing algebraically that typically two planes in space – not necessarily through the origin
– cross each other along a line).

Exercise 21.12. This exercise involves the overdetermined and underdetermined ideas when we combine
linear systems. In each case below, if you don’t think there is a reasonable guess for the behavior of the
combined linear system (e.g. if it depends on the specific sizes of the underlying systems), you should
explain why rather than giving an unreasonable guess. Accompany your answer with some informal
reasoning (please don’t write out anything involving long lists of variables or computations with them).
(a) Suppose A1x = b1 and A2y = b2 are overdetermined linear systems. How many solutions do you

expect the combined system

{
A1x = b1

A2y = b2

to have? (e.g. 0, 1, finitely many but maybe more than 1,

or infinitely many)
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(b) Suppose A1x = b1 is an overdetermined linear system and A2y = b2 is an underdetermined linear

system. How many solutions do you expect the combined system

{
A1x = b1

A2y = b2

to have? (Note that

the systems of variables x and y are unrelated.)
(c) Suppose A1x = b1 and A2x = b2 are linear systems of n equations in the same collection of n

variables x1, . . . , xn. How many solutions do you expect the combined system
[
A1

A2

]
x =

[
b1

b2

]
to

have?
(d) SupposeA1x = b1 andA2y = b2 are underdetermined linear systems where b1 and b2 arem-vectors

for a common m. How many solutions do you expect the combined system
[
A1 A2

] [x
y

]
= b1+b2

to have?

Exercise 21.13. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):
(a) If A is an invertible n× n matrix then N(A) = {0}.
(b) If A is a 2× 2 matrix then a nonzero vector in N(A) cannot belong to C(A).
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22. Matrix decompositions: QR-decomposition and LU -decomposition

In this chapter we describe an approach to solving a linear system Ax = b that involves writing A as
a product of simpler matrices. There are many such matrix decompositions (or matrix factorizations, as
they are sometimes called) that are useful for this and related problems; we discuss two of them, called
the QR-decomposition and LU -decomposition. For these methods, the first key point is to express an
arbitrary matrix A as a product A = QR for Q with orthonormal columns and R upper triangular (also
called “right triangular”), or as a product A = LU for lower triangular L and upper triangular U . The
second key point is to understand why such expressions for A help with solving Ax = b.

Matrices have been recognized as important mathematical objects since the 19th century (see [Ha1] for
an interesting historical survey), but the use of matrix decompositions to solve linear systems efficiently
and accurately started only in the 1950’s. On electronic computers of the mid-1940’s, the task of accurately
solving (say to 6 decimal digits) a general linear system of 10 equations in 10 unknowns was regarded as
essentially hopeless, due to accumulated rounding errors. J.H. Wilkinson20, who worked with Turing in
those days, had the following to say in his acceptance speech for the 1970 Turing Award (see [Wil2,
p. 143]).

When I joined [the National Physical Laboratory] in 1946 the mood of pessimism about the
stability of elimination methods for solving linear systems [of n equations in n unknowns] was
at its height and was a major talking point. Bounds had been produced which purported to show
that the error in the solution would be proportional to 4n and this suggested that it would be
impractical to solve systems even of quite modest order. I think it was true to say that at that time
(1946) it was the more distinguished mathematicians who were most pessimistic, the less gifted
being perhaps unable to appreciate the full severity of the difficulties.

By the mid-1960’s, the difficulties were mostly overcome using an array of matrix decompositions. The
moral of the story is: the leading “more distinguished” experts can sometimes be too pessimistic!

Such matrix decompositions for a given matrix A will be used to solve Ax = b fairly efficiently.
The QR-decomposition expresses the outcome of the Gram–Schmidt process from Chapter 19 applied
to the columns of A, and it arises when solving many other problems with real-world significance (see
Section 22.5, especially from Proposition 22.5.1 onwards, and Appendix H)! The LU -decomposition is
essentially the outcome of “row reduction” (also called Gaussian elimination), which for 2× 2 matrices A
is a repackaging of the usual algebra method to solve 2 linear equations in 2 unknowns.

By the end of this chapter you should be able to:
• solve a linear system or invert a matrix, given a suitable matrix decomposition (QR or LU );
• use Gram–Schmidt to construct a QR-decomposition.

These two decompositions are far from the end of the story: efficient implementation of them on a
computer requires further work. Since these (and their generalizations, as well as other important de-
compositions) are so important for numerical work, many clever modifications have been made which
optimize their use and implementation. This chapter does not treat any of that more advanced material;
we are just giving an introduction to the idea and applications of matrix decompositions as an illustration
of the power of matrix algebra. Our emphasis is on how to use these decompositions (including purposes
beyond solving linear systems!). There are many software tools to find the decompositions for a given
matrix, and the range of applications of matrix decompositions is truly vast.

20James H. Wilkinson (1919-1986) was a British mathematician who made fundamental contributions to numerical analysis
and the development of accurate and efficient computational algorithms on computers, especially centered around linear algebra.
He was on the Stanford CS faculty (not math faculty, oddly enough) during 1977-1984, but only in residence during the winter.
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22.1. Solving some special linear systems. We have already discussed at length in Chapter 21 what
to expect concerning whether a given linear system Ax = b of m equations in n unknowns has a solution,
and if so then how many. However, when faced with a big linear system in a real-world problem, we need
to either (i) find the solution(s) numerically, or (ii) find a good “approximate solution” if there is no exact
solution. The matrices arising in contemporary practical applications can be quite large, sometimes with
the number of equations and unknowns each on the order of millions or billions, and (to make matters
worse) the matrix entries are rarely whole numbers or simple fractions. This puts a huge emphasis on
methods that are efficient, in the sense of minimizing the number of actual arithmetic calculations that
need to be performed, and approximate the solution(s) to a high degree of accuracy.

When grappling with very large linear systems (or really, anything with m,n > 3), you will undoubt-
edly want to use some computational software rather than compute the answer by hand. All computer-
assisted methods rely in an essential way on matrix algebra in the sense that they all involve the deter-
mination and use of a matrix decomposition: writing a matrix A as a product of “simpler” matrices and
leveraging special properties of those simpler matrices to find the solution in stages.

If you look at the Wikipedia page for “matrix decomposition”, you will find many such methods. We
shall discuss two of the most widely used (called the LU and QR methods, for reasons to be explained).
It is important to keep in mind several points:

(i) There is no overall best method; many different matrix decompositions exist, and the choice of which
one to use depends on the task at hand. Although we focus on the LU and QR-decompositions, there
are other decompositions which are better suited for handling certain types of matrices that arise in
some specific applications.

(ii) We discuss here only the most bare-bones version of the LU and QR methods, but in practice with
large linear systems it is crucial to incorporate refinements to speed up the processing time and im-
prove the numerical stability.

(iii) For solving linear systems of n equations in n unknowns, the LU method is faster than the QR
method by a factor of 2; that difference mattered a lot back when the time comparison was 10 hours
versus 5 hours; nowadays it is often a difference of milliseconds and so perhaps is not so crucial
anymore. However, more significantly, the LU method has the defect that for certain matrices an
LU -decomposition may not exist. Fortunately, such “bad” matrices are rare (and the LU method can
be adjusted to handle them). However, it is very difficult to predict beforehand whether a matrix that
arises for any particular application is one of these problematic matrices.

Matrix decompositions and their application to solving Ax = b for general A are discussed in Section
22.2 for square A and Section 22.5 for general A. In this first section, as a warm-up we’ll see that for
special matrices A the linear system Ax = b is very simple to solve. These examples might look too
special to be of general interest, but miraculously the opposite is true: we shall build upon these special
cases to tackle Ax = b for general A!

Example 22.1.1. Suppose that A is an upper triangular square matrix; this means that it is an n×n matrix
for which every entry below the diagonal vanishes; i.e., aij = 0 whenever i > j. (We have encountered
this earlier, in Example 15.1.7.) If we write out the corresponding linear system, it might look like this:

3x1 − 2x2 + 4x3 − 8x4 = 32

9x2 + 5x3 + 6x4 = −3

x3 + 2x4 = −1

−5x4 = 25

We will proceed by working our way up from the bottom. First solve the last equation: x4 = −5. Now
substitute this into the next to last equation to get x3 + 2(−5) = −1, or in other words x3 = 9. Then
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substitute these two values for x4 and x3 into the third to last equation, and so on. (One gets x2 = −2, and
finally x1 = −16 via the first equation.)

This method is called back-substitution. It is quite easy to carry out to uniquely solve Ax = b for any
n× n upper triangular A and n-vector b provided that the diagonal entries of the upper triangular square
matrix A are nonzero. The non-vanishing of the diagonal entries corresponds to the coefficient of xj in the
jth equation being nonzero, which is necessary in order to (uniquely) solve for xj at that step.

Essentially the same calculations also work for lower triangular square matrices A (i.e., those whose
entries above the diagonal all vanish), except that we work our way from the top to the bottom: one solves
the first equation for x1, then the second equation for x2, and so on. For example, in the linear system

2x1 = 6

−3x1 + x2 = −7

x1 + 4x2 + 3x3 = 5

(22.1.1)

the first equation tells us x1 = 3, and plugging that into the second equation gives −9 + x2 = −7, so
x2 = 2. Plugging these values for x1 and x2 into the third equation gives 3 + 8 + 3x3 = 5, which
says 11 + 3x3 = 5, so 3x3 = −6 and hence x3 = −2. Putting it all together gives the unique solution
(x1, x2, x3) = (3, 2,−2). ■

Remark 22.1.2. Hopefully the specific numerical illustrations in Example 22.1.1 convinced you that back-
substitution always works for upper triangular and lower triangular square matrices A when all ajj are
nonzero, but let’s now discuss why it really works for such general upper triangular n× n matrices A (the
lower triangular case goes similarly). The last equation annxn = bn in an upper triangular system has the
unique solution xn = bn/ann, and at the stage of solving for xj we have already uniquely determined the
values of xj+1, . . . , xn, so upon inserting those values into the jth equation we uniquely solve for xj by
dividing throughout by its coefficient ajj .

This division step is where we could run into problems if ajj = 0. (It is shown in Remark 22.6.3 that
an upper triangular n×n matrix A with a vanishing diagonal entry really is never invertible: its null space
N(A) is always nonzero and its column space C(A) inside Rn never coincides with Rn.) For example,
we get into trouble if we find ourselves trying to solve the upper triangular system

3x1 − 2x2 + 4x3 = 6

0x2 + 5x3 = −3

2x3 = −4.

The last equation can be used to determine x3, but then the second-to-last equation produces a conflict
which cannot be resolved by choosing the value of x2 appropriately. (If the right side of the second
equation is anything other than −10 then there is such a conflict.)

Since Ax = b is uniquely solvable for any b when A is an upper or lower triangular square matrix
with all diagonal entries nonzero, Proposition 18.1.5 and Definition 18.1.6 yield:

Theorem 22.1.3. If A is an upper or lower triangular n × n matrix with all diagonal entries nonzero
then A is invertible.

Next suppose A is an m× n matrix with orthonormal columns. (For m = n = 3 these are the rotation
matrices up to an overall sign; see Remark E.5.3.) To solve Ax = b we try multiplying each side by A⊤

on the left since A⊤A = In by orthonormality of the columns (Theorem 20.4.1):

if Ax = b then A⊤(Ax) = A⊤b, and A⊤(Ax) = (A⊤A)x = Inx = x, so x = A⊤b.
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Hence x = A⊤b is the only possible solution to Ax = b, and if m = n then it really is a solution because

x = A⊤b implies Ax = A(A⊤b) = (AA⊤)b = Inb = b

(this used that AA⊤ = In when m = n, by Theorem 20.4.1). We have shown:

Theorem 22.1.4. For an n × n orthogonal matrix A, the equation Ax = b has exactly one solution:
x = A⊤b. (The optional Section 22.5 discusses an analogue form×nmatricesA having orthonormal
columns with any m ≥ n, and illustrates its great utility.)

In practice one often encounters “non-square” linear systems Ax = b; i.e., an m × n matrix A with
m ̸= n (“number of equations” not equal to “number of unknowns”). The simplest of these to handle
will be A that are upper triangular or lower triangular in the sense introduced in Example 15.1.7 that we
now review. For a general m × n matrix with m ̸= n, to visualize the meaning of “upper triangular” and
“lower triangular” there are two cases for each, depending on whetherm < n or m > n. This is illustrated
schematically as follows: in the underdetermined case (m < n: fewer equations than unknowns)

U =




∗ ∗ . . . ∗ ∗ . . . ∗
0 ∗ . . . ∗ ∗ . . . ∗
...

... . . . ...
... · · · ...

0 0 . . . ∗ ∗ . . . ∗
0 0 . . . 0 ∗ . . . ∗



, L =




∗ 0 . . . 0 0 0 . . . 0
∗ ∗ . . . 0 0 0 . . . 0
...

... . . . ...
...

... · · · ...
∗ ∗ . . . ∗ 0 0 . . . 0
∗ ∗ . . . ∗ ∗ 0 . . . 0




(22.1.2)

and in the overdetermined case (m > n: more equations than unknowns)

U =




∗ ∗ . . . ∗ ∗
0 ∗ . . . ∗ ∗
...

... . . . ...
...

0 0 . . . ∗ ∗
0 0 . . . 0 ∗
...

... · · · ...
...

0 0 . . . 0 0




, L =




∗ 0 . . . 0 0
∗ ∗ . . . 0 0
...

... . . . ...
...

∗ ∗ . . . ∗ 0
∗ ∗ . . . ∗ ∗
...

... · · · ...
...

∗ ∗ . . . ∗ ∗




(22.1.3)

with upper triangular U and lower triangular L. The next four examples solve systems of each type above.

Example 22.1.5 (underdetermined upper triangular). Consider the underdetermined linear system of 3
equations in 5 unknowns

2x1 − 3x2 + x3 + 3x4 − x5 = 2

x2 + 4x3 + 4x4 − 7x5 = 5

3x3 + 3x4 − 6x5 = 3

This has the form Ux = b with U =



2 −3 1 3 −1
0 1 4 4 −7
0 0 3 3 −6


 upper triangular as on the left in (22.1.2).

Because U has nonzero diagonal entries, this will be easy to solve via back-substitution; the “rule of
thumb” from Section 21.4 that there are infinitely many solutions will also be verified explicitly.

The key insight is that the “extra variables” x4 and x5 corresponding to the “extra columns” of U (i.e.,
the columns beyond those meeting the diagonal of U ) can be moved to the right side of each equation,
turning this into an upper triangular square system (of 3 equations in 3 unknowns)

2x1 − 3x2 + x3 = 2− 3x4 + x5

x2 + 4x3 = 5− 4x4 + 7x5

3x3 = 3− 3x4 + 6x5

(22.1.4)
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upon choosing values of x4 and x5 at will. For instance, if we choose x4 = 2 and x5 = −1 then this
becomes the square upper triangular system

2x1 − 3x2 + x3 = −5

x2 + 4x3 = −10

3x3 = −9

(22.1.5)

We solve for the remaining variables x1, x2, x3 by back-substitution: x3 = −3, x2 = 2, x1 = 2 (with
x4 = 2, x5 = −1). Please do the back-substitution yourself as a check on your understanding.

The same process works for any specific values of x4 and x5, leading us to realize it even works
treating x4 and x5 symbolically by solving (22.1.4) successively for x3, x2, x1 in terms of x4 and x5 via
back-substitution (doing the same algebra with symbolic x4 and x5 that we did above with (22.1.5) for
the numerical values x4 = 2, x5 = −1): we obtain x3 = 1 − x4 + 2x5, then x2 = 1 − x5, and finally
x1 = 2−x4− 2x5. (Please do the back-substitution yourself as a check on your understanding.) This says




x1
x2
x3
x4
x5



=




2− x4 − 2x5
1− x5

1− x4 + 2x5
x4
x5



=




2
1
1
0
0



+ x4




−1
0
−1
1
0



+ x5




−2
−1
2
0
1



. (22.1.6)

In the expression on the right, the first vector




2
1
1
0
0




is a particular solution of the initial system Ux =



2
5
3




(corresponding to the values x4 = 0 and x5 = 0). The vectors multiplying x4 and x5 on the right in (22.1.6)
constitute a basis for the null space N(U) since vectors in N(U) precisely account for the “degrees of
freedom” in the collection of all solutions to Ux = b for a given b, as in Theorem 21.3.14(iii). There are
two “degrees of freedom” when solving the system, reflecting that x4 and x5 may be chosen arbitrarily
and corresponding to the fact that dimN(U) = 2.

The procedure works the same way for any b whatsoever, so Ux = b has a solution for any b (hence
C(U) = R3) and the solutions can be described with “two degrees of freedom” (expressed in terms of x4
and x5, making Theorem 21.3.14(iii) explicit). ■

Example 22.1.6 (underdetermined lower triangular). The underdetermined lower triangular case is much
easier (and so less interesting) than the underdetermined upper triangular case: it is a linear system whose

“extra variables” have coefficients equal to 0 and so don’t appear at all! Consider Lx =




6
−7
5


 for the

lower triangular 3 × 5 matrix L =




2 0 0 0 0
−3 1 0 0 0
1 4 3 0 0


 (corresponding to the schematic on the right in

(22.1.2)) and unknown x ∈ R5. When we compute the 3-vector Lx, the variables x4 and x5 never appear

in the output since the 4th and 5th columns of L vanish. Thus, the linear system Lx =




6
−7
5


 with

unknown x ∈ R5 is our old friend (22.1.1) but viewed as equations on R5 that don’t involve x4 or x5.
This is akin to regarding “2x1 − 3x2 = 8” as an equation on R3 not involving x3 (defining a plane parallel
to the x3-axis) rather than on R2 (defining a line).
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Doing back-substitution from the top to bottom uniquely determines x1 = 3, x2 = 2, x3 = −2, and
there are no constraints on x4 or x5 (they don’t even appear in the equations!), yielding as the solutions




x1
x2
x3
x4
x5



=




3
2
−2
x4
x5



=




3
2
−2
0
0



+ x4




0
0
0
1
0



+ x5




0
0
0
0
1



.

Once again the first vector on the right side corresponds to a particular solution (with x4 = 0, x5 = 0), this
one being the unique solution to the corresponding 3× 3 square system that ignores the invisible variables
x4 and x5, and there are again two degrees of freedom corresponding to x4 and x5 that can be assigned
whatever values we want. In this case N(L) has a basis {e4, e5} consisting of the standard basis vectors
corresponding to the invisible variables x4, x5. ■

Next we consider some overdeterminedm×n triangular systemsAx = b. Since C(A) is the subspace
of Rm spanned by the n columns of A, so dimC(A) ≤ n < m, for dimension reasons C(A) cannot
coincide with Rm. Thus, a typical b ∈ Rm does not belong to C(A) (e.g., for m = 3 the subspace C(A)
may be a line or plane in R3 through 0, which misses most points b ∈ R3). In other words, Ax = b
has no solution unless b is quite special (depending on A), so to organize our work we will consider a
specific A but leave b in a form with symbolic entries bj that we regard as numbers for which we seek the
constraints on them ensuring Ax = b has a solution (i.e., b ∈ C(A)).

Example 22.1.7 (overdetermined upper triangular). Consider the linear system Ux = b of 5 equations in

3 unknowns with the upper triangular 5× 3 matrix U =




2 −3 1
0 1 4
0 0 3
0 0 0
0 0 0




; written out, it says

2x1 − 3x2 + x3 = b1

x2 + 4x3 = b2

3x3 = b3

0 = b4

0 = b5

(22.1.7)

for unknowns x1, x2, x3, and bj’s that we imagine to be specific numbers. We consider all possibilities for
b because it will clarify our work to treat the bj’s symbolically (but we think of them as given numbers).

The last 2 equations in (22.1.7), corresponding to the “extra rows” of U , do not involve any of the
variables; this always happens with the extra rows at the bottom in overdetermined upper triangular cases,
and it tells us that there is no solution unless b4 = 0 and b5 = 0. This makes explicit that the column space
C(U) of the 5× 3 upper triangular U is not all of R5 (it is spanned by the 3 columns). We shall next show
that C(U) consists of precisely those b ∈ R5 whose last two entries b4 and b5 equal 0.

If b4 = 0 and b5 = 0 then the last 2 equations in (22.1.7) tell us nothing, so we can ignore them and the
remaining 3 equations constitute an upper triangular square system in the variables x1, x2, x3 that we can
solve by back-substitution. This is the square system we dealt with in Example 22.1.5 (upon specifying
values for x4 and x5 there), so we solve it as we did for (22.1.5), always getting exactly one solution. The
uniqueness of the solution tells us N(U) = {0}, by Theorem 21.3.14. ■

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 486



Example 22.1.8 (overdetermined lower triangular). Finally, consider the linear system Lx = b of 5 equa-

tions in 3 unknowns for the lower triangular 5× 3 matrix L =




2 0 0
−3 1 0
1 −4 3
2 −7 3
4 5 −1




; written out, it says

2x1 = b1

−3x1 + x2 = b2

x1 − 4x2 + 3x3 = b3

2x1 − 7x2 + 3x3 = b4

4x1 + 5x2 − x3 = b5

(22.1.8)

for unknowns x1, x2, x3, and bj’s that we imagine to be specific numbers. As in Example 22.1.7, it will
clarify our work to treat the bj’s symbolically (even though we think of them as given numbers).

Focus on the first 3 equations in (22.1.8), ignoring the last 2 equations (corresponding to the “extra
rows” in L). This is a lower triangular square system for the unknown x ∈ R3. We know how to uniquely
solve such square systems via back-substitution. Doing this by treating b1, b2, b3 symbolically, some care
with the algebra yields (please try for yourself)


x1
x2
x3


 =




(1/2)b1
(3/2)b1 + b2

(11/6)b1 + (4/3)b2 + (1/3)b3


 . (22.1.9)

(As a safety check, if we plug this into the left side of the first 3 equations in (22.1.8) we indeed get
b1, b2, b3 as expected.) For instance, if (b1, b2, b3) = (6,−7,−11) then (22.1.9) says that the square system
given by the first 3 equations in (22.1.8) has unique solution x = (3, 2,−2).

Having found a unique x ∈ R3 as in (22.1.9) via the first 3 equations in (22.1.8), the remaining
2 equations at the bottom of (22.1.8) (corresponding to the “extra rows” in L) do not involve anything
unknown! That is, we now know what every xi must be, so solving (22.1.8) amounts to checking if those
specific xi’s also satisfy the 2 equations at the bottom of (22.1.8); these are constraints on b4 and b5.

To illustrate this, again suppose (b1, b2, b3) = (6,−7,−11), so we have seen that the lower triangu-
lar square system consisting of the first 3 equations in (22.1.8) has the unique solution x = (3, 2,−2).
Plugging that into the overdetermined system (22.1.8), the final 2 equations then say

2(3)− 7(2) + 3(−2) = b4, 4(3) + 5(2)− 1(−2) = b5;

i.e., (b4, b5) = (−14, 24). Hence, for b = (6,−7,−11, b4, b5) the system Lx = b has the unique solution
x = (3, 2,−2) ∈ R3 when (b4, b5) = (−14, 24) and no solution when (b4, b5) ̸= (−14, 24).

In general, being careful with the algebra, plugging (22.1.9) in for the xi’s on the left in the last 2
equations in (22.1.8) turns those equations into

−4b1 − 3b2 + b3 = b4, (23/3)b1 + (11/3)b2 − (1/3)b3 = b5.

These two equations on the bj’s characterize the 5-vectors b for which the overdetermined system Lx = b
has a solution x ∈ R3, so they describe the subspace C(L) inside R5, and N(L) = {0} by Theorem
21.3.14 since we have seen that a solution to Lx = b is unique when it exists. ■

We now record general conclusions that express the lessons illustrated in Examples 22.1.5–22.1.8.

Theorem 22.1.9. LetA be an upper or lower triangularm×nmatrix with all diagonal entries nonzero.
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(i) If m = n then Ax = b always has a unique solution (found via back-substitution).
(ii) In the underdetermined case (m < n), Ax = b always has a solution (i.e., C(A) = Rm) and

dimN(A) = n −m > 0. The solutions are given by uniquely solving for x1, . . . , xm in terms
of arbitrarily chosen xm+1, . . . , xn. For lower triangular A, the linear system Ax = b is really m
equations in x1, . . . , xm with the other xj’s having coefficient 0 in every equation.

(iii) In the overdetermined case (m > n), dimC(A) = n < m (so Ax = b only has a solution for
special b) and N(A) = {0} (so a solution to Ax = b is unique when one exists). The column
space C(A) is described by expressions for each of bn+1, . . . , bm in terms of b1, . . . , bn; for upper
triangular A these expressions are simply bn+1 = 0, . . . , bm = 0.

22.2. Solving square linear systems via matrix decompositions. We have now learned how to solve
Ax = b whenA is orthogonal or is upper or lower triangular with all diagonal entries nonzero. This might
seem too special to be of much use, but it is a remarkable fact that (up to some minor adjustments we shall
discuss) for any matrix A we have (away from rare situations) A = LU where L is lower triangular and
U is upper triangular and also (with no exceptions) A = QR where Q has orthonormal columns and R is
upper triangular. These will enable us to solve Ax = b by leveraging the special cases from Section 22.1.

To focus on one thing at a time, in this section we concentrate on square matrices A; the situation for
non-square A (beyond triangular cases) is discussed in the optional Section 22.5.

Theorem 22.2.1.
(i) (LU -decomposition) “Most” n×n matrices A have the form A = LU for n×n lower triangular

L and n × n upper triangular U . The matrix A is invertible precisely when the diagonal entries
of L and U are nonzero.

(ii) (QR-decomposition) An invertible n × n matrix A can be written as A = QR where Q is an
n×n orthogonal matrix and R is an n×n upper triangular matrix with positive diagonal entries.

Remark 22.2.2. In Theorem 22.2.1(i), the meaning of “most” is that only those A whose entries satisfy
certain special conditions fail to admit an LU -decomposition. For such special A, an LU -decomposition
exists after rearranging the rows of A; this is illustrated in Remark 22.6.2. Theorem 22.2.1(ii) has a
formulation that works without assuming invertibility, but we won’t discuss it in homework or exams
(since this is just a first course), so you can focus on invertible A for QR-decompositions. But going
beyond the invertible (and beyond the square) case for theQR-decomposition is very important in practical
applications, as is discussed and illustrated at length in Section 22.5 and in Math 104.

In case you are curious, the version of Theorem 22.2.1(ii) that works for any nonzero n × n matrix
A is that A = QR where Q is an n × k matrix with orthonormal columns for k = dimC(A) (≤ n)
and R is a k×n upper triangular matrix with nonnegative diagonal entries. The matrix A is invertible
precisely when k = n (in which case Q is an orthogonal matrix) and the nonnegative diagonal entries
of R are nonzero (i.e., positive). An illustration with a non-invertible 3 × 3 matrix A and k = 2 is
given in Example 22.4.5.

In the remainder of this section we explain how such decompositions are used to solve Ax = b where
A is n× n and we are given the factors (either L and U , or Q and R). We do not yet address the question
of how to construct either of these decompositions of A; in Section 22.6 we sketch how to find an LU -
decomposition (when it exists), and in Section 22.4 it will be seen that finding a QR-decomposition is
tantamount to carrying out the Gram–Schmidt process from Section 19.2 for the columns of A. Computer
software is very well-adapted to compute both types of decompositions (see Remark 22.2.6).

Suppose we have factored a given n×n matrix A as LU for n×n lower triangular L and n×n upper
triangular U with all diagonal entries nonzero. To solve Ax = b, we use that Ax = (LU)x = L(Ux) to
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rewrite the system as L(Ux) = b and so break the task into two separate problems:

solve Ly = b, and then solve Ux = y.

In other words, we introduce an “intermediate” unknown n-vector y and solve the equation Ly = b for
this vector, and then use such y as the right side in the equation Ux = y (so Ax = L(Ux) = Ly = b).

The gain in turning the original n × n system into a pair of such systems is that these two new in-
termediate systems are of the much easier type that we learned how to solve in Section 22.1! We solve
Ly = b by back-substitution as in Example 22.1.1 since L is n × n lower triangular with all diagonal
entries nonzero, and similarly for Ux = y since U is n × n upper triangular with all diagonal entries
nonzero. For the LU -decomposition of a general (perhaps non-invertible) n×n matrix, either L or U may
have some 0’s on its diagonal. These possibilities cause extra complications (as seen in Remark 22.1.2)
that we avoid here.

Example 22.2.3. Suppose we are given that A =




5 0 1
1 2 2
−1 4 2


 can be factored as

A =




1 0 0
1/5 1 0
−1/5 2 1




︸ ︷︷ ︸
L



5 0 1
0 2 9/5
0 0 −7/5




︸ ︷︷ ︸
U

.

Finding such a factorization requires work that is safest to relegate to a computer, but once you see this
decomposition you can multiply the matrices to check that it is actually true that A is the product of this L

and U . We now use it to solve Ax = b =



1
3
4


.

Rewrite “Ax = b” as (LU)x = b or equivalently L(Ux) = b. Now we set y = Ux to break our
problem into two steps: solve Ly = b and then solve Ux = y (so Ax = L(Ux) = Ly = b).

We first solve the linear system Ly = b by back-substitution from top to bottom since L is lower
triangular. Writing out the equations, this system is

y1 = 1

(1/5)y1 + y2 = 3

−(1/5)y1 + 2y2 + y3 = 4.

The first equation tells us y1 = 1, and plugging that into the second equation gives (1/5) + y2 = 3, so
y2 = 3− 1/5 = 14/5. Plugging these values for y1 and y2 into the third equation gives

−(1/5)1 + 2(14/5) + y3 = 4,

which says 27/5 + y3 = 4, so y3 = 4− 27/5 = 20/5− 27/5 = −7/5. Putting it all together gives

y1 = 1, y2 = 14/5, y3 = −7/5.

Having found the vector y, we now proceed to solve Ux = y, which is an upper triangular system.
Writing out the equations, this system is

5x1 + 0x2 + x3 = 1

2x2 + (9/5)x3 = 14/5

−(7/5)x3 = −7/5
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We will solve via back-substitution from bottom to top since it is upper triangular. The last equation tells
us x3 = 1, and plugging this into the next line up gives 2x2 + (9/5)(1) = 14/5, so 2x2 = 1 and hence
x2 = 1/2. Plugging these values for x3 and x2 into the first equation gives

5x1 + 1 = 1,

so x1 = 0.

Through these two steps we have found that the solution of the original equation is x =




0
1/2
1


. You

can (and should) check that this really does satisfy Ax = b.
To summarize, we solved Ax = b by successively solving two easier problems via back-substitution.

Note that when solving for y in “Ly = b” we went from top to bottom (i.e., y1 to y3) whereas when
solving for x in “Ux = y” we went from bottom to top (i.e., x3 to x1), ultimately because L is lower
triangular and U is upper triangular. ■

We emphasize again that back-substitution works only if the diagonal entries of both L and U are all
nonzero. The diagonal of L or U has a 0 whenever A is not invertible.

Suppose instead that we have factored a given invertible n× n matrix A as QR for n× n orthogonal
Q and n × n upper triangular R with all diagonal entries nonzero. To solve Ax = b, we use that Ax =
(QR)x = Q(Rx) to rewrite the system as Q(Rx) = b and so our task is two separate problems:

solve Qy = b, and then solve Rx = y.

In other words, we introduce an “intermediate” unknown n-vector y and solve the equation Qy = b for
this vector, and then use such y as the right side in the equation Rx = y (so Ax = Q(Rx) = Qy = b).

We have Q−1 = Q⊤ since Q is orthogonal, so the solution to Qy = b is y = Q⊤b (see Theorem
22.1.4). Now we know y, and we can solve the resulting second equation Rx = y by back-substitution as
in Example 22.1.1 since R is n× n upper triangular with all diagonal entries nonzero.

For the QR-decomposition of a general (perhaps non-invertible) n × n matrix, as well as a general
m×nmatrix,Qmay be non-square (so not invertible) orRmay have some 0’s on its diagonal. Non-square
Q arise in many applications; we address these possibilities in the optional Sections 22.4–22.5.

Example 22.2.4. Consider Ax = b given by


1 3 2
1 1 −2
1 2 −2





x1
x2
x3


 =




4
−1
2


 .

Suppose we have been given the QR-decomposition of A:


1 3 2
1 1 −2
1 2 −2


 =



1/
√
3 1/

√
2 1/

√
6

1/
√
3 −1/

√
2 1/

√
6

1/
√
3 0 −2/

√
6





√
3 2

√
3 −2/

√
3

0
√
2 2

√
2

0 0 4/
√
6


 .

You can check by hand that the first matrix on the right side is an orthogonal matrix (its columns are
an orthonormal set of vectors), and the second matrix on the right side is visibly upper triangular. This
illustrates that even if the entries of A are simple numbers (e.g., integers), the entries of Q and R may
be complicated-looking numbers. In particular, the presence of square roots is almost inevitable because
each column of Q has length 1 (as Q is an orthogonal matrix). So although we don’t yet know how such
Q and R are found (it is discussed in Section 22.4), when given to us we can verify that they are correct.
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Proceeding as we have learned, the solution x satisfies

Rx = Q⊤b = Q⊤




4
−1
2


 =



1/
√
3 1/

√
3 1/

√
3

1/
√
2 −1/

√
2 0

1/
√
6 1/

√
6 −2/

√
6






4
−1
2


 =




5/
√
3

5/
√
2

−1/
√
6


 ,

and in terms of the explicit entries of R this is the triangular system


√
3 2

√
3 −2/

√
3

0
√
2 2

√
2

0 0 4/
√
6





x1
x2
x3


 =




5/
√
3

5/
√
2

−1/
√
6


 .

We now solve this by back-substitution (going from bottom to top, since it is an upper triangular system).
We first see that (4/

√
6)x3 = −1/

√
6, so x3 = −1/4. The second equation says

√
2x2 + 2

√
2(−1/4) =

5/
√
2, or x2 = 3. Substituting the solved values of x3 and x2 into the top equation turns that into

√
3x1 + (2

√
3)(3) + (−2/

√
3)(−1/4) = 5/

√
3,

or equivalently
√
3x1 + 6

√
3 + (1/6)

√
3 = (5/3)

√
3, so x1 = −9/2. We arrive, finally, at the unique

solution x =



−9/2
3

−1/4


 (no ugly square roots!). You can (and should) check that this satisfies Ax = b. ■

Example 22.2.5. For more practice with the QR-decomposition, let’s solve Ax = b defined by


2 1 1
−1 −2 1
1 −1 1





x1
x2
x3


 =




7
−8
1




when given the QR-decomposition for A:



2 1 1
−1 −2 1
1 −1 1


 =




2/
√
6 0 1/

√
3

−1/
√
6 −1/

√
2 1/

√
3

1/
√
6 −1/

√
2 −1/

√
3





√
6 3/

√
6 2/

√
6

0 3/
√
2 −

√
2

0 0 1/
√
3


 .

As before, even though A has simple entries, the entries of Q and R are complicated.
Multiplying through by Q−1 = Q⊤ gives Rx = Q⊤b, which in our case says



√
6 3/

√
6 2/

√
6

0 3/
√
2 −

√
2

0 0 1/
√
3





x1
x2
x3


 =



2/
√
6 −1/

√
6 1/

√
6

0 −1/
√
2 −1/

√
2

1/
√
3 1/

√
3 −1/

√
3






7
−8
1


 =



23/

√
6

7/
√
2

−2/
√
3


 .

Back-substitution (please check for yourself!) now yields x3 = −2, then x2 = 1, and finally x1 = 4. You
should also verify directly that (x1, x2, x3) = (4, 1,−2) satisfies the initial linear system. ■

Remark 22.2.6 (online resource). For any matrix, WolframAlpha quickly provides the QR- and LU -
decompositions (as does matrixcalc). The matrix entries in the factors can be given as decimal approx-
imations or in an exact form (using square roots, etc.). Playing around with software is a great way to
get a feel for these decompositions: on the WolframAlpha website, search for the commands “QRDe-
composition” and “LUDecomposition”, and try some examples. (Capitalize the first three letters in
these commands, since WolframAlpha is not smart enough to figure out your intent if you don’t.)

Warning: There are several aspects of how WolframAlpha shows its answers that might cause
confusion. The primary one is that the convention in WolframAlpha is to write aQR-decomposition in
the form Q†R, where (·)† is WolframAlpha’s notation for “transpose” (WolframAlpha really says that

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 491

https://matrixcalc.org/en/


this notation means “conjugate transpose”, but that is a concept for matrices with complex numbers
as entries and when it is applied to matrices with real number entries as in this book that means
“transpose”). The “†” superscript is tiny on the screen, so it is easy to miss it. Since (Q⊤)⊤ = Q,
what WolframAlpha may seem to be calling “Q” if you don’t look carefully enough is really Q⊤.
If you plug Examples 22.2.4 and 22.2.5 into WolframAlpha’s QRDecomposition command, what
you’ll get is correct but you have to be attentive to the tiny transpose superscript. The reason for
this seemingly unusual convention is that Q⊤ is what gets used when solving a linear system, since
QRx = b with Q⊤Q = In (by orthogonality) implies Rx = (Q⊤Q)Rx = Q⊤(QRx) = Q⊤b (with
“Rx = Q⊤b” an upper triangular linear system).

Other possible sources of confusion are discussed at the end of Examples 22.4.3, 22.4.6, and
22.4.8.

22.3. Computing inverses via matrix decompositions. Matrix decompositions are useful far beyond
solving linear systems! We now use them to efficiently invert matrices; Section 22.5 (especially Proposi-
tion 22.5.1 onwards) and Appendix H discuss other important applications of QR-decompositions.

If A is an n×n matrix that has been written as a product of n×n matrices LU or QR and there are no
0’s on the diagonal in L and U , or no 0’s on the diagonal in R, then it is easy to compute A−1 as follows.
The key point is that for invertible n × n matrices M and N , their product MN is invertible, with the
inverse of their product equal to the product of inverses in the reverse order: (MN)−1 = N−1M−1. (This
works by multiplying it out: (N−1M−1)(MN) = N−1(M−1M)N = N−1InN = N−1N = In.) Hence,

if A = LU then A−1 = U−1L−1, if A = QR then A−1 = R−1Q−1 = R−1Q⊤. (22.3.1)

(We know that U−1, L−1, R−1 make sense when there are no 0’s on the respective diagonals of U,L,R
because upper triangular and lower triangular matrices are invertible exactly when they have no 0 on the
diagonal, by Theorem 22.1.3.) This is useful because we’ll soon see it is easy to compute the inverse of
any upper and lower triangular matrix with no 0’s on the diagonal.

Remark 22.3.1 (online resource). For matrix inverses, you can check answers with reshish, matrix-
calc, or WolframAlpha.

Consider the upper triangular case (the lower triangular case goes similarly): suppose U (or R) has
no 0’s on the diagonal. Not only is U invertible, but in fact U−1 is also upper triangular. In effect, this
is a consequence of back-substitution. The point is that for an upper triangular U , to solve Ux = y
uniquely for x with any y is exactly the meaning of U being invertible (see Proposition 18.1.5) and is the
same as saying x = U−1y. Moreover, back-substitution gives a general formula for x in terms of y, the
coefficients of which are the entries of U−1. As long as there is no 0 on the diagonal, the back-substitution
method works perfectly (i.e., we really can always solve exactly for x in terms of y without running into
inconsistencies), with xi expressed in terms of yi, . . . , yn; this says U−1 is upper triangular.

In practice the back-substitution for computing A−1 for triangular n×n matrices A can be repackaged
in another way. To explain this, let’s first work out a 2× 2 example.

Example 22.3.2. Let us compute
[
2 4
0 −6

]−1

. One can use Example 18.2.1 to compute this inverse, but

that method is specific to 2 × 2 matrices and we seek a different perspective that will adapt to upper
triangular n× n matrices for any n.

We first make the “educated guess” that the inverse will also be upper triangular, with diagonal entries
that are simply the reciprocals of the corresponding (nonzero) diagonal entries of U . That is, we guess
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that U−1 has the form of a matrix

U ′ =

[
1/2 a
0 −1/6

]

for some number a that we seek.
Multiplying this guess by U (on the left or the right, it won’t matter) yields

[
1 2a− 4/6
0 1

]
.

For this to equal I2 (so our guess really is an inverse to U ; see Theorem 18.1.8) says exactly that the
upper-right entry 2a− 4/6 is equal to 0, on in other words a = 1/3. To summarize, we have shown

[
2 4
0 −6

]−1

=

[
1/2 1/3
0 −1/6

]
.

■

This method will now be adapted to find the inverse U−1 for any n × n upper triangular matrix U
with all diagonal entries nonzero. The inverse U−1 will always have 0’s below the diagonal (this expresses
that when solving Ux = y for x in terms of y by back-substitution, each xi does not involve any yj’s for
j < i), and its diagonal ii-entry will be the reciprocal 1/uii of the diagonal ii-entry uii of U (expressing
the division step in back-substitution). We will compute the remaining unknown entries in U−1 above the
diagonal one by one. To illustrate how this goes, let’s work out a typical 3× 3 case:

Example 22.3.3. Consider

U =



2 1 1
0 −1 3
0 0 4


 , and guess that U−1 has the form U ′ =



1/2 a b
0 −1 c
0 0 1/4




for some a, b, c that we seek. We compute


1 0 0
0 1 0
0 0 1


 ?
= UU ′ =



2 1 1
0 −1 3
0 0 4





1/2 a b
0 −1 c
0 0 1/4


 =



1 2a− 1 2b+ c+ 1/4
0 1 −c+ 3/4
0 0 1


 .

The unknown entries a, b, c are now easy to find by setting all entries above the diagonal on the right side
equal to 0 and working our way upwards to the upper-right corner: we first have the conditions

2a− 1 = 0, −c+ 3/4 = 0

by looking just above the diagonal, and this gives a = 1/2 and c = 3/4. Next, there is the vanishing
condition from the upper-right corner:

2b+ c+ 1/4 = 0.

We already know the value for c, so plugging that into this equation gives 2b+ 3/4 + 1/4 = 0, which we
solve to get b = −1/2. Hence,

U−1 =



1/2 1/2 −1/2
0 −1 3/4
0 0 1/4


 .

(Check for yourself that this answer is inverse to U .) ■

Completely analogous considerations can be used to find the inverses of lower triangular matrices
(moving towards the lower left corner rather than towards the upper right corner as above), and the calcu-
lations are similar in the n× n case for any n > 3. Admittedly for n > 3 it begins to get a bit tedious, but
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hopefully you see that this is a fairly mechanical process, and the main issue when doing it by hand is not
screwing up the arithmetic. We will not ask you to work out such calculations with n > 3 on exams.

The reason that computing the inverse for these matrices (when all diagonal entries are nonzero) is
easier than computing the inverse of a general (invertible) n×nmatrix is that the equations that we end up
having to solve are quite simple. Indeed, what is really going on here is back-substitution in disguise. (In
particular, the “guess” for the form of U−1 in Example 22.3.3 isn’t really a guess since thinking in terms
of back-substitution guarantees it will always have such a form. But you can think about it as a guess if
you like and it will always work.)

Here is a 4× 4 example, which we provide mainly to drive home the general pattern of working one’s
way up to the upper-right corner when solving the equations, moving up one “diagonal layer” at a time.

Example 22.3.4. Consider

U =




−5 −2 1 −3
0 1 4 −1
0 0 3 7
0 0 0 −2


 , and guess that U−1 has the form U ′ =




−1/5 a b c
0 1 d e
0 0 1/3 f
0 0 0 −1/2




for some a, b, c, d, e, f that we seek. (As has been noted above, this isn’t truly a “guess” since one can
reason in general with back-substitution to be sure U−1 will have this form. But it is fine to think that
we’re just making an educated guess which one sees with experience always works.)

We compute



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




?
= UU ′ =




−5 −2 1 −3
0 1 4 −1
0 0 3 7
0 0 0 −2







−1/5 a b c
0 1 d e
0 0 1/3 f
0 0 0 −1/2




=




1 −5a− 2 −5b− 2d+ 1/3 −5c− 2e+ f + 3/2
0 1 d+ 4/3 e+ 4f + 1/2
0 0 1 3f − 7/2
0 0 0 1


 .

To solve for the unknown entries a, b, c, d, e, f we set all entries above the diagonal to be 0, and it is
simplest to systematically work our way to the upper-right corner by going along diagonal layers one at
a time starting just above the actual diagonal. Namely, first looking at the entries just above the diagonal,
we get the equations

−5a− 2 = 0, d+ 4/3 = 0, 3f − 7/2 = 0.

These have nothing to do with each other (each equation involves its own variable not occurring in the
other equations just above the diagonal), and so are solved to give a = −2/5, d = −4/3, f = 7/6. Note
that these are exactly the entries in U ′ in the positions just above the diagonal.

Next, we go to the layer just on top of the one we solved, getting the equations

−5b− 2d+ 1/3 = 0, e+ 4f + 1/2 = 0.

We already know d and f , so these are really just equations for b and e, again unrelated to each other.
Plugging in the values for d and f , we solve to get b = 3/5 and e = −31/6. Note that b and f are also
exactly the entries in U ′ in the positions corresponding to the layer we have just been working on.

Finally, just the upper-right corner remains to be used and correspondingly the only unknown left to be
found is c, which is the upper-right entry of U ′. Setting that entry to be 0 for UU ′ amounts to the equation

−5c− 2e+ f + 3/2 = 0,
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and plugging in the known values of e and f allows us to solve for c, obtaining c = 13/5. Putting it all
together, we have arrived at

U−1 =




−1/5 −2/5 3/5 13/5
0 1 −4/3 −31/6
0 0 1/3 7/6
0 0 0 −1/2


 .

Hopefully this 4× 4 example conveys an even better sense than Example 22.3.3 for how the pattern of the
calculation of U−1 goes with general upper triangular matrices whose diagonal entries are all nonzero. ■

22.4. QR-decomposition and Gram–Schmidt. We now explain how the QR-decomposition for a
matrix A is just a repackaging of the Gram–Schmidt process for the columns of A; we will also give
several worked numerical examples.

We shall primarily focus on the square n × n case; we also assume the columns of A are linearly
independent, so A is invertible. You will only be asked to compute the QR-decomposition for invertible
matrices; the resulting cases of the Gram–Schmidt process will be for a collection of vectors that is linearly
independent, so at no step of the process will we obtain a zero vector.

To keep the notation simple, let us first focus on the case n = 3. Denote the columns of A by
v1,v2,v3; these are each vectors in R3. We assume that the vi’s are linearly independent, so when we
apply the Gram–Schmidt process to them we obtain an orthogonal triple of nonzero vectors.

We shall make a small but important refinement in the Gram–Schmidt process that was absent in our
discussion in Chapter 19: at the end we divide each of the (nonzero) “output” vectors wi by its length
to obtain a set of vectors that is orthonormal (not just mutually orthogonal). To avoid confusion with the
notation used in our discussion of the Gram–Schmidt process in Chapter 19, we denote these new unit
vectors as w′

1,w
′
2,w

′
3 (so w′

i = wi/∥wi∥).
Let us see how these unit vectors w′

i are related to the vj’s.
(i) In the first step, we have w1 = v1, so w′

1 = w1/∥w1∥ = v1/∥v1∥. In other words, v1 = r11w
′
1 where

r11 is the scalar ∥v1∥ > 0.
(ii) At the next step, the orthogonal pair of unit vectors w′

1,w
′
2 has the same span as w1,w2, which has

the same span as v1,v2, and by design w2 = v2 − tw1 for some scalar t. Hence, v2 = tw1 +w2 =
r12w

′
1 + r22w

′
2 for some scalars r12 and r22, with r22 = ∥w2∥ > 0.

(iii) Similarly, the orthonormal triple w′
1,w

′
2,w

′
3 has the same span as v1,v2,v3, with w3 = v3−av1−bv2

for some scalars a, b, so v3 = av1 + bv2 +w3 = r13w
′
1 + r23w

′
2 + r33w

′
3 for scalars r13, r23, r33 with

r33 = ∥w3∥ > 0.
The Gram–Schmidt process gives formulas for the scalar coefficients (r11, r12, r22, r13, r23, r33) in terms of
the dot products vi · vj; we illustrate this explicitly in Example 22.4.3 below.

Now we write this in matrix language and see that it expresses exactly the QR-decomposition for A.
Let Q be the 3× 3 matrix whose columns are w′

1,w
′
2, w

′
3 in turn; i.e.,

Q =




| | |
w′

1 w′
2 w′

3

| | |


 .

By design, the collection of columns of Q is orthonormal. The three equalities in (i), (ii), (iii) above
correspond to the three equalities

Q



r11
0
0


 = v1, Q



r12
r22
0


 = v2, Q



r13
r23
r33


 = v3,
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which when put together amounts to the matrix equation

Q



r11 r12 r13
0 r22 r23
0 0 r33


 =




| | |
v1 v2 v3

| | |


 = A.

But Q has orthonormal columns, so this is exactly the promised QR-decomposition of the matrix A (since
the diagonal entries r11, r22, r33 of R are positive).

Moreover, we see that R also has a very concrete meaning in terms of the Gram–Schmidt process:
its jth column consists of the coefficients r1j, . . . , rjj that appear in the expression for vj as a linear
combination of w′

1, . . . ,w
′
j:

vj = r1jw
′
1 + r2jw

′
2 + · · ·+ rjjw

′
j

with rjj = ∥wj∥ > 0 for each j. In practice those rij’s appear during the Gram–Schmidt process up to
being multiplied by ∥wi∥ once we account for the fact that w′

i = wi/∥wi∥. This is illustrated in Example
22.4.2 and Example 22.4.3 below, so upon reading those you will see the general pattern explicitly.

Remark 22.4.1. If you read this entire discussion in reverse to go from matrix language back to statements
about relations among column vectors, a QR-decomposition literally is the “Gram–Schmidt process” for
{v1, . . . ,vn}, up to the step of turning nonzero output vectors into unit vectors by dividing each by its
length at the end. The main point is the Fourier formula (5.3.5) (or better: its derivation) that expresses
the coefficients of a linear combination of orthogonal nonzero vectors in terms of dot products.

We now take a step back to see that these calculations actually accomplish a lot more than initially
advertised: the same type of calculation yields a version of theQR-decomposition for general nonzero
m × n matrices! To explain this, we review what the preceding calculations produce, as a series of
three gradual generalizations;

(general m, independent columns) First, if you look back at this entire discussion, you can see
that we never used that the columns vi of A are vectors in R3. They could equally well be vectors in
any Rm. In other words, the calculations above work verbatim for any m× 3 matrix A, so long as we
still assume that the columns v1,v2,v3 of A are independent vectors.

Thus, any such matrix A can be written as a product A = QR where Q is an m × 3 matrix
whose three columns are unit m-vectors w′

1,w
′
2,w

′
3 that are mutually orthogonal, which is to say Q

is an m× 3 matrix with orthonormal columns, and R is a 3× 3 upper triangular matrix with positive
diagonal entries. This is the meaning of a QR-decomposition in this case.

(general m × n, independent columns) Next, there is no reason to assume that there are 3
columns. We assumed this only to keep the notation under control. We can carry out the Gram–
Schmidt process on any set of vectors v1, . . . ,vn in Rm, and if we assume the vi’s are independent
(so n ≤ m since their span in Rm has dimension n) then we obtain an orthonormal set of vectors
w′

1, . . . ,w
′
n. Define Q to be the m×n matrix whose columns are this new set of vectors w′

j , so Q has
orthonormal columns.

By construction, v1 = r11w
′
1, v2 = r12w

′
1 + r22w

′
2, and in general vj is a linear combination of

w′
1, . . . ,w

′
j using a positive coefficient rjj for w′

j , and the coefficients which appear in these linear
combinations are the numbers that form the columns of an upper triangular n× n matrix R (so it has
positive diagonal entries). The m × n matrix A with jth column vj is A = QR. Non-square A with
independent columns arise in many applications; see the optional Section 22.5 beginning at Example
22.5.3.

Let’s work out two examples with square matrices, the only case arising on homework or exams.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 496



Example 22.4.2. Consider the matrix

A =

[
−2 1
1 3

]
.

Denoting the columns of A from left to right as v1 and v2, by inspection neither is a scalar multiple of
the other and so they are linearly independent. Gram–Schmidt for this pair is then essentially given by the
formula in Theorem 7.1.1 (up to rearranging which vector comes first):

w1 = v1 =

[
−2
1

]
, w2 = v2 −Projv1

(v2) = v2 −
v2 · v1

v1 · v1

v1 = v2 − (1/5)v1 =

[
7/5
14/5

]
=

7

5

[
1
2

]
,

so
v1 = w1, v2 = (1/5)w1 +w2. (22.4.1)

Since the unit vector w′
i is defined to be wi/∥wi∥, so wi = ∥wi∥w′

i, plugging this into (22.4.1) gives

v1 = ∥w1∥w′
1, v2 = (1/5)∥w1∥w′

1 + ∥w2∥w′
2. (22.4.2)

Now comes the step where the square roots emerge: we compute the lengths of the wi’s from the explicit
description of each of them as a 2-vector above:

∥w1∥ =
√
5, ∥w2∥ =

7

5

√
5 =

7√
5
. (22.4.3)

This tells us R, by putting into the jth column the coefficients of vj in (22.4.2) with the help of the explicit
lengths in (22.4.3):

R =

[√
5 (1/5)

√
5

0 7/
√
5

]
=

[√
5 1/

√
5

0 7/
√
5

]
.

(There is no need to pass to the final matrix on the right; we include it just to write the entries in a slightly
“cleaner” form.)

Next we compute Q, whose columns are the vectors w′
i = wi/∥wi∥. For this there is a handy trick

to avoid some mess with fractions: for any nonzero vector w and positive scalar c we have cw/∥cw∥ =
w/∥w∥ (this just says that the unit vectors in the directions of w and cw are the same for any c > 0),
so if we can factor out some positive scalar from some wi to make it look cleaner then this has no effect
on w′

i = wi/∥wi∥. For instance, the above computation of w2 has the positive fraction 7/5 factored out
to leave behind something with integer entries, and to find w′

2 we can just as well work with that integer
vector (and its corresponding length).

Thus, we have

w′
1 =

1√
5

[
−2
1

]
=

[
−2/

√
5

1/
√
5

]
, w′

2 =
1√
5

[
1
2

]
=

[
1/
√
5

2/
√
5

]
.

The entries in these two vectors give the columns of Q in order:

Q =

[
−2/

√
5 1/

√
5

1/
√
5 2/

√
5

]
.

As a safety check, you can verify by multiplying 2× 2 matrices that QR indeed equals A. ■

Example 22.4.3. Consider the matrix

A =



1 −1 −2
0 1 1
2 −1 2


 .
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Denoting the columns of A from left to right as v1,v2,v3, we ran the Gram–Schmidt process on this triple
in Example 19.3.6 to get

w1 =



1
0
2


 , w2 =



−2/5
1
1/5


 =

1

5



−2
5
1


 , w3 =



−5/3
−5/6
5/6


 =

5

6



−2
−1
1




and w1 = v1,w2 = v2 + (3/5)w1,w3 = v3 − (2/5)w1 − (11/6)w2, so

v1 = w1, v2 = −(3/5)w1 +w2, v3 = (2/5)w1 + (11/6)w2 +w3. (22.4.4)

(One should always be careful when writing out the step corresponding to (22.4.4): it is very easy to make
a sign error in the coefficients.)

Since the unit vector w′
i is defined to be wi/∥wi∥, so wi = ∥wi∥w′

i, plugging this into (22.4.4) gives

v1 = ∥w1∥w′
1, v2 = −3

5
∥w1∥w′

1 + ∥w2∥w′
2, v3 =

2

5
∥w1∥w′

1 +
11

6
∥w2∥w′

2 + ∥w3∥w′
3. (22.4.5)

Now comes the step where the square roots emerge: we compute the lengths of the wi’s from the explicit
description of each of them as a 3-vector above:

∥w1∥ =
√
5, ∥w2∥ =

1

5

√
30 =

√
6

5
, ∥w3∥ =

5

6

√
6 =

5√
6
. (22.4.6)

This tells us R, by putting into the jth column the coefficients of vj in (22.4.5) with the help of the explicit
lengths in (22.4.6):

R =



√
5 −(3/5)

√
5 (2/5)

√
5

0
√

6/5 (11/6)
√

6/5

0 0 5/
√
6


 =



√
5 −3/

√
5 2/

√
5

0
√

6/5 11/
√
30

0 0 5/
√
6


 .

(There is no need to pass to the final matrix on the right; we include it just to write the entries in a slightly
“cleaner” form.)

Next we compute Q, whose columns are the vectors w′
i = wi/∥wi∥. As in Example 22.4.2, for this

there is a handy trick to avoid some mess with fractions: for any nonzero vector w and positive scalar c
we have cw/∥cw∥ = w/∥w∥ (this just says that the unit vectors in the directions of w and cw are the
same for any c > 0), so if we can factor out some positive scalar from some wi to make it look cleaner
then this has no effect on w′

i = wi/∥wi∥. For instance, the above expressions for w2 and w3 have positive
fractions 1/5 and 5/6 factored out to leave behind something with integer entries, and to find w′

i we can
just as well work with those integer vectors (and their corresponding lengths).

Thus, we have

w′
1 =

1√
5



1
0
2


 =



1/
√
5

0

2/
√
5


 , w′

2 =
1√
30



−2
5
1


 =



−2/

√
30

5/
√
30

1/
√
30


 , w′

3 =
1√
6



−2
−1
1


 =



−2/

√
6

−1/
√
6

1/
√
6


 .

The entries in these three vectors give the columns of Q in order:

Q =



1/
√
5 −2/

√
30 −2/

√
6

0 5/
√
30 −1/

√
6

2/
√
5 1/

√
30 1/

√
6


 .

If we ask WolframAlpha for the QR-decomposition of this A (say as a safety check) then beware
that it might write some matrix entries in a different-looking way but that doesn’t mean our answer is
wrong! For instance, when this example is entered into WolframAlpha sometimes the entry 11/

√
30 in

R is presented as
√

6/5 +
√

5/6 (which is the same number, as you can convince yourself in any of a
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few ways: compare the decimal expressions to very many digits, directly manipulate square roots, or use
that

√
a/b +

√
b/a = (a + b)/

√
ab for any a, b > 0). The answers really are the same, even though

WolframAlpha may write some matrix entries quite differently. ■

Remark 22.4.4. As a safety check, at the end of the preceding example you could multiply out QR to
check that it is equal to A:



1/
√
5 −2/

√
30 −2/

√
6

0 5/
√
30 −1/

√
6

2/
√
5 1/

√
30 1/

√
6





√
5 −3/

√
5 2/

√
5

0
√

6/5 11/
√
30

0 0 5/
√
6


 =



1 −1 −2
0 1 1
2 −1 2


 .

Give this a try for yourself; it isn’t too bad. In practice you’ll always compute QR-decompositions on a
computer, and software is always bug-free for such “standard” matrix procedures (or so everyone hopes!).
But whatever algorithm is used, the main lesson of this section is that QR-decompositions are expressing
exactly the output of the Gram–Schmidt process (after replacing each nonzero wi with wi/∥wi∥).

Now we finally take up the remaining case for the QR-decomposition of a general nonzero matrix:
(general m× n, dependent columns) What happens if the columns of A are linearly dependent?

If we carry out the same calculations we have been doing then eventually we get a column vj in the
span of the previous columns v1, . . . ,vj−1 (or the very first column v1 of A vanishes, a rare situation
that is handled by putting an initial column of 0’s in R at the end of the procedure). This means that
we ignore vj do not change the growing list w′

1, . . . ,w
′
j−1 that has been constructed up to this stage.

Since A has some nonzero column, at the end we have an orthonormal set w′
1, . . . ,w

′
k in Rm,

where k < n because we dropped at least one vector along the way. Define Q to be the m× k matrix
whose columns are this orthonormal set, and by recording how each vi is a linear combination of
w′

1, . . . ,w
′
k, we obtain an upper triangular k × n matrix R so that A = QR. Some diagonal entry of

R may vanish, such as when k > 1 but v1 and v2 are nonzero and scalar multiples of each other (then
r22 = 0), but this doesn’t always happen in cases with dependent columns (see Example 22.4.8).

Here is a worked example for the QR-decomposition in the non-invertible square case.

Example 22.4.5. Consider the matrix

A =



0 1 1
1 0 1
1 1 2


 .

Denoting the columns ofA from left to right as v1,v2,v3, running Gram–Schmidt on this triple yields

w1 = v1 =



0
1
1


 , w2 = v2 −

1

2
w1 =




1
−1/2
1/2


 , w3 = v3 −

3

2
w1 −w2 =



0
0
0




(so the columns are linearly dependent, namely v3 = (3/2)w1 +w2 = (3/2)v1 + (v2 − (1/2)v1) =
v1 + v2, so A is not invertible). Thus, the associated unit vectors w′

i = wi/∥wi∥ are

w′
1 =




0

1/
√
2

1/
√
2


 , w′

2 =




2/
√
6

−1/
√
6

1/
√
6




and

v1 = w1 = ∥w1∥w′
1 =

√
2w′

1, v2 =
1

2
w1 +w2 =

1

2
∥w1∥w′

1 + ∥w2∥w′
2 =

1√
2
w′

1 +

√
3

2
w′

2,
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v3 =
3

2
w1 +w2 =

3

2
∥w1∥w′

1 + ∥w2∥w′
2 =

3√
2
w′

1 +

√
3

2
w′

2.

Hence,

A =




0 2/
√
6

1/
√
2 −1/

√
6

1/
√
2 1/

√
6



[√

2 1/
√
2 3/

√
2

0
√
3/2

√
3/2

]
= QR

is the QR-decomposition of A. In this case Q is 3×2 with orthonormal columns and R is 2×3 upper
triangular with positive diagonal entries, as promised in Remark 22.2.2 since dimC(A) = 2 (indeed,
dimC(A) < 3 due to dependence of the columns, but the first two columns are linearly independent
by inspection, so dimC(A) = 2). ■

Here are two worked examples for non-square matrices, to provide you with some illustrations
that should illuminate what we have been describing beyond the square case. (In Section 22.5 we
discuss how to use the QR-decomposition beyond the invertible square case treated in Section 22.2.)

Example 22.4.6. Consider the matrix

A =




1 0 1
1 1 0
0 1 1
0 0 1


 .

Denoting the columns of A from left to right as v1,v2,v3, we ran the Gram–Schmidt process on this
triple in Example 19.3.1 to get

w1 =




1
1
0
0


 , w2 =




−1/2
1/2
1
0


 =

1

2




−1
1
2
0


 , w3 =




2/3
−2/3
2/3
1


 =

1

3




2
−2
2
3


 (22.4.7)

and w1 = v1, w2 = v2 − (1/2)w1, w3 = v3 − (1/2)w1 − (1/3)w2, so

v1 = w1, v2 = (1/2)w1 +w2, v3 = (1/2)w1 + (1/3)w2 +w3. (22.4.8)

(At the risk of sounding repetitive, always be careful when writing out the step corresponding to
(22.4.8): it is very easy to make a sign error in the coefficients.)

The unit vector w′
i is defined to be wi/∥wi∥, so wi = ∥wi∥w′

i. Plugging this into (22.4.8) gives

v1 = ∥w1∥w′
1, v2 =

1

2
∥w1∥w′

1 + ∥w2∥w′
2, v3 =

1

2
∥w1∥w′

1 +
1

3
∥w2∥w′

2 + ∥w3∥w′
3. (22.4.9)

Now again comes the step where the square roots emerge: we compute the lengths of the wi’s from
the explicit description of each of them as a 4-vector in (22.4.7) to obtain that

∥w1∥ =
√
2, ∥w2∥ =

√
6/2, ∥w3∥ =

√
21/3. (22.4.10)

This tells us R, by putting into the jth column the coefficients of vj in (22.4.9) with the help of the
explicit lengths in (22.4.10):

R =



√
2 (1/2)

√
2 (1/2)

√
2

0
√
6/2

√
6/6

0 0
√
21/3


 =



√
2 1/

√
2 1/

√
2

0
√
6/2 1/

√
6

0 0
√
21/3


 .

(Once again, there is no need to pass to the final matrix on the right; we include it just to write the
entries in a slightly “cleaner” form.)
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Next, we computeQ, whose columns are the vectors w′
i = wi/∥wi∥. Using the same scaling trick

as in the two preceding examples, we obtain

w′
1 =

1√
2




1
1
0
0


 =




1/
√
2

1/
√
2

0
0


 , w′

2 =
1√
6




−1
1
2
0


 =




−1/
√
6

1/
√
6

2/
√
6

0


 , w′

3 =
1√
21




2
−2
2
3


 =




2/
√
21

−2/
√
21

2/
√
21

3/
√
21


 .

The entries in these three vectors give the columns of Q in order:

Q =




1/
√
2 −1/

√
6 2/

√
21

1/
√
2 1/

√
6 −2/

√
21

0 2/
√
6 2/

√
21

0 0 3/
√
21


 .

We conclude that the QR-decomposition of A says:



1/
√
2 −1/

√
6 2/

√
21

1/
√
2 1/

√
6 −2/

√
21

0 2/
√
6 2/

√
21

0 0 3/
√
21






√
2 1/

√
2 1/

√
2

0
√
6/2 1/

√
6

0 0
√
21/3


 =




1 0 1
1 1 0
0 1 1
0 0 1


 .

If we ask WolframAlpha to compute theQR-decomposition of thisA then it agrees with this but might
not initially seem to agree since it may write some entries in a weird way. For instance, the entry 1/

√
6

in R may sometimes appear as
√
2/3− 1/

√
6 (which really is the same number, as you can convince

yourself by comparing decimal expressions or by directly manipulating square roots). ■

Remark 22.4.7. In the preceding example, the 4×3 matrixQ has columns that constitute an orthonor-
mal set of three vectors in R4 (they’re the vectors w′

1,w
′
2,w

′
3 that are orthonormal by design). It is

equivalent to say Q⊤Q = I3. However, the 4× 4 matrix QQ⊤ given by multiplying Q and Q⊤ in the
other order is very much unlike I4 (as the rows of Q have no nice relations via dot products: Theorem
20.4.1 requires m = n for good properties of rows). You can check by hand (or with a computer if
you prefer) that

QQ⊤ =
1

7




6 1 −1 2
1 6 1 −2
−1 1 6 2
2 −2 2 3


 .

Example 22.4.8. Consider the 4× 3 matrix

A =




2 0 2
0 1 2
1 1 3
0 1 2


 .

Denoting its columns in order as v1,v2,v3, we ran Gram–Schmidt on this triple in Example 19.3.2,
where we got w3 = 0, from which a linear dependence relation among the vi’s was obtained: v3 =
v1 + 2v2. So this matrix has linearly dependent columns. We will never ask you to work out a
QR-decomposition in a case with dependent columns, and are providing such an example here just to
illustrate the method.
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The matrix Q is 4 × 2 (rather than 4 × 3) with columns w′
1,w

′
2 (due to the vanishing of w3).

Following the general procedure for cases with dependent columns, we obtain

Q =




2/
√
5 −2/

√
70

0 5/
√
70

1/
√
5 4/

√
70

0 5/
√
70


 , R =

[√
5 1/

√
5 7/

√
5

0
√
70/5 (2/5)

√
70

]

and indeed QR = A. This Q has orthonormal columns, or equivalently Q⊤Q = I2 (beware that QQ⊤

is far from I4, much like in Remark 22.4.7).
If you ask WolframAlpha, its Q and R agree with the ones above but – as we have mentioned

in earlier examples – some matrix entries may look different yet really are the same number. For
instance, the entry (2/5)

√
70 in R sometimes appears on WolframAlpha in the exotic-looking form

4
√
2/35 + 2

√
10/7 that really is the same number (as you can convince yourself by comparing

decimal expressions or by directly manipulating with square roots). ■

If you want more practice computingQR-decompositions forAwith linearly independent columns
without first needing to do a Gram–Schmidt calculation from scratch, use Examples 19.3.7 and 19.3.8.

22.5. Using the QR-decomposition for general m×n matrices. We now want to describe how
to use the QR-decomposition for general nonzero matrices, especially in the non-square case. (There
is also a version of the LU -decomposition for general matrices, but it is notationally more complicated
to describe and so we say nothing about it.) Let us first take a moment to review the various things we
have done in this chapter related to linear systems.

We showed through examples in Section 22.1 that if A is upper-triangular (possibly non-square)
with nonzero diagonal entries then it is easy to solve Ax = b and to determine the null space and
column space forA. We then saw in Section 22.2 that ifA is invertible and we know the decomposition
A = QR then we can use it to reduce solving Ax = b to two easier problems: solve Rx = y and
solveQy = b. The first of these two new problems is done via back-substitution (sinceR has nonzero
diagonal entries, due to the invertibility of A), and the second can be solved by multiplying both sides
of the equation by Q−1 = Q⊤. Finally, in Section 22.4 we saw how the two factors Q and R of
this decomposition are determined by the data computed in the Gram–Schmidt process applied to the
columns of A, formulated in a manner that makes sense for a general nonzero m× n matrix A.

The matrix Q is m × k with columns an orthonormal set of m-vectors, where k is the number of
nonzero vectors obtained from the Gram–Schmidt process applied to the columns of A. In particular,
k = dimC(A) ≤ m, so Q is a square matrix precisely when C(A) = Rm (which can fail). When Q
is not square it has no inverse and so multiplying byQ−1 to solve a linear system does not make sense.
However, as we now show, often we can still use the QR-decomposition of A to solve Ax = b, as
well as describe the null space and column space ofA, and do many things with practical significance.

Let us revisit our general procedures forA a nonzerom×nmatrix with arbitrarym,n ≥ 1.Without
making any assumption about linear independence of the columns of A, by applying the Gram–
Schmidt process to the nonzero columns we arrive at a decomposition A = QR where Q is an m× k
matrix with orthonormal columns and R is an upper triangular k × n matrix for some k ≤ n (so R
is of the type on the left in (22.1.2) if it is non-square); to define Q we have dropped any occurrence
of the zero vector as an output in the Gram–Schmidt process, and the jth column of R vanishes when
the jth column of A vanishes. How can we use this to solve the linear system Ax = b?
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As before, we break this into two problems,Qy = b andRx = y. Thus, we should first determine
y by solving Qy = b and then use this intermediate solution y to solve Rx = y. Since Q may not be
square, there is no inverse and so it doesn’t make sense to multiply by Q−1. But the k×m matrix Q⊤

does make sense, and by Theorem 20.4.1 it is a “left inverse” to Q in the sense that the k × k matrix
Q⊤Q is equal to the k× k identity matrix Ik! (Beware that the m×m product QQ⊤ in the other order
has nothing to do with an identity matrix in general since the rows of Q have no good relations via dot
products when Q is not square; see Remark 22.4.7 for an explicit example.)

Now multiply both sides of Qy = b by Q⊤ to get

Q⊤b = Q⊤(Qy) = (Q⊤Q)y = Iky = y.

This works regardless of the size and shape of A! What is this new vector Q⊤b? By definition of
matrix-vector products, its components are the successive dot products of b with the rows of Q⊤, or
equivalently with the columns w′

1, . . . ,w
′
k of Q. We have made a vector y, and next want to find all

solutions to Rx = y via back-substitution. It looks like everything is on track.
But there is a potential difficulty: we only showed that if Qy = b has a solution then this solution

must be Q⊤b. We didn’t check that this unique candidate for a solution actually works! A version
of this issue arose in the discussion preceding Theorem 22.1.4, where we did succeed in verifying
that a unique possible solution actually works in square cases. If we try the same here, we obtain
Qy = Q(Q⊤b) = (QQ⊤)b; this is equal to b (as desired) if QQ⊤ = Im but if Q is not square then
QQ⊤ is nothing at all like an identity matrix (see Remark 22.4.7) even though Q⊤Q = Ik.

So what is the meaning ofQ(Q⊤b) if it doesn’t equal b? We have already observed that the entries
of the k-vector Q⊤b are the dot products w′

j · b, so since Q has jth column w′
j it follows that

Q(Q⊤b) = (w′
1 · b)w′

1 + . . .+ (w′
k · b)w′

k.

Since {w′
1, . . . ,w

′
k} is (by design) an orthonormal basis for C(A) (in particular, the span C(Q) of the

vectors w′
j is equal to C(A)), the right side is the formula from (6.2.1) for projection of b into C(A)!

The upshot is that y = Q⊤b is a solution to Qy = ProjC(A)(b) rather than to Qy = b, so
solutions x to Rx = y actually satisfy Ax = Q(Rx) = Qy = ProjC(A)(b) rather than Ax = b. In
the special case b ∈ C(A), we are thereby getting exactly the desired solutions (but otherwise not).
This applies to b = 0 ∈ C(A), for which y = Q⊤b = 0, so solutions to Ax = 0 are the same as
solutions to Rx = 0. Hence, N(A) = N(R) always; we have just described N(A) as the solutions to
an upper triangular system Rx = 0 (which is easier to work with than the system Ax = 0).

The following result summarizes our conclusions so far (and this entire section is optional).

Proposition 22.5.1. Let A be a nonzero m× n matrix, and QR its QR-decomposition.
(i) The matrix Q is m × k with orthonormal columns and R is k × n upper triangular, where k =

dimC(A) ≤ m,n.
(ii) If k = m then Q is orthogonal with inverse Q⊤.

(iii) The column spaces C(A) and C(Q) are the same subspace of Rm.
(iv) The null spaces N(A) and N(R) are the same subspace of Rn, so N(A) can be computed via

back-substitution with R.
(v) For any b ∈ Rm, we have QQ⊤b = ProjC(A) b; i.e., QQ⊤ computes the projection into C(A).

Remark 22.5.2. In many practical problems with data, one works with A for which k is very small
compared to both m and n (e.g., m and n on the order of millions and k < 100). This occurs with
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recommender systems (such as for Netflix and Amazon), as we discussed in Section 21.6. Whenever
we are in such a situation, the QR-decomposition is tremendously useful for efficiently computing
products Av and AB against the m× n matrix A.

The point is that the associativity of matrix multiplication allows us to write such products as
(QR)v = Q(Rv) and (QR)B = Q(RB), which are built up as a succession of left-multiplications
by the k × n matrix R and then by the m × k matrix Q. Since k is much smaller than both m and
n (i.e., R is “wide and thin”, Q is “tall and thin”), such multiplications against Q and R involve far
fewer arithmetic operations than multiplication against A, due to the smallness of k compared to both
m and n.

We next push Proposition 22.5.1 further when the columns of A are linearly independent (so
k = n ≤ m). Here is a common practical context for this, with m much larger than n.

Example 22.5.3. In many scientific problems (in data science, electrical engineering, etc.), one needs
to find a small number of constants in a mathematical model that optimally fit a lot of data; e.g.,
approximate an unknown function by a linear combination of a small number of known functions (the
coefficients of the linear combination are the “constants” that one seeks). Here are two examples:
(i) There is noise in a communication channel, and we want to approximately reconstruct a signal

over some time interval from measurements at specific times. If the unknown signal is a function
f : [0, T ] → R on some time interval of length T and we have some known basic signals
f1, . . . , f8 : [0, T ] → R (such as sine and cosine functions incorporating amplitude factors),
then we seek coefficients c1, . . . , c8 so that the function f is well-approximated by the function
c1f1 + · · ·+ c8f8 across the entire time interval.
Making measurements of the signal at many times t1, . . . , tm gives values b1, . . . , bm, and we
hope that f(ti) ≈ bi for all i; typically m is much larger than the number n = 8 of basic signals.
We seek c1, . . . , c8 for which the errors in the approximations (due to noise, etc.)

c1f1(ti) + c2f2(ti) + · · ·+ c8f8(ti) ≈ bi (22.5.1)

are collectively minimized. For the m × 8 matrix A = (fj(ti)) of values of the known basic
signals fj at those times ti, typically the 8 columns (corresponding to the 8 basic signals) are
linearly independent. The left side of (22.5.1) is the ith entry of Ac ∈ Rm for the 8-vector c with
entries c1, . . . , c8, so we wantAc ≈ b in Rm; in effect, c should be a “best approximate solution”
to the massively overdetermined linear system Ax = b of m equations in 8 unknowns.
If the concept of “best approximate solution” can be made precise and then be computed, the
resulting function c1f1(t) + · · ·+ c8f8(t) is our model for f(t). Note that both A and b are built
from the data (the times ti, values fj(ti), and noisy measurements bi).

(ii) For the surface S of a body in a mechanical engineering problem, we want to approximate a
function f : S → R that expresses the values of a physical quantity of interest (e.g., heat, or
force in some direction) when the body is subjected to specific experimental conditions.
For a small n there are some basic functions f1, . . . , fn : S → R for which we hope to model
f as a linear combination of the fj’s. At specific points s1, . . . , sm on S, with m much larger
than n, we make experimental measurements b1, . . . , bm of f and will model f by the function
c1f1 + · · ·+ cnfn for coefficients c1, . . . , cn that make the errors in the approximations

c1f1(si) + · · ·+ cnfn(si) ≈ bi

collectively minimized (in a sense we have to define).
As in (i), we will take c ∈ Rn to be a “best approximate solution” (whatever that should mean)
to the very overdetermined linear system Ax = b of m equations in n unknowns where A =
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(fj(si)) is the m × n matrix whose jth column records the values of the basic function fj at the
points s1, . . . , sm ∈ S. Typically the n columns of such A are linearly independent in Rm.

The unified context for these and many other modeling problems is that we want to approximate
an unknown function f : R → R on some region R (a time interval, a surface in space, etc.) by a
linear combination c1f1 + · · ·+ cnfn of some known functions f1, . . . , fn : R → R for a moderately
small n, and we do this by taking the n-vector c with jth entry cj to be the “best approximate solution”
to Ax = b where:
• A = (fj(ri)) is the m× n matrix of values of the fj’s at many points r1, . . . , rm ∈ R,
• b is the m-vector whose ith entry bi is the measured value of f at the point ri in an experiment.

In practice the number m of sample measurements is much bigger than the number n of basic
functions fj , and the columns of A (which correspond to the fj’s) are linearly independent because
the known basic functions fj on R are sufficiently “unrelated” to each other and the columns record
their values fj(ri) at sufficiently many points r1, . . . , rm in R. Zillions of data-fitting problems are
special cases of this general task (after one strips away area-specific jargon to recognize the underlying
mathematical problem), which we will soon see how to elegantly solve using the QR-decomposition
of A. ■

Returning to the general setting of an m×n matrix A with linearly independent columns, we have
N(A) = {0}. (Indeed, the entries of any v ∈ N(A) are the coefficients of a linear relation among
the columns of A, so the entries all vanish because the columns of A are linearly independent.) Thus,
Ax1 = Ax2 forces x1 = x2 becauseA(x1−x2) = Ax1−Ax2 = 0 (implying x1−x2 ∈ N(A) = {0}).
Hence, the linear system Ax = b has at most one solution (though it may not have a solution!).

The matrix Q from the QR-decomposition of A in Proposition 22.5.1 is m× n since k = n (due
to linear independence of the columns of A), and the matrix R is an upper triangular n × n matrix
with all diagonal entries positive (due to the interpretation of R via Gram–Schmidt for the columns
of A that we are assuming are linearly independent). The non-vanishing of the diagonal entries of R
implies that R is invertible. Thus, R⊤ is also invertible.

We next observe that A = QR implies A⊤ = R⊤Q⊤, so

A⊤A = R⊤Q⊤QR = R⊤(Ik)R = R⊤R. (22.5.2)

Since R and R⊤ are invertible, so is their product. Thus, even though A may not be invertible, the
n× n matrix A⊤A is invertible (keep in mind that we are assuming A has independent columns).

Multiplying both sides of “Ax = b” on the left by A⊤ yields (A⊤A)x = A⊤b. This can be
(uniquely) solved since A⊤A is invertible, so multiplying both sides on the left by its inverse matrix
motivates us to define

x∗ = (A⊤A)−1A⊤b. (22.5.3)
The point of the preceding discussion is that if a solution actually exists for the original linear system
Ax = b (where A again has independent columns) then this solution must be x∗. We shall see
that x∗ is very useful even when it doesn’t satisfy Ax = b! To compute x∗ efficiently, we use
the QR-decomposition: since A⊤A = R⊤R by (22.5.2), and A⊤ = (QR)⊤ = R⊤Q⊤, we have
x∗ = (R⊤R)−1(R⊤Q⊤)b = R−1(R⊤)−1R⊤Q⊤b = R−1Q⊤b. The expression R−1Q⊤ here is much
more efficient to use than (A⊤A)−1A⊤ in the definition (22.5.3) when n is much smaller than m,
which is to say A is “very tall” (as often happens); e.g., in Section 22.3 we saw how to efficiently
compute inverses of triangular square matrices (such as R).

Just because a linear system has at most one candidate for a solution, it doesn’t follow that this
candidate must work (as we saw in the discussion preceding Proposition 22.5.1). Nonetheless, we
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have shown that the only possible solution to Ax = b (for A with independent columns) is x∗ as
defined above, and this works precisely when b is equal to

Ax∗ = A(A⊤A)−1A⊤b = A(R⊤R)−1A⊤b = (QR)(R−1(R⊤)−1)(R⊤Q⊤)b

= Q(RR−1)((R⊤)−1R⊤)Q⊤b

= Q(Q⊤b)

= ProjC(A)(b)

(the final equality uses Proposition 22.5.1(v)).
The equality of a vector with its projection into a subspace says that the vector lies in the subspace.

Hence, x∗ solves the original linear system precisely when b ∈ C(A). The distance-minimizing
property of projections implies (still assuming A has independent columns) that Ax∗ is the point in
C(A) nearest to b. Since C(A) consists of exactly the points Ax for varying x, it follows that x∗

makes ∥Ax − b∥ is as small as possible. Moreover, x∗ is the unique n-vector for which Ax∗ =
ProjC(A)(b) since we have seen that Ax1 = Ax2 implies x1 = x2. We have established:

Theorem 22.5.4 (Least squares (approximate) “solution”). For an m × n matrix A with independent
columns (so m ≥ n) and QR-decomposition QR, there is a unique x∗ ∈ Rn minimizing ∥Ax − b∥
and it is x∗ = (A⊤A)−1A⊤b = R−1Q⊤b. In particular, the linear system Ax = b has a solution
precisely when x∗ is a solution, which is to say A(A⊤A)−1A⊤b = b or equivalently b is in the null
space of A(A⊤A)−1A⊤ − Im = QQ⊤ − Im (characterizing b for which Ax = b has a solution).

The vector x∗ is called the least squares (approximate) “solution” to Ax = b, even though it is
usually not a solution. If a solution exists then it is the unique solution (recall that A has independent
columns by hypothesis), and if one doesn’t exist then it is the next best thing in a “least squares” sense:
minimizing the distance from Ax to b. This give precise meaning to the idea of “best approximate
solution” in the setting of Example 22.5.3, and it is efficiently computed via the QR-decomposition
of A. In particular, for all situations as in Example 22.5.3, the matrix (A⊤A)−1A⊤ = R−1Q⊤ applied
to the vector b of sample measurements yields the best approximate “solution” (in the least squares
sense). This matrix is a “left-inverse” to A in the sense that multiplying it on the left against A yields

((A⊤A)−1A⊤)A = (A⊤A)−1(A⊤A) = In;

the matrix (A⊤A)−1A⊤ is called the pseudo-inverse of such A (with independent columns!) and is
often denoted A+.

Example 22.5.5. Let’s illustrate the preceding considerations with the 3× 2 matrix

A =



2 −1
3 4
1 −2




and the linear system Ax = b for an arbitrary b ∈ R3. The columns of A are independent (they are
nonzero and not scalar multiples of each other), so Theorem 22.5.4 provides a least squares approxi-
mate “solution”

x∗ = (A⊤A)−1A⊤b

in terms of the entries b1, b2, b3 of b; this involves computing the inverse of the 2× 2 matrix A⊤A. We
are going to compute x∗ in terms of the bi’s, and also give an explicit homogeneous system of 3 linear
equations in the bi’s that characterizes when Ax = b actually has a solution (by making explicit the
matrix A(A⊤A)−1A⊤ − I3 at the end of Theorem 22.5.4 whose null space consists of exactly those
3-vectors b for which Ax = b has a solution).
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To calculate (A⊤A)−1A⊤, let’s work out the 2× 2 matrix A⊤A and invert it. We have

A⊤A =

[
2 3 1
−1 4 −2

]

2 −1
3 4
1 −2


 =

[
14 8
8 21

]

whose determinant is 230 ̸= 0, so its inverse is (A⊤A)−1 =
1

230

[
21 −8
−8 14

]
. Hence, the least squares

approximate “solution” is

x∗ = (A⊤A)−1A⊤b =
1

230

[
21 −8
−8 14

] [
2 3 1
−1 4 −2

]

b1
b2
b3


 =

1

230

[
50 31 37
−30 32 −36

]

b1
b2
b3




=
1

230

[
50b1 + 31b2 + 37b3
−30b1 + 32b2 − 36b3

]
.

Finally, Ax = b has a solution precisely when b is in the null space of the 3× 3 matrix

A((A⊤A)−1A⊤)− I3 =



2 −1
3 4
1 −2



(

1

230

[
50 31 37
−30 32 −36

])
−



1 0 0
0 1 0
0 0 1




=
1

230





130 30 110
30 221 −33
110 −33 109


−



230 0 0
0 230 0
0 0 230






=
1

230



−100 30 110
30 −9 −33
110 −33 −121


 .

The null space of this is unaffected by ignoring the overall factor of 1/230, so the linear system

−100b1 + 30b2 + 110b3 = 0

30b1 − 9b2 − 33b3 = 0

110b1 − 33b2 − 121b3 = 0

is satisfied by b precisely whenAx = b has a solution. This system of linear equations on b ∈ R3 has
C(A) as its set of solutions, and it is a plane: all 3 equations in the system are scalar multiples of each
other (look at ratios of coefficients of each bi), and in fact of the equation 10b1 − 3b2 − 11b3 = 0. ■

Remark 22.5.6. For any m × n matrix A with independent columns (as above), among all n × m
left-inverses M of A (i.e., MA = In) the pseudo-inverse A+ = (A⊤A)−1A⊤ is the unique one with

smallest “matrix norm” ∥M∥ =
√∑

m2
ij . Here is a sketch of a proof, treating n × m matrices as

vectors in Rnm and using the concept of “matrix trace” tr(M) =
∑
mii.

For n ×m matrices, define B · B′ =
∑

i,j bijb
′
ij =

∑
i(
∑

j bijb
′
ij) =

∑
i(BB

′⊤)ii = tr(BB′⊤);
this is the usual dot product on Rnm, and B ·B =

∑
b2ij = ∥B∥2, so the Pythagorean Theorem (in the

sense of Theorem 2.3.1) applies for this “dot product” and the matrix norm. But M −A+ and A+ are
orthogonal for this dot product (i.e., (M − A+) · A+ = 0) because the matrix

(M − A+)(A+)⊤ =MA(A⊤A)−1 − (A⊤A)−1A⊤A(A⊤A)−1 = (MA− In)(A
⊤A)−1 = 0(A⊤A)−1

vanishes and so has vanishing trace. Hence, the Pythagorean Theorem yields

∥M∥2 = ∥(M − A+) + A+∥2 = ∥M − A+∥2 + ∥A+∥2 ≥ ∥A+∥2,
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so ∥M∥ ≥ ∥A+∥ with equality precisely when the excess term ∥M − A+∥2 vanishes, which forces
M − A+ to vanish, or in other words M = A+.

We emphasize that Theorem 22.5.4 is only applicable to linear systems Ax = b for which A
has linearly independent columns (a condition sometimes referred to as “full rank”). If the columns
of A are linearly dependent (so N(A) contains nonzero vectors) then the n × n matrices R and
A⊤A in the preceding discussion are not invertible (since the null space of each contains the nonzero
N(A)), so the procedures above Theorem 22.5.4 no longer make sense (there is no “R−1” and no
“(A⊤A)−1”). Nonetheless, it always makes sense to seek an x minimizing ∥Ax − b∥ (and perhaps
balancing minimization of ∥Ax − b∥ along with either ∥x∥ or lengths of other affine expressions
in x, a task called “multi-objective least squares” or “Tikhonov regularization” that arises in many
economic, statistical, and scientific problems). This is a harder task when the columns are dependent,
and it can be attacked via matrix factorizations and variants of the Lagrange multiplier method from
Chapter 12.

Remark 22.5.7. The preceding technique of least squares approximate “solutions” to a linear system
(with independent columns) computed using a QR-decomposition can be combined with the circle
of ideas around the multivariable Newton’s method from Section 18.5 to minimize the magnitude of
non-linear vector-valued functions. The resulting technique, which in a basic form is due to Gauss, is
called the Gauss–Newton method. The convergence issues for this can be quite delicate; it is one of
many approaches to solving “non-linear least squares” problems.

Remark 22.5.8. In the preceding discussion we focused largely on overdetermined linear systems
with independent columns. Sometimes one is confronted with the opposite scenario of an underdeter-
mined linear system with independent rows (i.e., no “redundant equations”), so there is an abundance
of solutions to Ax = b and then it is of interest to find an exact solution x̃ with minimal length. As a
counterpart to Theorem 22.5.4, this new problem has a unique answer given moreover by a variant of
the right side of (22.5.3) in terms of A and A⊤ (which as written makes no sense for underdetermined
systems), and it can be computed via the QR-decomposition for A⊤ (rather than for A).

To explain this, note that the rows of A are the columns of A⊤, so Theorem 20.6.1 applies to
A⊤ and thereby gives the invertibility of (A⊤)⊤A⊤ = AA⊤. The matrix A⊤(AA⊤)−1 therefore
makes sense, and is a right-inverse of A in the sense that multiplying it against A on the right yields
A(A⊤(AA⊤)−1) = (AA⊤)(AA⊤)−1 = Im. The precise analogue of Theorem 22.5.4 is that the under-
determined linear system Ax = b has a unique exact solution with minimal length, given by

x̃ = A⊤(AA⊤)−1b.

To prove this assertion, first observe that this vector does indeed satisfy Ax = b (check, using that
A⊤(AA⊤)−1 is a right-inverse toA). To see that it is the unique solution with minimal length, we shall
use the Pythagorean Theorem (i.e., Theorem 2.3.1) and the interaction of transpose with dot products
in (20.1.2). For any n-vector x′ satisfying Ax′ = b, the difference vector x′ − x̃ is orthogonal to x̃:

(x′ − x̃) · x̃ = (x′ − x̃) · A⊤(AA⊤)−1b = A(x′ − x̃) · (AA⊤)−1b = (Ax′ − Ax̃) · (AA⊤)−1b

= (b− b) · (AA⊤)−1b

= 0 · (AA⊤)−1b

= 0

(the second equality uses (20.1.2), the fourth uses that Ax′ = b). Thus, by the Pythagorean Theorem,

∥x′∥2 = ∥(x′ − x̃) + x̃∥2 = ∥x′ − x̃∥2 + ∥x̃∥2 ≥ ∥x̃∥2
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with equality precisely when the excess term ∥x′ − x̃∥2 vanishes, which forces x′ − x̃ = 0, or
equivalently x′ = x̃. Taking square roots in the inequality gives that ∥x′∥ ≥ ∥x̃∥ with equality
precisely when x′ = x̃, so x̃ is the unique length minimizer among solutions to Ax = b.

Computing the length-minimizing solution x̃ efficiently can be done using a QR-decomposition
for the transpose matrix A⊤ (rather than for A!), as we now explain. The independence of the rows of
A is the same as the independence of the columns of A⊤, so in the QR-decomposition A⊤ = Q′R′ the
matrix R′ is invertible. Orthonormality of the columns of the non-square Q′ gives that Q′⊤Q′ = Im,
so

AA⊤ = (A⊤)⊤A⊤ = (Q′R′)⊤Q′R′ = R′⊤Q′⊤Q′R′ = R′⊤(Q′⊤Q′)R′ = R′⊤R′

analogous to (22.5.2). Hence

A⊤(AA⊤)−1 = (Q′R′)(R′⊤R′)−1 = Q′R′R′−1
(R′⊤)−1 = Q′(R′⊤)−1,

so x̃ = Q′(R′⊤)−1b; this is an explicit and efficient formula for the unique minimal-length solution
of an underdetermined linear system Ax = b for which A has independent rows (and we again
emphasize that Q′R′ is the QR-decomposition of A⊤, not of A).

22.6. Finding an LU -decomposition using “row reduction”. In this section we describe how
to find an LU -decomposition for an n × n matrix A. The traditional method, as explained below,
amounts to a technique called “row reduction” or “Gaussian elimination”. This adapts to any m × n
matrix, but the notation gets cumbersome, so we focus on the n × n case here. If you have studied
some linear algebra prior to this course then you may have encountered row reduction before; that is
the main reason we are explaining in this section how the LU -decomposition is a reinterpretation of
row reduction. But we should emphasize at the outset that row reduction as an algorithm is obsolete;
when modern computers find LU -decompositions, they generally use other methods that are faster.

If we were to carry out Example 22.1.1 in full detail, we would see that we were applying a
certain sequence of operations to solve the system. In general the collection of solutions to Ax = b
are unchanged if we carry out a sequence of basic row operations which replace the matrix A, and at
the same time the vector b on the right of the equation, by a sequence of new matrices and vectors
obtained by
• adding a multiple of one row to another row;
• multiplying a given row by a nonzero scalar,
• interchanging any two rows.

This is the same as carrying out these operations on the individual linear equations which make up the
system: we can add a multiple of one equation to another of the equations, we can multiply any one
of the equations by a nonzero scalar, or we can interchange the order in which we list the equations.
What this has to do with matrix decompositions is that we can encode this sequence of operations by
matrix multiplication. Note that the actual equations in the system are changing, but the collection of
solution vectors (which is what we care about) does not change.

We illustrate this idea with a specific example. Let A =



1 0 −1
2 5 1
4 2 3


, and suppose that we wish

to solve the equation Ax = b via the LU -decomposition method. We do not specify b here since we
want to show that the manipulations only depend on A. In the following, we write the rows of A as
R1, R2, R3 (these are row vectors).
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At the level of the system of equations, the operations we would like to do include adding a
multiple of one equation to another lower down in the list and multiplying an equation by a nonzero
scalar. You might want to add a multiple of one equation to another higher up in the list of equations,
or swap two of the equations. In the general process called row reduction (or Gaussian elimination),
these extra two operations are allowed. We only wish to include the first two operations (for reasons
to be explained). That is, at the level of working with the matrix, the two operations we allow are:
adding a multiple of one row Ri to Rj when i < j, and multiplying any row Ri by a nonzero scalar.

Let us now do a sequence of such operations on this particular matrix:

1 0 −1
2 5 1
4 2 3




︸ ︷︷ ︸
A

R3→R3−4R1−→



1 0 −1
2 5 1
0 2 7




︸ ︷︷ ︸
A1

R2→R2−2R1−→



1 0 −1
0 5 3
0 2 7




︸ ︷︷ ︸
A2

R3→R3−2R2/5−→



1 0 −1
0 5 3
0 0 29/5




︸ ︷︷ ︸
U

We keep on doing such operations until we arrive at an upper triangular matrix U . There may be
many ways in which way we do the operations, and we might have chosen a completely different set
of specific operations (and maybe even arrived at a different upper triangular matrix).

Remark 22.6.1. There is no guarantee that this method will be successful. For example, suppose at
some stage we arrive at a matrix 


∗ 0 ∗
0 0 ∗
∗ ∗ ∗




where each of the ∗’s are nonzero. There is no way to add multiples of the first and second rows to the
third row to obtain an upper triangular matrix. This is a case where an LU -decomposition really does
not exist. Such difficulties correspond to the presence of 0 in specific positions during the application
of row operations, and (in a sense we won’t make precise) this is a “rare” phenomenon.

In our particular example, we found a good sequence of operations and arrived at some U . Now let
us interpret these row operations. The first operation, where −4R1 is added to R3, can be interpreted
by multiplying A on the left by a lower triangular matrix:

A1 =




1 0 0
0 1 0
−4 0 1


A;

Continuing on with the row operations,

A2 =




1 0 0
−2 1 0
0 0 1


A1

and

U =



1 0 0
0 1 0
0 −2/5 1


A2.

Putting these all together, what we have done amounts to multiplying A on the left by three lower
triangular matrices: 


1 0 0
0 1 0
0 −2/5 1






1 0 0
−2 1 0
0 0 1






1 0 0
0 1 0
−4 0 1


A = U.
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The order matters a lot – we cannot interchange the order of these matrix multiplications!
The next step is to note that it is very easy to find the inverse of any one of these “elementary”

lower triangular matrices. For example,



1 0 0
0 1 0
−4 0 1




−1

=



1 0 0
0 1 0
4 0 1




We simply change the sign on the single nonzero entry below the diagonal. This means that we can
move each lower triangular term to the right side by multiplying by its inverse; i.e.,

A =



1 0 0
0 1 0
4 0 1





1 0 0
2 1 0
0 0 1





1 0 0
0 1 0
0 2/5 1


U.

The final step is to observe that the product of any two – and hence any number of – lower
triangular matrices is lower triangular! (Try a couple of 3 × 3 examples for yourself to see why this
works. The analogue holds for the upper triangular case.) Thus, if we define L to be the product of
the three lower triangular matrices here, it is still lower triangular. Carrying this out gives

L =



1 0 0
2 1 0
4 2/5 1


 .

We have now produced our LU -decomposition of A:

1 0 −1
2 5 1
4 2 3


 =



1 0 0
2 1 0
4 2/5 1





1 0 −1
0 5 3
0 0 29/5


 .

The same principle applies if we are working with a matrix of any size. Namely, we carry out a
sequence of the two types of allowable row operations: add a multiple of Ri to Rj only for i < j,
and multiply Ri by a scalar c ̸= 0. Each of these corresponds to multiplying on the left by two kinds
of “elementary” lower triangular matrices: a matrix with 1’s on the diagonal and exactly one nonzero
entry below the diagonal (in the ji-entry), or a matrix with a nonzero scalar c in the diagonal ii-entry,
1’s elsewhere on the diagonal, and 0’s everywhere off the diagonal. For “most” A we can find a
sequence of such operations and arrive at an upper triangular matrix:

LNLN−1 . . . L2L1A = U.

We then successively multiply by the inverses of these lower triangular matrices to move all of the Lj

to the other side:

LN−1 . . . L1A = L−1
N U, LN−2 . . . L1A = L−1

N−1L
−1
N U, . . . , A = L−1

1 . . . L−1
N U,

and hence A = LU for L = L−1
1 . . . L−1

N .
As we observed along the way, there was no absolutely natural way to decide on which row

operations to do, and in which order, which means that we might have chosen different factors Lj

along the way. This means that the two factors L and U here are not uniquely determined by A alone
(they may depend on choices we made along the way). There is a refinement of the LU -decomposition
called the LDU -decomposition that avoids such failure of uniqueness.
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Remark 22.6.2 (LU with partial pivots). We pointed out in Remark 22.6.1 that it is sometimes impos-
sible to carry out a sequence of the two basic row operations used above to obtain an upper triangular
matrix (and that an LU -decomposition can sometimes fail to exist). The cause of the difficulty is that
we did not allow one further type of row operation: interchanging row i with row j. The reason we
avoided this is that the swapping of Ri and Rj corresponds to multiplying on the left by a special type
of matrix which is not lower triangular! For example, the swapping of the two rows of a 2× 2 matrix
is expressed as

A =

[
2 3
4 −1

]
⇝

[
4 −1
2 3

]
=

[
0 1
1 0

] [
2 3
4 −1

]
= PA

where left multiplication by the 2× 2 matrix P encodes swapping the two rows.
So we can transform a matrix to become upper triangular by a broader sequence of row operations,

and hence via a sequence of left multiplications by certain “elementary” matrices, but not always
using just left multiplications by lower triangular matrices. With some more care, it can be shown
that the need to deviate from lower triangular left multiplication can be avoided by applying a suitable
rearrangement (also called “permutation”) of the rows at the start. This yields a final decomposition
A = PLU with upper triangular U , lower triangular L, and a “permutation matrix” P (a matrix having
a single entry of 1 in each row and in each column, with all other entries equal to 0); the process is
called “LU with partial pivots”.

Remark 22.6.3. To conclude our discussion of upper and lower triangular matrices, let’s address a
point that has been mentioned several times in this chapter: an upper or lower triangular n× n matrix
is never invertible when it has some diagonal entry equal to 0. Our experience with back-substitution
explains why invertibility holds when the diagonal entries are all nonzero, and now let’s see why
invertibility really cannot ever hold if some diagonal entry does vanish. We discuss this in the upper
triangular case; the lower triangular case follows by applying transposes.

Suppose U is an upper triangular matrix, and that some diagonal entry uii vanishes. We will
show that N(U) is nonzero, so U cannot be invertible. Since dimN(U) + dimC(U) = n by the
Rank–Nullity Theorem, it then also follows that the linear subspace C(U) in Rn has dimension < n.

If i = 1 then the first column of U vanishes (since U is upper triangular with u11 = 0), so Ue1 = 0
and hence e1 ∈ N(U) (so N(U) is nonzero). Suppose instead that i > 1, and look at the effect of U
on e1, . . . , ei. Since U is upper triangular, the jth column Uej of U belongs to the span of e1, . . . , ej .
In particular, for j ≤ i− 1 we have

Uej ∈ span(e1, . . . , ej) ⊂ span(e1, . . . , ei−1).

The vanishing of uii says thatUei belongs to the span of e1, . . . , ei−1 too, so the i vectorsUe1, . . . , Uei
all lie in the (i− 1)-dimensional subspace span(e1, . . . , ei−1).

We have just built i vectors in a subspace of dimension i − 1. That is more vectors than the
dimension of this subspace, so it cannot be a linearly independent collection (or else its span would
have dimension i, which is impossible inside a subspace of dimension i− 1). Thus, this collection of
vectors is linearly dependent, so there exist scalars c1, . . . , ci not all equal to 0 for which

c1Ue1 + · · ·+ ciUei = 0,

or equivalently
U(c1e1 + · · ·+ ciei) = 0.

This says that the n-vector c1e1 + · · · + ciei belongs to N(U), and it is nonzero since some cj is
nonzero (remember the meaning of e1, . . . , ei). We have shown that N(U) is nonzero, as desired.
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Chapter 22 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
nothing new!

Concept Meaning Location in text
back-substitution technique to solve a triangular system of linear equa-

tions by working from each equation to the next be-
ginning with the one having the fewest variables

Example 22.1.1

LU -decomposition (for
square case)

expressing a square matrix as a product of lower and
upper triangular square matrices

Theorem 22.2.1(i)

QR-decomposition (for
invertible case)

expressing an invertible matrix A as a product of an
orthogonal matrix (Q) and an upper triangular matrix
(R) with positive diagonal entries

Theorem 22.2.1(ii)

Result Meaning Location in text
upper or lower triangular with nonzero di-
agonal entries is invertible

if A is n × n triangular (upper or lower)
and all aii ̸= 0 then A is invertible

Theorem 22.1.3

for orthogonal n × n matrix A, Ax = b
has exactly one solution

A⊤b is the unique solution Theorem 22.1.4

triangular systems with nonzero diago-
nal coefficients can be analyzed via back-
substitution

for m × n matrix A that is upper or
lower triangular, back-substitution com-
pletely describes solutions to Ax = b:
unique if m = n, with n −m parameters
if m < n, and m − n equations on bi’s if
m > n

Exs. 22.1.5-22.1.8

existence of LU -decomposition and QR-
decomposition in square cases

for n × n matrices A, most have LU -
decomposition and invertible ones have
QR-decomposition

Theorem 22.2.1

for invertible matrix A, can compute A−1

from LU -decomposition and from QR-
decomposition

(LU)−1 = U−1L−1 & (QR)−1 = R−1Q⊤,
with each of U−1, L−1, R−1 computable
via back-substitution

(22.3.1)

Skill Location in text
use back-substitution to solve Ax = b for upper or lower triangu-
lar A with nonzero diagonal entries (parameters in underdetermined
case, equations on b-entries in overdetermined case)

Ex. 22.1.1, Exs. 22.1.5-22.1.8, Theo-
rem 22.1.9

use LU -decomposition to solve Ax = b for square A Example 22.2.3

use QR-decomposition to solve Ax = b for invertible A Examples 22.2.4, 22.2.5

compute inverse of square triangular with nonzero diagonal entries Examples 22.3.2, 22.3.3, 22.3.4

compute QR-decomposition via Gram–Schmidt on columns in in-
vertible case

Examples 22.4.2, 22.4.3
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22.7. Exercises. (links to exercises in previous and next chapters)

Exercise 22.1.
(a) Solve the linear system

4x1 + 2x2 − 4x3 + 8x4 = 8

−3x2 + 6x3 + 12x4 = −6

x3 + 4x4 = 2

2x4 = 6

As a safety check, verify that your answer really works.
(b) Solve the linear system

2x1 = −6

12x1 − 5x2 = 4

−4x1 + 6x2 + x3 = 5

As a safety check, verify that your answer really works.

Exercise 22.2. Consider the underdetermined linear system Ax = b for

A =



2 1 −4 5
0 −3 2 −1
0 0 1 1


 , x =




x1
x2
x3
x4


 , b =




2
−3
1


 .

(a) Solve this in terms of x3 (i.e., use the last equation to solve for x4 in terms of x3, and keep back-
substituting). Check your answer works.

(b) Solve this in terms of x4. Check your answer works.

Exercise 22.3. Consider the underdetermined linear system Ax = b for

A =



3 4 7 1 20
0 2 5 2 1
0 0 1 −2 1


 , x =




x1
x2
x3
x4
x5



, b =



−1
1
−1


 .

Solve this in terms of x4 and x5 (i.e., move all x4-terms and x5-terms to the right side, use the last
equation to solve for x3 in terms of x4 and x5, and keep back-substituting). Check your answer works.

Exercise 22.4. Consider the overdetermined lower triangular system Lx = b for

L =




2 0 0
1 −3 0
3 −7 1
1 −1 1
5 3 −6



, x =



x1
x2
x3


 , b =




b1
b2
b3
b4
b5



.

(a) Following the method as in Example 22.1.8, give equations expressing b4 and b5 in terms of b1, b2, b3
encoding that this overdetermined system has a solution, and in such situations given the solution x
in terms of b1, b2, b3.

(b) Using your answer to (a), for (b1, b2, b3) = (2, 1, 3) what is the only (b4, b5) for which Lx = b has
a solution? Give the solution x in that case, and check directly that it works. Do the same with
(b1, b2, b3) = (−4, 2, 1).
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Exercise 22.5.
(a) The linear system in Exercise 22.1(a) has left side Ux for

U =




4 2 −4 8
0 −3 6 12
0 0 1 4
0 0 0 2


 .

Compute U−1, and check that your answer is correct by multiplying it against U to confirm that you
get I4 (you just need to multiply it against U on one side or the other, not both).

(b) Use your answer to (a) to give a general solution to Ux = b with x =




x1
x2
x3
x4


 and b =




b1
b2
b3
b4


 (i.e.,

express each xi in terms of the bj’s). Check that when b is as given on the right side of the linear
system in Exercise 22.1(a), your general solution recovers the one found in Exercise 22.1(a).

Exercise 22.6.
(a) The linear system in Exercise 22.1(b) has left side Lx for

L =




2 0 0
12 −5 0
−4 6 1


 .

Compute L−1 and check that your answer is correct by multiplying it against L to confirm that you
get I3 (you just need to multiply it against L on one side or the other, not both).

(b) Use your answer to (a) to give a general solution to Lx = b with x =



x1
x2
x3


 and b =



b1
b2
b3


 (i.e.,

express each xi in terms of the bj’s). Check that when b is as given on the right side of the linear
system in Exercise 22.1(b), your general solution recovers the one found in Exercise 22.1(b).

Exercise 22.7.
(a) Verify the LU -decomposition


1 0 0
5 2 0
3 −4 −1





3 2 −2
0 1 1
0 0 −4


 =



3 2 −2
15 12 −8
9 2 −6


 .

(b) For L and U as in (a), compute L−1 and U−1 and check that each work.
(c) Compute U−1L−1 and check that this is inverse to the matrix A = LU computed on the right side

in (a) (multiply your computation of U−1L−1 against A on one side or the other; we know it isn’t
necessary to check both sides).

Exercise 22.8. For this exercise, you should do all work with exact numbers (do not use a calculator with
decimal approximations). This involves just basic manipulations with square roots, nothing too ugly.
(a) Verify the QR-decomposition



1/
√
3

√
2/3 0

1/
√
3 −1/

√
6 −1/

√
2

1/
√
3 −1/

√
6 1/

√
2





√
3 4/

√
3 −5/

√
3

0
√
2/3 −1/

√
6

0 0 1/
√
2


 =



1 2 −2
1 1 −2
1 1 −1


 .

(You’re not asked to check that Q is orthogonal, though you may wish to verify this for yourself in
private anyway.)
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(b) Compute R−1, checking it works.
(c) For A = QR computed in (a), use your answer to (b) to verify that A−1 (= R−1Q−1 = R−1Q⊤) is

given by

A−1 =



−1 0 2
1 −1 0
0 −1 1




and check that this really is inverse to A (i.e., multiply it against A on the left or right to check that
the product is I3).

Exercise 22.9. Consider the linear system

x1 + 2x2 − 2x3 = 6

x1 + x2 − 2x3 = −2

x1 + x2 − x3 = 1

(a) Use A−1 given in the statement of Exercise 22.8(c) to solve the given linear system, and check that
your answer works.

(b) For the QR-decomposition of A given in the statement of Exercise 22.8(a), write out the upper trian-
gular system Rx = Q⊤b that encodes the same solution(s) as the original linear system, and solve
the upper triangular system by back-substitution. You should get the same solution as in (a).

Exercise 22.10. Consider the following matrix A and its column vectors:

A =



1 2 1
1 0 3
1 −1 −2


 , v1 =



1
1
1


 , v2 =




2
0
−1


 , v3 =




1
3
−2


 .

If you run Gram-Schmidt on these, you get the following:

w1 = v1 =



1
1
1


 , w2 = v2 −

1

3
w1 =

1

3




5
−1
−4


 ,

w3 = v3 −
5

7
w2 −

2

3
w1 =

6

7



−1
3
−2


 .

Using this information, construct the QR-decomposition of A and check that your answer is correct
(by computing the matrix product QR directly to see that it is equal to A).

Exercise 22.11. This exercise leads through a direct argument, without reference to Gram–Schmidt, in
the case of invertible square matrices that QR-decompositions are uniquely determined. That is, if an
invertible n× n matrix A is equal to QR and to Q′R′ for orthogonal Q and Q′ and upper triangular R and
R′ with positive diagonal entries then Q = Q′ and R = R′.
(a) Show Q−1Q′ = RR′−1, and that the left side is orthogonal and the right side is upper triangular with

positive entries. (Hint for the equality: beginning with Q′R′ = QR, multiply both sides by Q−1 on
the left and R′−1 on the right.)

(b) Show that if Q−1Q′ = In and RR′−1 = In then Q = Q′ and R = R′.
(c) Show that if an orthogonal n×n matrix M is also upper triangular with positive diagonal entries then

it equals In, and combine this with (a) and (b) to conclude that Q = Q′ and R = R′. (Hint: first show
the left column of M must be e1 [and not −e1, for instance] and then use that knowledge to deduce
that the second column must be e2, and so on. Think about n = 2 before thinking about general n.)
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Exercise 22.12. This exercise introduces special cases of a general algorithm for efficiently computing

LU -decompositions. Let A =

[
2 3
6 4

]
, so A = A1 + A2 for A1 =

[
2 3
6 9

]
and A2 =

[
0 0
0 −5

]
. Note that

each Aj has the property that its nonzero rows are multiples of one another and its nonzero columns are
multiples of one another; this A1 has the same first column and first row as A, and A2 = A− A1.
(a) Express A1 and A2 in the form A1 = c1r1 and A2 = c2r2 for 2 × 1 matrices c1 and c2 (“columns”)

and 1× 2 matrices r1 and r2 (“rows”); there are many possible answers (since (tc)((1/t)r) = cr for
any nonzero scalar t).
As a matter of terminology, Ai is called the “outer product” of ci and ri (regarded as 2-vectors).

(b) Define the 2 × 2 matrices L =
[
c1 c2

]
, and U =

[
r1
r2

]
(i.e., cj is the jth column of L, and ri is

the ith row of U ); you should have that these are respectively lower-triangular and upper-triangular.
Verify that LU = A.

(c) Now let B =




2 5 3
−4 −3 8
6 1 9


, so B = B1 +B2 +B3 for the matrices

B1 =




2 5 3
−4 −10 −6
6 15 9


 , B2 =



0 0 0
0 7 14
0 −14 −28


 , B3 =



0 0 0
0 0 0
0 0 28




which each have the property that its nonzero rows are multiples of one and its nonzero columns are
multiples of one. Note thatB1 has the same first column and first row withB, B2 has the same second
column and second row as B −B1, and B3 = B −B1 −B2.
Find 3×1 matrices ci and 1×3 matrices ri for whichBi = ciri (there are many possible answers since
(tc)((1/t)r) = cr for any nonzero scalar t). You should have that the 3× 3 matrix L =

[
c1 c2 c3

]

(jth column cj) is lower-triangular and the 3 × 3 matrix U =



r1
r2
r3


 (ith row ri) is upper-triangular.

Check that LU = B.

Exercise 22.13. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):
(a) Suppose A is an n× n matrix with A = LU where U is n× n upper triangular and L is n× n lower

triangular. The matrix A⊤ has an LU -decomposition given by A⊤ = U⊤L⊤.

(b) The matrix factorization



1/3 −2/3 2/3
2/3 2/3 1/3
2/3 −1/3 −2/3





3 3 3
0 −3 −3
0 0 6


 is a QR-decomposition arising from

the Gram-Schmidt process.
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Part V

Eigenvalues and second partial derivatives



“I developed my theory of infinitely many variables from purely mathematical interests, and even called it
‘spectral analysis’ without realizing it would later find an application to the actual spectrum of physics.”

D. Hilbert [Hil]

“The Spectral Theorem is a glimpse at the source code of the universe.”
anonymous former Math 51 student

Overview of Part V

In this final Part of the book, we introduce some new concepts that simultaneously extend and unify
many of the topics we have been studying so far. This circle of ideas is centered on the notions of
eigenvalue and of second derivatives of functions of several variables.

Chapters 23 and 24 introduce the fundamental concepts of eigenvalue and eigenvector of an n×n
matrix, just scratching the surface of this vast subject. We mainly focus on symmetric n× n matrices,
already a useful case for many applications and one for which things work out a bit more nicely than in
general (largely due to the Spectral Theorem in Section 24.1 that is one of the most important results
in applied linear algebra). Though we do not discuss general methods for computing eigenvectors
in the main text (but we provide an introduction to those methods in Section E.5 for those who are
interested), the exposure we provide in Chapters 23–24 will help you to get oriented with the basics.

For a function f(x1, . . . , xn), Chapter 25 organizes its second-partials as the entries of an n × n
matrix of functions, called the Hessian matrix Hf of f . By the equality of mixed partials, this is
actually a symmetric matrix; it provides the best language to describe the quadratic approximation to
f near each critical point a ∈ Rn (the quadratic polynomial in x1, . . . , xn that best approximates f
near a).

We use the quadratic approximation to f at a critical point a ∈ Rn in Chapter 26 to give a second-
derivative test for determining when such an a is a local maximum or local minimum for f . This
test relies on a certain property of the Hessian matrix (Hf)(a) called its definiteness. A critical point
a for f is a local minimum if (Hf)(a) is positive-definite, and is a local maximum if (Hf)(a) is
negative-definite. Some critical points are saddle points, so the Hessian matrix there is not definite.
We analyze the definiteness properties of (Hf)(a) via the concepts of eigenvalue and eigenvector
introduced in Chapter 23. Using that language, we characterize when the Hessian matrix is positive-
definite or negative-definite, and when the critical point is a saddle point. This gives a rather detailed
visualization of what a multivariable function looks like near a critical point.

In (the optional) Chapter 27 we first show how eigenvectors can be used to systematically “decouple”
systems of ordinary differential equations, leading to explicit and exact solutions for these. Next, we
describe an application to population dynamics (the study of how populations evolve when there is
a fixed set of effects – births, deaths, mutations, etc. – from generation to generation), illustrating
how questions in this direction often reduce to computing very high powers AN of an n×n matrix A.
Rather than multiplying the matrixA by itself a large number of times, which is a very computationally
difficult problem, the powers AN can be approximated rather effectively for large N in terms of the
eigenvectors and eigenvalues of A. Finally, we describe the singular value decomposition (SVD) of
a general m× n matrix, a more computationally stable replacement for the notion of eigenvalues for
general (non-symmetric and non-square) matrices. SVD’s are frequently encountered in practice, and
we provide pointers to an array of applications.



23. Eigenvalues and eigenvectors

We now come to one of the most powerful concepts in linear algebra: eigenvalues and eigenvectors
(special scalars and vectors associated to a square matrix). This will enable us to solve several problems
encountered previously – for example, efficiently computing an n × n matrix raised to a big power. The
short slogan is that eigenvectors can be used to make an n× n matrix behave like a diagonal matrix.

By the end of this chapter, you should be able to:
• check if a given v ∈ Rn is an eigenvector of an n×n matrix A, and compute its eigenvalue if so;
• relate eigenvectors of A to null spaces of matrices related to A;
• for a 2× 2 matrix, find eigenvalues and eigenvectors via an associated quadratic polynomial.

In practice, eigenvalues and eigenvectors for a non-triangular n × n matrix can be computed more
reliably and quickly by a computer than by a human when n > 2. Therefore, you will not be asked to
compute them from scratch in such cases when n > 2. Our emphasis is on how to use them for general n.
(The optional Section E.5 introduces some ideas for finding eigenvalues and eigenvectors for general n.)

Eigenvalues grew out of the 19th-century efforts to clarify incomplete 18th-century work on the sta-
bility of solutions to differential equations in celestial mechanics [Ha1, pp. 563-565], and they arise
in a broad range of contemporary disciplines. We saw in Chapter 16 that raising a matrix to a high
power is relevant to predicting long-term behavior of systems that evolve in time (its relevance to why
PageRank works is discussed in Remark D.2.1, resting on Theorem D.1.1), and we will see in Section
24.4 that eigenvalues control the behavior of this process. Other applications of eigenvalues include:
(i) (Example 24.6.2) the “principal axes” of a rotating rigid body (perhaps very irregularly-shaped!),

(ii) (Section 27.3) defining and computing the singular value decomposition of any matrix, a crucial
tool across disciplines such as statistics, machine learning, financial forecasting, computer vision,
computational biology, and data compression,

(iii) (Section 27.1) solving linked systems of “linear” differential equations, as arise for spring net-
works, coupled oscillators, and elsewhere in physical science (reaction rate problems in biochem-
istry involve “non-linear” systems, with long-term behavior approximated by linear systems).

Eigenvalues also show up in a vast array of other contexts, far too numerous to list here, such as:
• vibrational mechanics (e.g., dissipating energy in a way that gives stability); see Example 24.6.4,
• market risk analysis (extracting “principal components” from a correlation matrix of financial

data over time to manage risk in portfolios; e.g., see [Al, Table I.2.3]),
• analysis of stability for (linear) electrical circuits (e.g., see [CDK, Sec. 10.5], where eigenvalues

are called “natural frequencies”).
• computing energies in quantum mechanics and physical chemistry (e.g., energy levels in atomic

spectra are eigenvalues for a corresponding “Schrödinger matrix”; see Example 24.6.1).
In subsequent math courses (e.g., Math 53, 104, 113) and nearly any advanced course in the physical
or computational sciences you will learn more about the tremendous usefulness of eigenvalues.

23.1. The main concepts.

Example 23.1.1. Consider A =



16 −2 −6
−2 19 −3
−6 −3 27


. For v =



2
1
1


 we have (check!)

Av =



24
12
12


 = 12v.
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So applying the linear transformation TA : R3 → R3 to v yields a multiple of v (with multiplier 12). ■

This situation in Example 23.1.1 is given a special name:

Definition 23.1.2. Let A be an n × n matrix. A vector v ∈ Rn is called an eigenvector of A if it is
nonzero and there is a scalar λ ∈ R for which Av = λv. (Examples 23.1.5 and 23.1.6 give a nice
visualization.) The prefix “eigen” is German21 for “characteristic” or “own” (as in ownership).

The task of figuring out if a given n × n matrix A has any eigenvectors at all, and how to find them
when it does, arises in many applications and is discussed in further math courses. We will always provide
the eigenvectors to you when n > 2, as in Example 23.1.1 above. In Theorem 23.3.1 we will discuss the
full story when n = 2 (and see Proposition 23.1.11 and Remark 23.1.13 for some more when n > 2).

Definition 23.1.3. If v is an eigenvector of an n × n matrix A, the scalar λ for which Av = λv is
called the eigenvalue22 of A associated with v. The span of such a v is called an eigenline of A.

In materials science and other engineering contexts, the concepts of “natural frequencies” and “normal
modes” correspond respectively to eigenvalues and eigenvectors in mathematical models.

Example 23.1.4. To illustrate these concepts in the case n = 2, consider the matrix A =

[
3 16
2 −1

]
. This

has 7 and −5 as eigenvalues: for v =

[
4
1

]
and v′ =

[
2
−1

]
you can (and should) check that

Av =

[
28
7

]
= 7v, Av′ =

[
−10
5

]
= (−5)v′. ■

Let’s prepare for a valuable visualization for the concepts of eigenvector and eigenvalue. If A has
eigenvector v, with associated eigenvalue λ, then any nonzero scalar multiple of v is also an eigenvector
with the same eigenvalue. Indeed, if w = cv (with c ̸= 0, so w ̸= 0) then

Aw = A(cv) = c(Av) = c(λv) = λ(cv) = λw. (23.1.1)

Thus, everything in the line span(v) is multiplied by the scalar λ under the linear transformation for A.

Example 23.1.5. For an illustration with n = 2, consider the 2× 2 matrix A =

[
2 −1
−1 2

]
. The effect of

A on the points in a 2× 2 grid centered at the origin is shown in Figure 23.1.1, in which the fat dots on the

left are integer multiples of u =

[
1
1

]
and v =

[
1
−1

]
. The vector u is an eigenvector of A with eigenvalue

1 and the vector v is an eigenvector of A with eigenvalue 3 since

Au =

[
2 −1
−1 2

] [
1
1

]
=

[
1
1

]
= u, Av =

[
2 −1
−1 2

] [
1
−1

]
=

[
3
−3

]
= 3v. (23.1.2)

21The German words “eigenfunktion” and “eigenwert” were invented by David Hilbert in work on the mathematical meth-
ods of physics in the early 20th century. These were half-translated into English as “eigenfunction” and “eigenvalue” respec-
tively, the former a precursor to “eigenvector” via an analogy between functions and vectors. The use of “eigen” won out in
English over a zoo of competing terminologies (characteristic, secular, latent, proper) as explained here.

22The similarity with Lagrange multiplier notation is a coincidence. The concepts are unrelated, but there is a connection
in a special case: Lagrange multipliers can be used in the proof of a deep result about eigenvalues in Chapter 24 (the Spectral
Theorem) that underlies all of modern AI and machine learning (see “Method 1” in Step 3 near the end of Section B.3).
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In Figure 23.1.1 this is illustrated by the red segment through u and −u being unaffected (multiplication
by the eigenvalue 1 on span(u)) and the blue segment through v and −v being stretched by a factor of 3
(multiplication by the eigenvalue 3 on span(v)).

•
•

•
•

•

u

v

•
•
•
•
•

[
2 −1
−1 2

]
u

3v

•
•

•
•

•

•

•

•

•

•

FIGURE 23.1.1. The vectors u and v are eigenvectors of the matrix A.

On the right side in Figure 23.1.1 we have superimposed the original 2 × 2 grid on top of its image
under A to illustrate that the red segment really has not changed whereas there has been a lot of stretching
along the ±v-directions (the fat dots are integer multiples of u and 3v). ■

Example 23.1.6. The matrix M =

[
5/3 −2/3
−1/3 4/3

]
has u =

[
1
1

]
as an eigenvector with eigenvalue 1 and

v =

[
1

−1/2

]
as an eigenvector with eigenvalue 2. This is illustrated in Figure 23.1.2 (in which the fat dots

on the left are integer multiples of u and v). In contrast with Example 23.1.5, now the eigenvectors u and
v are not orthogonal (the angle between them is arccos(1/

√
10) ≈ 71.6°).

•
•

•
•

•
•

•

u

v
• • • • • • •

[
5/3 −2/3
−1/3 4/3

]
u

2v

•
•

•
•

•
•

•

•
•

•
•

•
•

•

FIGURE 23.1.2. The vectors u and v are eigenvectors of the matrix M .

The failure of orthogonality for eigenvectors of M is related to M not being symmetric (in the sense
of Definition 20.3.5) whereas A in Example 23.1.5 is symmetric; we’ll return to this in Section 24.1. ■

We reiterate for emphasis: if v is an eigenvector of an n× n matrix A with eigenvalue λ, the effect of
the linear transformation TA : Rn → Rn on all points belonging to the line spanned by v is scaling by
the factor λ. This is a good way to think about the geometric meaning of eigenvectors: they provide lines
through 0 on which the effect of TA is scaling by some multiplier factor λ ∈ R (so stretching if |λ| > 1,
shrinking if |λ| < 1, and flipping across the origin if λ < 0). This visualization has a useful special case:

Example 23.1.7. For an angle θ that is neither 0° nor 180°, consider the rotation matrix

Aθ =

[
cos θ − sin θ
sin θ cos θ

]
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(which is not symmetric). Then for any nonzero v ∈ R2, the vectorAθv is at an angle θ ̸= 0°, 180° relative
to v and hence is not on the same line as that spanned by v. Thus, Aθv is not a scalar multiple of v, so v
cannot be an eigenvector for Aθ. Hence, Aθ does not have any eigenvectors at all in R2. ■

Remark 23.1.8 (online resource). Some instructive dynamic visualizations for the ideas of eigenvalue
and eigenvector are given in this video at “Essence of Linear Algebra”.

Example 23.1.9. If the null space of an n× n matrix A contains a nonzero vector w then Aw = 0 = 0w,
so w is an eigenvector of A with eigenvalue 0. An eigenvector for A with eigenvalue 0 is the same thing
as a nonzero vector in the null space N(A), so 0 is an eigenvalue of A precisely when A is not invertible
(by Theorem 18.3.3).

Warning. Even though the scalar 0 might occur as an eigenvalue, don’t forget that by definition the
zero vector 0 is forbidden from being considered as an eigenvector (even though it satisfies A0 = λ0 for
every λ). This is important to avoid a lot of confusion later on. Many results about eigenvectors break
down if we allow 0 to be considered as one (forcing us to keep saying “nonzero” all the time, which would
get cumbersome as we do ever more with eigenvectors); this is the main reason that the possibility is ruled
out by requiring eigenvectors to be nonzero by definition. Further experience will convince you of the
aptness of this convention if you are bothered by it now. ■

Remark 23.1.10. To illustrate the “Warning” above, let’s explain why for an n× n matrix A and a given
eigenvector v for A, there cannot be scalars λ ̸= µ for which Av = λv and Av = µv (i.e., Definition
23.1.3 is unambiguous: we can speak of “the” eigenvalue associated to a given eigenvector). The reason
is that if Av = λv and Av = µv for scalars λ, µ ∈ R then λv = Av = µv, so λv = µv and hence by
subtraction

(λ− µ)v = 0.

The vector v is nonzero because eigenvectors are nonzero by definition, and the only scalar that multiplies
a nonzero vector to yield the zero vector is the scalar 0. Thus, λ− µ = 0, so λ = µ as desired.

On the other hand, for a given eigenvalue λ ofA there may be lots of linearly independent eigenvectors
with associated eigenvalue λ! For instance, in Example 23.2.3 we give a 3 × 3 matrix A having linearly
independent eigenvectors v,v′ ∈ R3 each with eigenvalue 2 (i.e., Av = 2v and Av′ = 2v′). Or as an
extreme case, the identity matrix In has every nonzero n-vector v as an eigenvector with eigenvalue λ = 1.

In practice, one first figures out the eigenvalues of an n×n matrix A, and then works out eigenvectors
for each eigenvalue by computing a null space. To explain this, recall that a scalar λ is an eigenvalue of A
when the vector equation Ax = λx has a nonzero solution x ∈ Rn. But this is the same as Ax− λx = 0,
and Ax − λx = Ax − λInx = (A − λIn)x. Thus, an eigenvector with eigenvalue λ is a nonzero vector
in the null space N(A − λIn). But an n × n matrix M (such as A − λIn) has a nonzero vector in its null
space precisely when M is not invertible (Theorem 18.3.3). Thus:

Proposition 23.1.11. A scalar λ is an eigenvalue for an n×n matrix A precisely when A−λIn is not
invertible, or equivalently the null space N(A− λIn) contains a nonzero vector. The eigenvectors for
A with eigenvalue λ are the nonzero vectors in N(A− λIn) (which is called the λ-eigenspace for A).

Example 23.1.12. Every n× n Markov matrix M has 1 as an eigenvalue; i.e., there is a nonzero n-vector
v for which Mv = v. This has a probabilistic meaning explored in Chapter 16 when Mk approaches a
matrix whose columns all approach a common n-vector as k → ∞, which we saw happens in some cases
(such as bird migrations and PageRank) but not in others (such as gambler’s ruin).

To see that 1 is an eigenvalue of any such M , by Proposition 23.1.11 we want to show the null space
N(M−In) is nonzero, or in other words has dimension at least 1. By the Rank–Nullity Theorem (Theorem
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21.3.16) we have dimC(M − In) + dimN(M − In) = n, so the desired property dimN(M − In) ≥ 1 is
the same as the property dimC(M − In) ≤ n − 1. This says that the subspace C(M − In) ⊂ Rn is not
the entirety of Rn. We’ll show all vectors in C(M − In) have entries summing to 0, which will do the job.

By definition of M being Markov, its columns sum to 1. The columns of In each sum to 1 also. Hence,
the columns of A = M − In each sum to 1 − 1 = 0. Every vector in C(A) is a linear combination
Ax =

∑n
j=1 xjAej of the columns Aej of A, so

sum of entries in Ax =
n∑

j=1

xj(sum of entries in Aej) =
n∑

j=1

xj0 = 0. ■

Remark 23.1.13. In Section 23.3 we will use Proposition 23.1.11 for n = 2 via the characterization of
non-invertibility of 2×2 matrices in terms of vanishing of the determinant: det(A−λI2) = 0. By Remark
18.2.5, non-invertibility of an n× n matrix M for general n is characterized by the vanishing of det(M),
so eigenvalues λ of an n×n matrix A are solutions to det(A−λIn) = 0. This determinant turns out to be
a polynomial in λ with degree n, determined by the entries in A (discussed in Section E.5 for those who
are interested; the case n = 2 is treated in Section 23.3). So for n not too big, to find the eigenvalues of A
in R just ask a computer where the graph of that degree-n polynomial crosses the x-axis.

23.2. Diagonal and triangular matrices.

Example 23.2.1. There is one general class of matrices for which it is easy to read off some eigenvectors

and the corresponding eigenvalues: diagonal matrices. If A is a diagonal n×n matrix




d1 0 · · · 0
0 d2 · · · 0
...

... . . . ...
0 0 · · · dn




then the ith standard basis vector ei is an eigenvector of A with eigenvalue di: Aei = diei

This is easiest to see by working out a typical 3 × 3 example and observing the pattern that emerges
(which has nothing to do with the specific diagonal entries, nor the fact that n = 3): for

A =



7 0 0
0 −4 0
0 0 5




we can verify by direct calculation (check) that Ae1 = 7e1, Ae2 = −4e2, Ae3 = 5e3. For example:

Ae2 =



7 0 0
0 −4 0
0 0 5





0
1
0


 =




0
−4
0


 = −4e2,

and the cases of e1 and e3 work out similarly (with respective multipliers 7 and 5 from the corresponding
diagonal entries of A).

On the other hand, there are no other eigenvalues for this A. Indeed, for λ ̸= 7,−4, 5 the equation
Ax = λx expresses the simultaneous conditions

7x1 = λx1, −4x2 = λx2, 5x3 = λx3

with λ ̸= 7,−4, 5. This forces all xi’s to vanish (so x = 0 and hence there is no nonzero solution, so λ
isn’t an eigenvalue of A); e.g., if x2 ̸= 0 then we could cancel it in the second equation to get λ = −4,
which is false, so necessarily x2 = 0, and similarly x1 and x3 must vanish since λ ̸= 7, 5 respectively.

This argument applies equally well to any diagonal matrix: its only eigenvalues are the diagonal entries.
■
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The theory of eigenvectors gives a way to make a lot of n × n matrices A “look diagonal” when the
effect of the corresponding linear transformation is expressed in an appropriate reference frame (typically
quite different from the standard basis!). More precisely, if there is a basis {v1, . . . ,vn} of Rn consisting
of eigenvectors for A, say with respective eigenvalues λ1, . . . , λn (some of which may be equal to each
other), then the effect of A “looks diagonal” when n-vectors x are expressed in terms of this basis.

For example, if we consider M =

[
2 −1
−1 2

]
then in Example 23.1.5 we saw that the basis of R2

given by u =

[
1
1

]
and v =

[
1
−1

]
consists of eigenvectors for M with respective eigenvalues 1 and 3, so

for x = c1u+ c2v we have Mx =M(c1u+ c2v) = c1(Mu) + c2(Mv) = c1u+ c2(3v) = c1u+ (3c2)v.
More generally, if we write x = c1v1 + · · · + cnvn for a basis of eigenvectors v1, . . . ,vn (when such

a basis exists) with Avj = λjvj then

Ax = c1Av1 + · · ·+ cnAvn = c1λ1v1 + · · ·+ cnλnvn = λ1(c1v1) + · · ·+ λn(cnvn).

So in words: if x has coefficients (c1, . . . , cn) in terms of the vj’s thenAx has coefficients (λ1c1, . . . , λncn)
in terms of the vj’s. Thus, the effect of the matrix-vector product against A behaves like the diagonal
matrix of λj’s when general n-vectors are written in terms of the basis of eigenvectors v1, . . . ,vn for A!

You might think that this is of limited utility because it must be a very restrictive and difficult-to-check
condition on A that Rn has a basis consisting of eigenvectors for A. One of the truly great theorems of
mathematics is that for symmetric matrices such a basis always exists! (Such bases also exist for some
non-symmetric matrices, and fail to exist for others; see Examples 23.2.3 and 23.3.6.) We will discuss this
amazing result and its awesome applications in the remaining chapters of this book.

The preceding analysis of eigenvalues and eigenvectors for diagonal n × n matrices can be pushed
further, to the cases of upper triangular and lower triangular n× n matrices:

Theorem 23.2.2. LetM be an n×n upper triangular or lower triangular matrix. The eigenvalues ofM
are exactly the diagonal entries. For each eigenvalue λ the corresponding eigenvectors are the nonzero
vectors in the null space N(M − λIn): nonzero solutions x to the (upper or lower) triangular system
(M − λIn)x = 0 of n linear equations in n unknowns (which we can solve via back-substitution!).

Why are the eigenvalues of an n × n triangular matrix M precisely the diagonal entries? Letting
di = mii denote the ith diagonal entry,M−λIn is also a triangular matrix with diagonal entries di−λ.
It is a general fact (verified by direct computation when n = 2) that the determinant of a triangular
matrix is equal to the product of its diagonal entries, so det(M−λIn) = (d1−λ)(d2−λ) · · · (dn−λ).
This vanishes precisely when λ is equal to one of the di’s, as desired.

Let’s illustrate finding eigenspaces via back-substitution for a 3× 3 upper triangular matrix:

Example 23.2.3. LetM =



2 3 1
0 8 2
0 0 2


. This has as its eigenvalues 2 and 8. We work out the corresponding

eigenvectors by solving the corresponding vector equations Mx = 2x and then Mx = 8x, or equivalently
(M − 2I3)x = 0 and then (M − 8I3)x = 0. These are each upper triangular systems of linear equations,
which we know how to solve via back substitution.
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First consider (M − 2I3)x = 0. This is the system of equations

3x2 + x3 = 0

6x2 + 2x3 = 0

0 = 0

for which the last equation says nothing and the first two each say x3 = −3x2. There is no condition on
x1, so the solutions are all vectors of the form




x1
x2

−3x2


 =



x1
0
0


+




0
x2

−3x2


 = x1



1
0
0


+ x2




0
1
−3


 .

Hence, N(M − 2I3) is 2-dimensional, with basis v =



1
0
0


 ,v′ =




0
1
−3


. Every linear combination

av + bv′ with a, b not both 0 is then an eigenvector for M with eigenvalue 2. (If the (2, 3)-entry of M
were anything other than 2, the outcome of this calculation would have been that x2, x3 = 0, which is to
say that we would have obtained that N(M − 2I3) is the line spanned by e1.)

Next, we consider (M − 8I3)x = 0. This is the system of equations

−6x1 + 3x2 + x3 = 0

2x3 = 0

−6x3 = 0

for which the final two equations say x3 = 0 and so the first equation says −6x1 + 3x2 = 0. In other
words, x3 = 0 and x2 = 2x1, so the solutions are the vectors of the form



x1
2x1
0


 = x1



1
2
0


 .

The eigenvectors of M with eigenvalue 8 are precisely the nonzero scalar multiples of



1
2
0


. ■

23.3. The case n = 2. It is a pain to compute eigenvectors and eigenvalues for an n × n matrix in
general, but for n = 2 the computation can be related to familiar tasks from algebra: the quadratic formula
and equations of lines. We illustrate this by revisiting the 2× 2 matrix

A =

[
3 16
2 −1

]

from Example 23.1.4 to explain how to find the eigenvectors and eigenvalues in this case, and then we
formulate the conclusion in a manner that applies to any 2 × 2 matrix whatsoever. We’ll see that the
essential issue is really first to figure out the possibilities for the eigenvalues, which will amount to using
the quadratic formula (and then finding corresponding eigenvectors will turn out to be quite easy). For
n > 2 there is nothing quite like the quadratic formula.

Remark 23.1.13 tells us how to find the eigenvalues: we seek solutions to det(A − λI2) = 0. To
compute this determinant, we write out the 2× 2 matrix in full glory:

A− λI2 =

[
3 16
2 −1

]
−
[
λ 0
0 λ

]
=

[
3− λ 16
2 −1− λ

]
,
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so its determinant is

(3− λ)(−1− λ)− 16(2) = −3− 2λ+ λ2 − 32 = λ2 − 2λ− 35.

This is a quadratic polynomial in λ!
We can solve this quadratic condition using the quadratic formula, getting that it has as its solutions

2±
√
4 + 4 · 35
2

=
2±

√
144

2
=

2± 12

2
= 1± 6 = 7,−5

(or in this particular case we might happen to notice that the quadratic polynomial factors as (λ−7)(λ+5),
again yielding its roots as 7 and −5). For these two eigenvalues, the eigenvectors are nonzero solutions
x ∈ R2 to the vector equation Ax = 7x when λ = 7 and Ax = −5x when λ = −5.

Writing x =

[
x
y

]
, the condition Ax = 7x amounts to the system of equations

3x+ 16y = 7x, 2x− y = 7y,

and by bringing the right side over to the left side this becomes

−4x+ 16y = 0, 2x− 8y = 0.

These equations are multiples of each other, and any nonzero vector on this common line is an eigenvector

with eigenvalue 7. Writing the line as y = (1/4)x, a clean option is (x, y) = (4, 1), recovering v =

[
4
1

]

that we encountered in Example 23.1.4. (We could have chosen any other nonzero value y = c, so x = 4c,

yielding x =

[
4c
c

]
= cv as an eigenvector for the eigenvalue 7.) Note that it is no surprise that we

obtained two scalar equations that are scalar multiples of each other, since 7 being an eigenvalue ensures
that Ax = 7x has at least a line through the origin among its solutions (namely, the scalar multiples of an
eigenvector with eigenvalue 7).

The story goes similarly for λ = −5: the vector equation Ax = −5x amounts to the system of
equations

3x+ 16y = −5x, 2x− y = −5y,

which can be rewritten as
8x+ 16y = 0, 2x+ 4y = 0.

These are multiples of each other, and any nonzero vector on this common line is an eigenvector with
eigenvalue −5. Writing the line as y = −(1/2)x, a clean option is (x, y) = (−2, 1), or perhaps (2,−1).

The latter choice recovers the eigenvector v′ =

[
2
−1

]
with eigenvalue −5 seen in Example 23.1.4.

We now present the conclusion in a general form that can be readily applied to any 2× 2 matrix. The
verification of the general formulation below is essentially just a generalization of the specific calculations
given above upon making the general calculation

det(A− λI2) = det

([
a b
c d

]
−
[
λ 0
0 λ

])
= det

([
a− λ b
c d− λ

])
= (a− λ)(d− λ)− bc

= λ2 − (a+ d)λ+ (ad− bc);

see Section 23.4 for such details. (If you take Math 53, Math 104, or Math 113 you will learn about the
additional ideas that adapt the preceding considerations to n > 2; see Theorem E.5.1 and Remark E.5.2 in
Appendix E for an introduction to the case of general n.)
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Theorem 23.3.1. Let A =

[
a b
c d

]
be a 2 × 2 matrix. Define its trace tr(A) = a + d to be the sum

of its diagonal entries, and its determinant det(A) = ad − bc to be the difference of the products of
entries on the diagonal and the anti-diagonal.
(i) The eigenvalues ofA in R are exactly the roots of PA(λ) = λ2−tr(A)λ+det(A). (This quadratic

polynomial is called the characteristic polynomial of A.)
(ii) For each such root λ, the corresponding eigenvectors are the nonzero vectors in N(A− λI2).

Corollary 23.3.2. A 2× 2 matrix A has an eigenvalue precisely when PA(λ) has a real root, which is
to say that its discriminant tr(A)2 − 4 det(A) is ≥ 0.

When PA has a pair of roots λ1, λ2 ∈ R then the relationship between the roots and the coefficients
of a quadratic polynomial (X− r)(X− s) = X2− (r+ s)X+ rs gives that the product λ1λ2 of those
eigenvalues is equal to the constant term det(A) of PA and the sum λ1 + λ2 of those eigenvalues is
equal to tr(A) (negative of the linear coefficient).

Remark 23.3.3. For each eigenvalue λ, when expressing “Ax = λx” as a pair of scalar equations we
know that this must have a nonzero solution and hence cannot correspond to the equations of two distinct
lines through the origin (whose only solution is 0). If you get something other than scalar multiples of
the same equation twice then you have made a mistake! (In particular, if you pick any λ that isn’t an
eigenvalue and try to compute N(A− λI2), you’ll always get {0}.)

Here are a few examples to illustrate Theorem 23.3.1 and Corollary 23.3.2.

Example 23.3.4. Let’s once again revisit the matrix

A =

[
3 16
2 −1

]

considered in the preceding discussion.
We directly compute tr(A) = 3 − 1 = 2 and det(A) = 3(−1) − 16 · 2 = −3 − 32 = −35, so the

eigenvalues of A are precisely the roots of the quadratic polynomial λ2 − 2λ − 35. That is exactly the
quadratic polynomial that we arrived at above, and its roots can be found using the quadratic formula (or
observation of a factorization as (λ − 7)(λ + 5)): 7 and −5. Each of Ax = 7x and Ax = −5x written
as a pair of linear equations in 2 unknowns is found to be scalar multiples of a single equation, which is
to say the same line written twice, and we can write down a nonzero vector on each such line as we did
above. ■

Example 23.3.5. Consider the matrix A =

[
1 2
2 −2

]
. In this case tr(A) = 1 − 2 = −1 and det(A) =

1(−2)− 2 · 2 = −2− 4 = −6, so PA(λ) = λ2 − (−1)λ− 6 = λ2 + λ− 6. Using the quadratic formula
or observing the factorization (λ+ 3)(λ− 2) yields two roots: −3 and 2.

To find corresponding eigenvectors, we write each of the conditions Ax = −3x and Ax = 2x as a pair
of simultaneous linear equations in 2 unknowns, and in each case the pair of equations will be multiples
of each other and so correspond to a single line. Anything nonzero on that line is an eigenvector for the
corresponding eigenvalue.

Beginning with the eigenvalue 2, for x =

[
x
y

]
the vector equation Ax = 2x is the pair of simultaneous

equations
x+ 2y = 2x, 2x− 2y = 2y,
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which we can rewrite by bringing the right side over to the left side in each equation:

−x+ 2y = 0, 2x− 4y = 0.

These equations are multiples of each other (as we know they have to be), corresponding to the common

line y = (1/2)x. One nonzero point on this line is (2, 1), yielding the eigenvector w1 =

[
2
1

]
. (We could

have chosen many other nonzero points on this line, getting many other eigenvectors, all nonzero scalar

multiples of w1: the point (6, 3) yields
[
6
3

]
= 3w1, the point (−5,−5/2) yields

[
−5
−5/2

]
= −(5/2)w1,

etc.)

Next turning to the eigenvalue −3, for x =

[
x
y

]
the vector equation Ax = −3x is the pair of simulta-

neous equations
x+ 2y = −3x, 2x− 2y = −3y,

which we can rewrite as
4x+ 2y = 0, 2x+ y = 0.

Once again, these equations are multiples of each other (as they must be), corresponding to the common

line y = −2x. A nonzero point on this line is (−1, 2), yielding the eigenvector w2 =

[
−1
2

]
. ■

Example 23.3.6. In Example 23.1.7 we saw via geometric reasoning that the 2 × 2 rotation matrix A
through an angle θ ̸= 0°, 180° has no eigenvalues at all. In terms of Corollary 23.3.1, the quadratic
polynomial PA(λ) turns out to have discriminant < 0 in such cases, so there are no real roots. Let’s see
this in action for a specific example, with the angle θ = 30°. In this case

A =

[
cos θ − sin θ
sin θ cos θ

]
=

[√
3/2 −1/2

1/2
√
3/2

]
,

so tr(A) =
√
3 and det(A) = 3/4− (−1/4) = 1. Hence, PA(λ) = λ2 −

√
3λ+ 1, whose discriminant is

(
√
3)2 − 4 · 1 = 3− 4 = −1 < 0, so indeed there are no real roots (and so no eigenvalues in R). ■

Remark 23.3.7. For some applications of n × n matrices A with truly gigantic n (as arise when using
singular value decomposition and principal component analysis, techniques introduced in Section 27.3 that
are fundamental in data analysis), one needs to compute the several largest eigenvalues of A. Fortunately,
there are algorithms to achieve this (especially for extremely large n) without having to compute all of the
eigenvalues.

Sometimes with n not so gigantic, one needs to analyze all of the eigenvalues (see Section J.1 for such
a situation in chemistry). For n = 2, we have seen how to do this using a certain quadratic polynomial,
in Theorem 23.3.1. That technique adapts to general n, as is discussed in Section E.5, and is useful in the
theoretical development of linear algebra (e.g., to prove additional general results about eigenvalues) and
in some applications (such as in the analysis of algorithms).

However, for accurate numerical computation of eigenvalues of a given n×n matrix, the approach via
roots of a specific polynomial is not so useful once n is bigger than 3. Appendix H discusses an amazing
procedure called the QR algorithm (unsurprisingly from the name, it is based on the QR-decomposition)
that is the means by which the full set of eigenvalues of square matrices is actually computed to high
accuracy on a computer. It has been called “one of the jewels in the crown of matrix computations”
[Hig], and in January 2000 it appeared in the (chronologically ordered) list “Top Ten Algorithms of the
(20th) Century” [DS]. (Two other entries on the list were the “Simplex Method for Linear Programming”,
which we briefly discussed near the end of Section 10.4, and “The Decomposition Approach to Matrix
Computations” for which Chapter 22 gave an introduction.)
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23.4. Proofs about the characteristic polynomial. This section discusses proofs of Theorem
23.3.1 and Corollary 23.3.2. First, we prove Theorem 23.3.1, using notation as in its statement.

PROOF. To prove (i), we have to show for a given scalar λ that the vector equation Ax = λx has
a nonzero solution x ∈ R2 precisely when PA(λ) = 0. The eigenvector condition Ax = λx says
exactly that (A− λI2)x = 0. Since

A− λI2 =

[
a b
c d

]
−
[
λ 0
0 λ

]
=

[
a− λ b
c d− λ

]
,

λ is an eigenvalue exactly when this final matrix has a nonzero null space. Observe that this final
matrix has determinant equal to

(a− λ)(d− λ)− bc = ad− (a+ d)λ+ λ2 − bc = λ2 − (a+ d)λ+ (ad− bc) = PA(λ),

so our task is to show A− λI2 has a nonzero null space precisely when its determinant vanishes.
In other words, (i) comes down to proving a general fact about 2×2 matrices having nothing to do

with eigenvalues: a general 2×2 matrix M has nonzero null space precisely when det(M) = 0. Let’s
first assume that there is a nonzero null space and aim to deduce that det(M) = 0. If either column
vanishes then certainly det(M) = 0 (straight from the definition of det(M)), so we can suppose both
columns are not the zero vector in R2.

A nonzero vector x = [ uv ] in the null space of M expresses a linear dependence relation on the
columns of M : the vector Mx is u times the first column m1 plus v times the second column m2 (see
Theorem 13.4.1). At least one of u or v is nonzero, so by Theorem 19.1 this says that the columns
m1 and m2 are linearly dependent, or in other words that one of the mi’s is a scalar multiple of the
other. We arranged that both of these columns are nonzero, so the scalar multiplier must be nonzero
and hence can be divided to the other side if necessary to write the relation among the columns as
m2 = tm1 for some (nonzero) scalar t. This vector equation says b = ta and d = tc, so

det(M) = ad− bc = a(tc)− (ta)c = 0.

That is, we have shown that if M has a nonzero null space then det(M) = 0.
In the reverse direction, if det(M) = 0 (that is, if ad = bc) then we want to show that M has a

nonzero null space. The given relation ad = bc yields by direct calculation that each of the following
vectors is in the null space of M : [

d
−c

]
,

[
b
−a

]
.

As long as one of these is not the zero vector, we win. But if both are the zero vector then M is the
zero matrix, so everything in R2 is in the null space of M (so the null space is still nonzero). This
completes the proof of (i).

For an eigenvalue λ, by definition the null space of A− λI2 is nonzero and the eigenvectors with
eigenvalue λ are precisely the nonzero vectors in this null space (since (A − λI2)x = Ax − λI2x =
Ax− λx vanishes precisely when Ax = λx). This establishes (ii). □

The assertions in Corollary 23.3.2 express general facts about quadratic polynomialsX2−tX+d:
by the quadratic formula there is a root in R precisely when the discriminant (−t)2 − 4d = t2 − 4d is
non-negative, and in such cases with roots λ1, λ2 we have the factorization

X2 − tX + d = (X − λ1)(X − λ2) = X2 − (λ1 + λ2)X + λ1λ2.

Comparing coefficients, this says t = λ1+λ2 and d = λ1λ2. Hence, Corollary 23.3.2 is an immediate
consequence of Theorem 23.3.1.
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Chapter 23 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
µ Greek analogue of lower-case “em”; read as “mew” Remark 23.1.10
tr(A) (for 2× 2 matrix A) trace of A Theorem 23.3.1
PA(λ) (for 2× 2 matrix A) characteristic polynomial of A Theorem 23.3.1(i)

Concept Meaning Location in text
eigenvector for n× n matrix A nonzero v ∈ Rn for which Av = λv for

some scalar λ
Definition 23.1.2

eigenvalue for n× n matrix A scalar λ for which vector equation Ax = λx
has a nonzero solution x ∈ Rn

Definition 23.1.3

eigenline for n× n matrix A line in Rn spanned by an eigenvector for A Definition 23.1.3
λ-eigenspace for n× n matrix A the null space N(A− λIn) end of Prop. 23.1.11

trace (of 2× 2 matrix A) sum of diagonal entries of A Theorem 23.3.1

characteristic polynomial (of 2× 2
matrix A)

polynomial λ2 − tr(A)λ+ det(A) Theorem 23.3.1(i)

Result Meaning Location in text
for n × n matrix A, if v is an eigenvector
with associated eigenvalue λ then so is ev-
ery nonzero scalar multiple of v

A(cv) = c(Av) = c(λv) = λ(cv) for
c ∈ R

(23.1.1)

for θ ̸= 0°, 180°, Aθ has no eigenvector rotation moves line through 0 to an-
other such line, so has no eigenvector

Example 23.1.7

determinant and null space description for
eigenvalues and eigenvectors

for n×nmatrixA: λ is eigenvalue pre-
cisely when det(A − λIn) = 0 (only
used with n = 2), and then the eigen-
vectors of A with eigenvalue λ are the
nonzero vectors in N(A− λIn)

Prop. 23.1.11,
Rem. 23.1.13

standard basis vectors are eigenvectors for
diagonal matrices

diagonal n × n matrix D has ei as
eigenvector with eigenvalue dii

Example 23.2.1

for 2 × 2 matrix A, eigenvalues are roots
in R of characteristic polynomial

if PA has roots λ1, λ2 ∈ R then these
are the eigenvalues, with λ1 + λ2 =
tr(A) and λ1λ2 = det(A)

Thm. 23.3.1, Cor. 23.3.2

Skill Location in text
visualize eigenvectors for A via lines through 0 on which the effect
of TA is multiplying by some scalar λ (the associated eigenvalue)

Figures 23.1.1, 23.1.2

for triangular n×n matrix A, read off eigenvalues from diagonal and
find eigenvectors via back-substitution with triangular A− λIn

Theorem 23.2.2, Example 23.2.3

for any 2×2 matrixA, compute its eigenvalues (if any exist) and find
all eigenvectors for each

Examples 23.3.4, 23.3.5, 23.3.6
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23.5. Exercises. (links to exercises in previous and next chapters)

Exercise 23.1. For the following matrices calculate the eigenvalues for the given eigenvectors.

(a) A =



8 0 1
1 7 4
0 0 3


 with eigenvectors



0
1
0


 ,



1
1
0


 , and




4
19
−20


 .

(b) B =



11 −3 5
−4 7 10
2 3 8


 with eigenvectors



−1
−2
1


 ,



−3
2
0


 , and



5
0
2


 .

Exercise 23.2. The matrix A =

[
1 2
2 1

]
has eigenvalues 3 and −1. For each, find an eigenvector with that

eigenvalue. (There is more than one correct answer for each.)

Exercise 23.3. Let A =

[
1 −8
−2 1

]
. Find its eigenvalues and an eigenvector for each of them.

Exercise 23.4. Assume that A is a 2 × 2 matrix and that
[
1
1

]
and

[
1
2

]
are eigenvectors with respective

eigenvalues 2 and 3. Calculate A
[
0
1

]
. (Hint: express

[
0
1

]
as a linear combination of

[
1
1

]
and

[
1
2

]
.)

Exercise 23.5. For each eigenvalue λ of A =




7 0 0
3 4 0
−2 8 5


, compute a basis for the nonzero linear

subspace N(A − λI3) in R3 (the “λ-eigenspace” of A), and as a check on your work verify directly that
each vector in that basis is an eigenvector for A with eigenvalue λ.

Exercise 23.6. For each eigenvalue λ of the following upper triangular 3× 3 matrices A, compute a basis
for the nonzero linear subspace N(A−λI3) in R3 (the “λ-eigenspace” of A), and as a check on your work
verify directly that each vector in that basis is an eigenvector for A with eigenvalue λ.

(a)



4 3 −6
0 1 6
0 0 4




(b)



4 3 a
0 1 6
0 0 4


 for general a ̸= −6 (the answer turns out to be independent of such a).

Exercise 23.7. Let A be a symmetric n × n matrix. Assume that v is an eigenvector with eigenvalue λ,
and w is an eigenvector with eigenvalue µ, and that λ ̸= µ.
(a) Show that (λv) · w = v · (µw). (Hint: Start with (Av) · w = v · Aw, which holds since A is

symmetric.)
(b) Explain why v and w are orthogonal. (This is a general feature of symmetric matrices, as seen in

Example 23.1.6.)

Exercise 23.8. The trace of an n× n matrix A is defined to be the sum of its diagonal entries

tr(A) = a11 + a22 + . . .+ ann.

(a) Let A =

[
1 2
2 1

]
and B =

[
1 2
3 2

]
. Calculate tr(AB) and tr(BA).
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(b) More generally, let A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
. Show that tr(AB) = tr(BA).

(c) Now let, A =



1 2 0
0 3 4
1 0 2


 and B =



2 3 1
0 2 0
2 0 1


 . Show tr(AB) = tr(BA). (Hint: To save effort, you

only need to compute the diagonal entries of AB and BA to compute their traces.)
Note: It is true for any n× n-matrices A and B that tr(AB) = tr(BA).

Exercise 23.9. Let A′ =

[
a′ b′

c′ d′

]
and A =

[
a b
c d

]
be 2× 2 matrices.

(a) Use the characteristic polynomial to show thatA⊤ andA have the same eigenvalues. (Note: The actual
eigenvectors for such common eigenvalues have nothing to do with each other! Also, a variant of the
same argument, using determinants for higher-dimensional matrices, yields the same conclusion about
common eigenvalues for any n× n matrix for any n. An alternative approach avoiding determinants
will be given in Exercise 24.11.)

(b) Verify by algebraic computation that tr(A′) + tr(A) = tr(A′ + A) and det(A′) det(A) = det(A′A).
(These equalities hold for any pair of n× n matrices for any n, but we are only asking you about the
case n = 2.)

Exercise 23.10. For any n ≥ 1 we have defined the scalar-valued dot product v · w for any n-vectors

v and w. In the case n = 3 there is another type of “product” that is vector-valued: for v =



v1
v2
v3


 and

w =



w1

w2

w3


 the cross product v ×w ∈ R3 is defined to be

v ×w =



v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1


 = det

[
v2 v3
w2 w3

]
e1 − det

[
v1 v3
w1 w3

]
e2 + det

[
v1 v2
w1 w2

]
e3

(note the minus sign in front of the second determinant on the right). This concept is very specific to the
case n = 3, and arises in a variety of important physics and engineering applications. General details on
the cross product are given in Appendix F.
(a) Verify algebraically that w × v = −(v ×w) (“anti-commutative”), and v × v = 0 for every v (!).

(b) For v =




2
−1
3


, w =



1
2
3


, u =




4
3
−2


, use the description via 2 × 2 determinants to verify:

v×w =



−9
−3
5


, w×u =



−13
14
−5


, (v×w)×u =



−9
2

−15


, and v× (w×u) =



−37
−29
15


. (The latter

two are not equal, illustrating that the cross product is not associative: parentheses matter!)
(c) For a general scalar c verify algebraically that (cv)×w = c(v×w), and for a general third vector v′

verify algebraically that (v + v′)×w = v ×w + v′ ×w (distributivity over vector addition, which
is the reason this operation deserves to be called a “product”).

(d) For linearly independent v and w making an angle θ ∈ (0, π), the vector v × w is perpendicular
to v and w with magnitude ∥v∥∥w∥ sin(θ). Verify these orthogonality and magnitude properties for
the specific 3-vectors v and w in (b). (Hint on the magnitude aspect: sin(θ) =

√
1− cos2(θ) since

sin(θ) > 0 for 0 < θ < π, and cos(θ) can be computed via a dot product.)
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Exercise 23.11. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):
(a) If Av = 5w, Aw = 5v for v,w ̸= 0 then v and w are A2-eigenvectors with eigenvalue 25.
(b) If Av = 5v and Aw = 5w then v and w are linearly dependent.
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24. Applications of eigenvalues: Spectral Theorem, quadratic forms, and matrix powers

In Chapter 23 we learned about the new concepts of eigenvalue and eigenvector for a general n × n
matrix, and saw both some worked examples with n > 2 as well as a general technique for computing
these in the case n = 2. The importance of eigenvalues in any dimension throughout all of mathematics
and quantitative fields is difficult to overstate (we listed many applications near the start of Chapter 23).

The goal of this chapter is to discuss at length a couple of fundamental applications that show up all
over the place. The unifying theme of both applications is that each is a consequence of a remarkable
result called the Spectral Theorem. In addition to giving a lot of worked numerical examples to illustrate
these deeper aspects of eigenvalues, we discuss a wide array of contexts where the results are used. The
theme of eigenvalues and their astonishing breadth of utility will be revisited again in Chapters 26 and 27.

By the end of this chapter, you should be able to:
• use eigenvalues and eigenvectors to analyze definiteness properties of symmetric matrices (and

quadratic forms);
• use eigenvalues and eigenvectors to compute and draw qualitative conclusions aboutAm for n×n

matrices A and (possibly large) exponents m.

24.1. The Spectral Theorem. We saw in Theorem 5.2.2 that pairwise orthogonality for a collection
of nonzero vectors in Rn implies linear independence. The notion of eigenvalue provides a new and rather
different source of instances of linear independence (and orthogonality).

Theorem 24.1.1. LetA be an n×nmatrix and v1, . . . ,vr a collection of eigenvectors forAwith respective
eigenvalues λ1, . . . , λr, so Avj = λjvj for all j.

(i) If the r eigenvalues are pairwise different then the collection of r vectors {v1, . . . ,vr} in Rn is
linearly independent, so r ≤ n. Thus, an n×n matrix cannot have more than n different eigenvalues.

(ii) If A is symmetric and λi ̸= λj then vi · vj = 0. That is, for a symmetric n × n matrix eigenvectors
for different eigenvalues are orthogonal to each other.

In Example 24.1.3 we will give an example of a symmetric 3 × 3 matrix with 3 different eigenvalues
(and give a collection of corresponding eigenvectors, which will be pairwise orthogonal by inspection).
Symmetry is essential: a breakdown of orthogonality in part (ii) for non-symmetric A is illustrated in
Example 23.1.4. For those who are interested, a proof of Theorem 24.1.1 is given in Section 24.7.

Remark 24.1.2. We are not claiming that linearly independent eigenvectors have pairwise different eigen-
values, only that when the eigenvalues for a collection of eigenvectors are pairwise different then the
eigenvectors are automatically linearly independent. This is addressed more fully in Section 24.3.

If you reflect on the initial definition of eigenvalue, it may seem surprising that an n×n matrix cannot
have an uncontrolled number of eigenvalues (e.g., is it visually apparent that a 3 × 3 matrix cannot have
more than 3 different eigenvalues?). In Math 53, Math 104, and Math 113 the concept of “characteristic
polynomial” is explored and gives an algebraic way to understand why an n× n matrix cannot have more
than n different eigenvalues; this circle of ideas is introduced near the end of Appendix E (see Theorem
E.5.1 and Remark E.5.2).

The concept of eigenvector makes sense for any n× n matrix A, but the main case for applications in
this book is when A is symmetric (i.e., A = A⊤). In that case something special happens, which we first
illustrate with an example.
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Example 24.1.3. For A =



16 −2 −6
−2 19 −3
−6 −3 27


, we saw in Example 23.1.1 that v =



2
1
1


 is an eigenvector of

A with eigenvalue 12. You can also verify (please do) that v′ =



−1
2
0


 and v′′ =



−2
−1
5


 are eigenvectors

of A with respective eigenvalues 20 and 30 (i.e., Av′ = 20v′ and Av′′ = 30v′′), and that {v,v′,v′′} is a
collection of nonzero orthogonal 3-vectors (so this triple is an orthogonal basis of R3). ■

Example 24.1.3 is a special case of the following fundamental fact due to Cauchy23 (see [Ha1, pp. 563-
565], [Ha3, Sec. 4.4], and [Steen] for interesting historical context); it is proved in Section B.3.

Theorem 24.1.4 (Spectral Theorem). Let A be a symmetric n × n matrix. There is an orthogonal
basis w1, . . . ,wn of Rn consisting of eigenvectors for A. The corresponding eigenvalues are all of
the eigenvalues for A: if wj has eigenvalue λj then any eigenvalue of A equals some λj .

In visual terms, TA : Rn → Rn has the effect of λj-multiplication in the direction of wj for all j.

The collection of eigenvalues of a square matrix is called its spectrum, so a theorem giving information
about the eigenvalues of a special class of matrices is often called a “spectral theorem”. The relationship
with the word “spectrum” in physics is discussed in Example 24.6.1, and the central role of the Spectral
Theorem throughout modern data science is discussed in Section 27.3.

Example 24.1.5. (i) Diagonal matrices are symmetric, and in Example 23.2.1 we saw that the standard
basis for Rn consists of eigenvectors for any such matrix (the eigenvalue for the ith standard basis
vector is the ith diagonal entry of such a matrix).

(ii) If V is a subspace of Rn, and P is the n × n matrix of ProjV : Rn → Rn then P is symmetric
(Proposition 20.3.10). Any nonzero v ∈ V satisfies Pv = v = 1 ·v, so v is an eigenvector of P with
eigenvalue 1. Likewise, any nonzero v′ ∈ V ⊥ satisfies Pv′ = 0 = 0 · v′ (see Example 21.3.3), so v′

is an eigenvector of P with eigenvalue 0. ■

Remark 24.1.6. Only for symmetric A are we claiming to have an abundant supply of pairwise orthogonal
eigenvectors! A non-symmetric n × n matrix A may not have any eigenvectors in Rn (essentially due to
the fact that polynomials with coefficients in R can fail to have any roots in R); we saw this in Example
23.1.7 for rotations of R2 around the origin through any angle other than 0° and 180°.

Even if there is a basis of eigenvectors in Rn with distinct eigenvalues, beyond the symmetric case
these eigenvectors are not all pairwise orthogonal. For instance, in Example 23.1.4 we gave a pair of
eigenvectors {v,v′} for a specific 2× 2 non-symmetric matrix, with corresponding eigenvalues 7 and −5.
By inspection the dot product of those two vectors is 7 ̸= 0, so those two eigenvectors are non-orthogonal.

The Spectral Theorem assures us that (in any dimension) such unfortunate situations never occur for
symmetric matrices; this is one reason that the Spectral Theorem is so remarkable.

Given an orthogonal basis {wi} of eigenvectors of a symmetric n× n matrix A, the Fourier formula

v =
n∑

i=1

(
v ·wi

wi ·wi

)
wi (24.1.1)

23Augustin-Louis Cauchy (1789-1857) was a prolific and influential French mathematician who worked on differential
equations and mathematical physics [Tr], and made pioneering contributions to the modern formulation of calculus and linear
algebra (e.g., he was the first to define n× n determinants [Ha3, Sec. 4.3]). His collected works occupy 27 volumes!
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from Theorem 5.3.6 that expresses any vector v in terms of orthogonal eigenvectors will be very
useful. In this chapter we use it to solve problems such as: (i) determining when qA(v) = v⊤Av is
positive or negative (a very significant application because in Chapter 26 it will help us to understand
(in terms of eigenvalues) how functions behave near a critical point, and (ii) describing the behav-
ior of Amv for big m. (The optional Section 24.6 gives many scientific applications of the Spectral
Theorem.) We repeat the slogan for emphasis: write everything in terms of (orthogonal) eigenvectors.

24.2. Eigenvectors and quadratic forms. Consider the function qA(v) = v⊤Av for a symmetric
n × n matrix A When n = 1, so A = [a] for some nonzero a ∈ R, the graph in R2 of qA(x) = ax2 is a
parabola pointing up or down (for a > 0 and a < 0 respectively); in the “degenerate” case a = 0 it is the
x-axis y = 0 (a horizontal line). For n = 2 the graph z = qA(x, y) in R3 can be a “paraboloid” (cone-like
with a rounded-off tip) pointing up or down as on the left in Figure 24.2.1 below, or saddle-shaped such
as for z = x2 − y2 in Figure 10.2.3 (with associated contour plot in Figure 10.2.2), or a surface swept out
by parallel copies of a single parabola (e.g., z = 3x2) or a horizontal plane (e.g., z = 0).

There is more to say for n = 2: the horizontal slices of the paraboloid can be general ellipses (rather
than circles), typically with axes of symmetry that are not the coordinate axes. Figure 24.2.1 is a typical
“paraboloid” example, with horizontal slices that are ellipses tilted relative to the coordinate axes.
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FIGURE 24.2.1. The paraboloid graph and contour plot for q(x, y) = 13x2 − 6xy + 5y2

In Definition 20.3.1 we introduced quadratic forms, and the dictionary between n-variable quadratic
forms and symmetric n × n matrices was illustrated in Examples 20.3.11–20.3.12. The basic question,
which we want to tackle for any n (pictures are available only for n ≤ 3), is this: how can we understand
the geometry of level sets of an n-variable quadratic form in terms of its coefficients? This will lie at the
heart of the multivariable second derivative test in Chapter 26, and it will be answered via the Spectral
Theorem applied to the corresponding symmetric matrix!

Example 24.2.1. Let’s now recover the geometry of the contour plot of q(x, y) = 13x2 − 6xy + 5y2 in

Figure 24.2.1 by working with eigenvalues and eigenvectors for the symmetric matrix A =

[
13 −3
−3 5

]

associated with q. (In (24.2.2) the technique will be adapted to work in general for any n.)
By Theorem 23.3.1, A has eigenvalues λ1 = 14 and λ2 = 4. Solving Ax = λix yields respective

eigenvectors w1 =

[
3
−1

]
and w2 =

[
1
3

]
that are orthogonal (such orthogonality is a general feature of

symmetric matrices). This will be done in detail in Example 25.4.3, where we will also see that for the
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associated unit eigenvectors w′
1 = w1/∥w1∥ = w1/

√
10 and w′

2 = w2/∥w2∥ = w2/
√
10, if a general

v = xe1 + ye2 ∈ R2 is written in terms of the orthonormal basis {w′
1,w

′
2} as v = t′1w

′
1 + t′2w

′
2 then

q(x, y) = qA(v) = qA(t
′
1w

′
1 + t′2w

′
2) = λ1t

′
1
2
+ λ2t

′
2
2
= 14t′1

2
+ 4t′2

2
.

(Explicitly, t′j = v·w′
j: we have v·w′

1 = (t′1w
′
1+t

′
2w

′
2)·w′

1 = t′1(w
′
1·w′

1)+t
′
2(w

′
2·w′

1) = t′1(1)+t
′
2(0) = t′1

and similarly v ·w′
2 = t′2.)

The miracle here is that when v is expressed in terms of an orthogonal basis of eigenvectors for the
symmetric matrix A, the value q(v) = qA(v) at v of the associated quadratic form q = qA is given by an
expression with no cross-terms (i.e., there is no t′1t

′
2-term)! This will be explained in general in (24.2.2);

it is saying that if we rotate our orthonormal reference frame from the standard basis {e1, e2} to the basis
{w′

1,w
′
2} then the expression for q becomes the “ax21+bx

2
2” type whose elliptical shape we can see directly

from the positivity of the coefficients 14 and 4 that are the eigenvalues of the symmetric matrix.
Superimposing {±w′

1,±w′
2} onto the contour plot from Figure 24.2.1 yields Figure 24.2.2 below,

exhibiting visually that the perpendicular lines spanned by these unit eigenvectors are the lines of symme-
try for those level curves q = c. The geometric property of being lines of symmetry corresponds to the
algebraic property that in this tilted reference frame the equation for each level curve has no cross-terms.
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FIGURE 24.2.2. qA(xe1+ye2) = 13x2−6xy+5y2 becomes 14t′1
2+4t′2

2 when xe1+ye2
is expressed in terms of the orthonormal basis {w′

1,w
′
2} of eigenvectors for A.

The general lesson will be both algebraic and geometric: if we write everything in terms of an or-
thonormal basis of eigenvectors for a symmetric matrix then (i) the algebraic description of the associated
quadratic form simplifies a lot (no cross-terms!), and (ii) the lines spanned by such eigenvectors are “lines
of symmetry” of the level sets of the associated quadratic form. ■

We now define a notion of “positivity” for general symmetric matrices and quadratic forms:

Definition 24.2.2. For an n × n symmetric matrix A and the associated quadratic form qA(x) =
x⊤Ax = x · (Ax), we say A and qA are:
• positive-definite if qA(v) > 0 for all v ̸= 0, and positive-semidefinite if qA(v) ≥ 0 for all v ̸= 0;
• negative-definite if qA(v) < 0 for all v ̸= 0, and negative-semidefinite if qA(v) ≤ 0 for all v ̸= 0;
• indefinite if qA(v) takes both positive and negative values as v varies.

For emphasis: the phrases “A is positive-definite” and “qA is positive-definite” mean the same thing
(by definition!), and likewise for the other terms defined here.
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Example 24.2.3. The matrices A+ =

[
2 0
0 5

]
and A− =

[
−3 0
0 −4

]
are respectively positive-definite and

negative-definite since for v =

[
x
y

]
we have v⊤A+v = 2x2 + 5y2 and v⊤A−v = −3x2 − 4y2. ■

Example 24.2.4. The matrix A =

[
1 −3
−3 9

]
is positive-semidefinite but not positive-definite. Indeed,

[
x
y

]⊤ [
1 −3
−3 9

] [
x
y

]
= x2 − 6xy + 9y2 = (x− 3y)2

is always ≥ 0 (so A is positive-semidefinite) but it is not always > 0 when
[
x
y

]
̸= 0. For example,

v⊤Av = 0 when v =

[
3c
c

]
for any c. Likewise −A is negative-semidefinite but not negative-definite. ■

Remark 24.2.5. Definition 24.2.2 really is a definition, not a theorem! For n > 1 there are five possibilities
for nonzero quadratic forms q on Rn: positive-definite, negative-definite, indefinite, and the two semidefi-
nite (nonzero) options for q that are not definite. The point is that there are many lines ℓ = span(v) in Rn

through 0 when n > 1, with the values of q on ℓ away from 0 either all positive or all negative or or all 0
(since q(cv) = c2q(v) for c ̸= 0) but which of the three cases occurs may depend on ℓ.

Our focus will be on positive-definite, negative-definite, and indefinite cases, but semidefinite cases
that are not definite do arise in reality: [Sam, Ch. V; (61), (96)] is a negative-semidefinite example in
consumer theory within economics, L in Remark 20.3.13 is positive-semidefinite but (see [MO, p. 1515])
can fail to be definite, and “kernel methods” in machine learning use semidefiniteness (see Section 24.5).

Remark 24.2.6. If a symmetric n×nmatrixA is positive-definite or negative-definite thenA is invertible.
Indeed, to establish invertibility it is the same (by Theorem 18.3.3) to show for any n-vector v ̸= 0 that
Av ̸= 0. Since v⊤Av = qA(v) ̸= 0 (due to the “definiteness” of A because v ̸= 0), Av ̸= 0 as desired.
In Remark 24.2.12 we will revisit this link to invertibility for symmetric matrices.

Example 24.2.7. In Example 20.3.14, we discussed that 3 different types of total energy in a vibra-
tional mechanical system at a given time t are expressed as quadratic forms in terms of position or
velocity vectors (at time t) for the parts of the system. This was done by means of specific symmetric
matrices M,K,C: the mass matrix, the stiffness matrix, and the damping matrix. Since energy is
always non-negative, it follows that each of these matrices is positive-semidefinite.

For an “unstable” structure (meaning that it can be displaced without applying any external forces)
it can happen for special nonzero displacements x(t) from the rest position that the total elastic po-
tential energy (1/2)qK(x(t)) is 0. When the structure is “stable” this cannot happen. On the other
hand, even for a stable structure it can happen for special nonzero velocities x′(t) that the total dissi-
pated energy (1/2)qC(x

′(t)) is 0. So K and C are typically just positive-semidefinite, but in practice
K is actually positive-definite. In such cases K is invertible (by Remark 24.2.6); the inverse matrix
A = K−1 is called the flexibility matrix, and it encodes how a unit force applied at one part of the
system influences the displacement of other parts of the system.

The kinetic energy (1/2)qM(x′(t)) is always positive when x′(t) ̸= 0, because a system actually
in motion always has some kinetic energy, soM is always positive-definite. This positive-definiteness
is essentially obvious from the way M is defined in terms of the (positive) masses of the parts of the
system, so the definiteness properties of K are more physically interesting than those of M . ■
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When a symmetric n×nmatrix A is not diagonal, so the quadratic form qA(x) = x⊤Ax in n variables
has “cross-terms” xixj with i ̸= j, it is generally hopeless to determine just by staring at qA(x) if it is
positive-definite, negative-definite, indefinite, or something else. Already in the case n = 2 this can be a
puzzle: how about the two quadratic forms

10x21 − 14x1x2 + 5x22, 8x21 − 10x1x2 + 3x22? (24.2.1)

(The first is positive-definite and the second is indefinite; for a clean explanation see Example 26.3.5.)
This mystery is unlocked in a systematic way using eigenvalues. To explain this, recall that in (24.1.1)

we gave a formula for how to write a general vector v ∈ Rn in terms of an orthogonal basis of eigenvectors
{w1, . . . ,wn} for a symmetric n×nmatrixA, the existence of which is provided by the Spectral Theorem
(Theorem 24.1.4)! We can use this to test for definiteness of the quadratic form qA(v) = v⊤Av = v·(Av):
if λ1, . . . , λn are the eigenvalues associated with the orthogonal eigenvectors w1, . . . ,wn then for v =∑n

i=1 tiwi orthogonality yields

qA(v) = v · (Av) = v ·
(

n∑

i=1

tiAwi

)
= v ·

(
n∑

i=1

tiλiwi

)
=

n∑

i=1

λiti(v ·wi)

=
n∑

i=1

λiti(tiwi ·wi),

(using v ·wi = (
∑n

j=1 tjwj) ·wi =
∑n

j=1((tjwj) ·wi) = (tiwi) ·wi, the final equality since (tjwj) ·wi =

tj(wj ·wi) = 0 for j ̸= i due to orthogonality of the wk’s). This yields the diagonalization formula

qA(v) =
n∑

i=1

λi(wi ·wi)t
2
i . (24.2.2)

The cross-terms that plague a typical quadratic form have completely disappeared when we write ev-
erything in terms of the orthogonal basis w1, . . . ,wn of eigenvectors for A, with t2i having coefficient
λi(wi ·wi) whose sign is the same as that of λi (when λi ̸= 0) since wi ·wi = ∥wi∥2 > 0.

Example 24.2.8. The matrix A =



16 −2 −6
−2 19 −3
−6 −3 27


 from Example 24.1.3 has eigenvalues 12, 20, 30. The

preceding calculations say that if we pick a nonzero vector v and (via (24.1.1)) write it as a linear combi-
nation v = t1w1 + t2w2 + t3w3 of respective orthogonal eigenvectors

w1 =



2
1
1


 , w2 =



−1
2
0


 , w3 =



−2
−1
5




for those eigenvalues 12, 20, 30 (with w1 ·w1 = 6, w2 ·w2 = 5, and w3 ·w3 = 30) then

qA(v) = 12(w1 ·w1)t
2
1 + 20(w2 ·w2)t

2
2 + 30(w3 ·w3)t

2
3 = 72t21 + 100t22 + 900t23.

By inspection this is positive-definite: positivity of the coefficients is due to positivity of the eigenvalues!
We have not explained how to find eigenvectors and eigenvalues for the symmetric 3×3 matrixA (you

will learn such things in a later math course, or see Section E.5), but once you have them in hand (e.g., if
n = 2, or if we give them to you as above) such definiteness is something you can check. ■

Example 24.2.9. For A =

[
1 2
2 −2

]
, we computed in Example 23.3.5 (based on Theorem 23.3.1) that

w1 =

[
2
1

]
is an eigenvector with eigenvalue λ1 = 2 and w2 =

[
−1
2

]
is an eigenvector of A with
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eigenvalue λ2 = −3. (If the wi’s had been handed to us, as would happen beyond the 2× 2 case, we can
also verify these properties directly.) Note that w1 · w2 = 0 (this is related to A being symmetric), so
{w1,w2} is an orthogonal basis of R2 consisting of eigenvectors of A.

Determining the definiteness nature of qA

([
x
y

])
=

[
x
y

]⊤ [
1 2
2 −2

] [
x
y

]
= x2+4xy− 2y2 (written in

standard coordinates) is not so apparent. But when qA written in terms of the orthogonal basis {w1,w2}
of eigenvectors for A then the definiteness aspect is seen: if a vector v is written as t1w1 + t2w2 then

qA(v) = (t1w1 + t2w2) · A(t1w1 + t2w2) = (t1w1 + t2w2) · (t1Aw1 + t2Aw2)

= (t1w1 + t2w2) · (2t1w1 − 3t2w2)

= 2(w1 ·w1)t
2
1 − (w1 ·w2)t1t2 − 3(w2 ·w2)t

2
2

= 2(w1 ·w1)t
2
1 − 3(w2 ·w2)t

2
2

= 10t21 − 15t22,

where the second to last equality uses that w1 ·w2 = 0 (and is an instance of (24.2.2)) and the final equality
uses that w1 ·w1 = 5 and w2 ·w2 = 5. Since the coefficients 10 and −15 have opposite signs, by varying
t1 and t2 (e.g., setting one of them to be zero and the other to be nonzero) we see that qA(v) is sometimes
positive and sometimes negative. The indefiniteness for qA is due to λ1 and λ2 having opposite signs, and
similarly to Example 24.2.1 the level curves qA(x, y) = c for nonzero c are hyperbolas (aligned with the
lines through ±w1 and ±w2). ■

Returning to (24.2.2) in general, since wi · wi = ∥wi∥2 > 0 and t2i ≥ 0 for all i, with t2i > 0 for
some i when v ̸= 0, we obtain the following result, resting on the Spectral Theorem to relate eigenvalues
to Definition 24.2.2. (Some references present the result below as a definition, but then the relation with
Definition 24.2.2 is recast as a hard theorem – real effort cannot disappear by manipulating definitions.)

Proposition 24.2.10. In the terminology of Definition 24.2.2, a symmetric n× n matrix A is:
(i) positive-definite when its eigenvalues are all positive;

(ii) negative-definite when its eigenvalues are all negative;
(iii) indefinite when some eigenvalue is positive and some eigenvalue is negative;
(iv) positive-semidefinite but not positive-definite when all eigenvalues are ≥ 0 and 0 is an eigenvalue;

similarly for negative-semidefinite but not negative-definite using “≤ 0” instead of “≥ 0”.
WARNING. A symmetric matrix with both positive and negative matrix entries need not be indefinite!

For example,A =

[
13 −3
−3 5

]
has characteristic polynomial λ2−18λ+56 with roots 4, 14 > 0, so it is

positive-definite. (Concretely, 13x2−6xy+5y2 > 0 for (x, y) ̸= (0, 0).) Likewise, a symmetric matrix

with all entries positive need not be positive-definite! For example, B =

[
11 20
20 2

]
has characteristic

polynomial λ2 − 13λ − 378 with roots 27,−14, so it is indefinite. (Concretely, 11x2 + 40xy + 2y2

takes on both positive and negative values: evaluate it at (1, 1) and (1,−1).)

Remark 24.2.11. It is a very serious error to think that one can read off the definiteness properties
of a symmetric matrix by staring at the signs of its entries (or of a quadratic form by staring at the
signs of its coefficients). One must go deeper into the linear algebra, as in the WARNING above.

Remark 24.2.12. If a symmetric n × n matrix A is known to be positive-semidefinite then it is positive-
definite precisely when it is invertible! One direction was already seen in Remark 24.2.6: positive-definite
symmetric matrices are always invertible. But the reverse direction in the positive-semidefinite case lies
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much deeper because it rests on (24.2.2). Namely, suppose A is positive-semidefinite but not positive-
definite. Then we want to show that A cannot ever be invertible in such cases.

The key point is to inspect (24.2.2) in the positive-semidefinite case: by inspecting the right side,
the non-negativity for all inputs v amounts to all eigenvalues λi being ≥ 0, yet the (assumed) failure of
positive-definiteness tells us that we can’t have all λi > 0. Hence, since all λi ≥ 0, necessarily some λi
vanishes. But then the corresponding eigenvector wi is a nonzero vector satisfying Awi = λiwi = 0wi =
0. For an invertible n × n matrix M the vector equation Mx = 0 has x = 0 as its only solution, so we
conclude that A really cannot be invertible, as desired.

24.3. Further observations on eigenvalues. Let A be an n × n matrix (possibly not symmetric).
There can be lots of eigenvectors of A with a given eigenvalue λ (whereas in contrast if we are given the
eigenvector then there is only one eigenvalue for it, as we noted in Remark 23.1.10). This is just expressing
the fact that the null space N(A − λIn), which is a linear subspace of Rn that is nonzero since λ is an
eigenvalue, might have dimension larger than 1. To illustrate this in the case n = 3, consider the matrix

A =



0 1 1
1 0 1
1 1 0


 . The orthogonal (so linearly independent) vectors v =



−1
1
0


, v′ =




1
1
−2


, v′′ =



1
1
1




are eigenvectors with respective eigenvalues −1,−1, 2 (as you can check directly: Av = −v, Av′ = −v′,
Av′′ = 2v′′). In particular, v and v′ share the same eigenvalue λ = −1.

For the linear combination w = 3v − 2v′ =



−5
1
4


 we have

Aw =



0 1 1
1 0 1
1 1 0





−5
1
4


 =




5
−1
−4


 = −w,

and the calculation works similarly for w = cv + c′v′ for any scalars c and c′:

Aw = A(cv + c′v′) =



0 1 1
1 0 1
1 1 0





−c+ c′

c+ c′

−2c′


 =



c− c′

−c− c′

2c′


 = −w.

Any eigenvector v for an n × n matrix A is also an eigenvector for every power of A, using the
corresponding powers of the eigenvalue λ: by feeding the relation Av = λv into itself repeatedly, we
get A2v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v and similarly A3(v) = A2(Av) = A2(λv) =
λA2(v) = λ(λ2v) = λ3v. Likewise in general:

if Av = λv then Arv = λrv for any r ≥ 1. (24.3.1)

Remark 24.3.1. If an n×n matrix A is invertible and λ is the eigenvalue of A for an eigenvector v ∈ Rn,
then λ ̸= 0 (since we saw in Example 23.1.9 that the occurrence of 0 as an eigenvalue happens precisely
for non-invertible A, and we are assuming A is invertible).

Hence, it makes sense to ask if the formula Arv = λrv that we saw above for r ≥ 1 also holds
for r = −1; i.e., do we have A−1v = λ−1v? This is indeed true: multiplying both sides of the vector
equation Av = λv against A−1 gives A−1(Av) = A−1(λv) = λ(A−1v), yet the left side is A−1(Av) =
(A−1A)v = Inv = v, so v = λ(A−1v). Multiplying both sides by the scalar λ−1 gives λ−1v = A−1v.

Example 24.3.2. LetA =

[
1 2
2 −2

]
. We saw in Example 24.2.9 that w1 =

[
2
1

]
and w2 =

[
−1
2

]
constitute

an orthogonal basis of R2 consisting of eigenvectors ofAwith respective eigenvalues λ1 = 2 and λ2 = −3.
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Now let us see how we can analyze questions about A very efficiently using such an orthogonal basis. The
basic idea is to write everything in terms of the eigenvectors.
(i) We can compute A5v for any v by expressing v in terms of the eigenvectors. (In Chapter 16 we saw

many contexts in which it is useful to be able to compute Amv for big m.) Let’s see this for v =

[
4
3

]
.

First note that A5w1 = λ51w1 = 32w1 and A5w2 = λ52w2 = −243w2. Next, as in (24.1.1), we have

v = ((v ·w1)/(w1 ·w1))w1 + ((v ·w2)/(w2 ·w2))w2

= (11/5)w1 + (2/5)w2.

Thus, A5v = (11/5)A5w1 + (2/5)A5w2 = (11/5)(32w1) + (2/5)(−243w2) =

[
238
−124

]
. Slick!

(ii) Let’s solve the equation Ax =

[
4
3

]
= v. This is similar to the previous calculation, but now we’ll

use A−1 instead of A5. As we saw in (i), v = (11/5)w1 + (2/5)w2. Since the inverse matrix has the
reciprocal eigenvalue against the same eigenvector (see Remark 24.3.1), we have A−1w1 = λ−1

1 w1 =
1
2
w1 and A−1w2 = λ−1

2 w2 = −1
3
w2. Using the formulas as before, we therefore get

x = A−1v = (11/5)A−1w1 + (2/5)A−1w2 = (11/5)(1/2)w1 + (2/5)(−1/3)w2 =

[
7/3
5/6

]
.

■

24.4. High powers of a matrix via eigenvalues. We saw in Chapter 16 that it is useful, when studying
the evolution of a system over a long time, to be able to compute Am for large integers m with A a fixed
n × n matrix. It turns out that we can use eigenvalues and eigenvectors very effectively for this task.
We will focus on the symmetric case, since then the Spectral Theorem provides a plentiful supply of
eigenvalues. Everything we do in this section adapts to the non-symmetric case, which is needed for some
topics from Chapter 16, but that involves complex numbers and so lies beyond the scope of this course.

As a warm-up illustration, we claim that for A as in Example 24.3.2 there is an exact formula

Am =

[
1 2
2 −2

]m
=

1

5

[
4(2m) + (−3)m 2(2m − (−3)m)
2(2m − (−3)m) 2m + 4(−3)m

]
, (24.4.1)

where the significance of the numbers 2 and −3 being raised to powers is that they are the eigenvalues
of A. The importance of this is that the eigenvalue with biggest absolute value controls the behavior for
large m: if we pull out a factor of (−3)m everywhere we get

[
1 2
2 −2

]m
=

(−3)m

5

[
4(2/(−3))m + 1 2 · ((2/(−3))m − 1)
2((2/(−3))m − 1) (2/(−3))m + 4

]
,

and (2/(−3))m ≈ 0 for large m since raising any number strictly between −1 and 1 (such as the ratio of
the eigenvalues 2/(−3) = −2/3) to very large powers rapidly approaches 0. Hence, replacing (2/(−3))m

with 0 everywhere gives the clean approximation
[
1 2
2 −2

]m
≈ (−3)m

[
1/5 −2/5
−2/5 4/5

]
(24.4.2)

for large m. The 2× 2 matrix on the right is equal to

1

w ·w ww⊤, (24.4.3)
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where w =

[
−1
2

]
is an eigenvector for the eigenvalue −3 with larger absolute value (you can check

by direct calculation that (24.4.3) gives the matrix on the right side of (24.4.2), though it may seem like
magic; Proposition 24.4.2 will show that such a formula is applicable very widely).

We repeat again for emphasis: the intervention of the eigenvalue 2 with smaller absolute value essen-
tially disappears when we consider Am for large m. This happens at the step where we observed that the
ratio 2/(−3) of eigenvalues has absolute value less than 1 and thus its high powers are negligible. The
general lesson, to be refined in Section 27.2, is this:

The behavior of Am for large m is largely controlled by the eigenvalue(s) with largest absolute value
and the associated eigenvector(s), called the “principal eigenvalue(s)” and “principal eigenvector(s)”.
(Striking applications of this insight to battle plans during World War II, also relevant to fighting
genetic disease, are discussed here.)

A formula as in (24.4.1) is hopeless to discover by brute-force multiplication, so to find it (by a robust
general method) we first give another way to think about the Spectral Theorem.

Theorem 24.4.1 (Interpretation of Spectral Theorem via a matrix decomposition). Let A be a sym-
metric n× n matrix with orthogonal eigenvectors w1,w2, . . . ,wn, having corresponding eigenvalues
λ1, λ2, . . . , λn. Let W be the n× n matrix whose columns are the respective unit eigenvectors

w1

∥w1∥
,

w2

∥w2∥
, . . . ,

wn

∥wn∥
.

Then W⊤ = W−1 (i.e., W is an orthogonal matrix as discussed in Section 20.4), and

A = WDW⊤ = WDW−1 (24.4.4)

for the diagonal matrix D =




λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


 whose entries are the corresponding eigenvalues.

(The connection between (24.4.4) and the visualization at the end of Theorem 24.1.4 is given here.)

The formula (24.4.4) is explained at the end of Section 24.7 for those who are interested. As an

illustration, we now apply it to A =

[
1 2
2 −2

]
from (24.4.1). This matrix has the orthogonal eigenvectors

w1 =

[
−1
2

]
and w2 =

[
2
1

]
with respective eigenvalues −3 and 2, with each wi having length

√
5. Hence,

A = W

[
−3 0
0 2

]
W⊤ = W

[
−3 0
0 2

]
W−1 for W =

[
−1/

√
5 2/

√
5

2/
√
5 1/

√
5

]
= (1/

√
5)

[
−1 2
2 1

]
.

(Multiply this out to check it really gives A.) Let us see what happens when we square A:

A2 = WDW−1WDW−1 = WD2W−1,

where W−1 and W canceled on the inside! We can keep going with the same cancellation phenomenon:

A3 = AAA = (WDW−1)(WDW−1)(WDW−1) = WDDDW−1 = WD3W−1.

Likewise in general we have

Am = WDmW−1 = WDmW⊤ for any m ≥ 1. (24.4.5)

This is useful because since D is diagonal, it is very easy to compute Dm.
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For any m ≥ 1 we have

Am = WDmW⊤ =
1√
5

[
−1 2
2 1

] [
(−3)m 0

0 2m

]
1√
5

[
−1 2
2 1

]

=
1

5

[
−1 2
2 1

] [
−(−3)m 2(−3)m

2(2m) 2m

]

=
1

5

[
4(2m) + (−3)m 2(2m − (−3)m)
2(2m − (−3)m) 2m + 4(−3)m

]

(where the second to last equality combined both factors of 1/
√
5 to get a single overall factor of 1/5 in

front). Therefore we have derived (24.4.1) using eigenvalues and eigenvectors.

Proposition 24.4.2. For a symmetric n×nmatrixA (for any n), if there is an eigenvalue λwhose absolute
value exceeds that of all other eigenvalues (this is called a dominant eigenvalue) and if the solutions to
Ax = λx constitute a line (as happens whenever there are n different eigenvalues) then for large m we
have Am ≈ (λm/(w ·w))ww⊤ = λm Projw with w any eigenvector for A having eigenvalue λ.

This is the version of (24.4.2) that holds for any such A. The approximate stabilizing of Am for large
m is due to reasons closely related to the behavior of big powers of Markov matrices in Chapter 16 and
that underlie PageRank in Appendix D (though Markov matrices are usually not symmetric).

Sometimes there is no dominant eigenvalue (e.g., the eigenvalues could be 5, 3,−5), and when there is
one then its eigenspace might have dimension> 1 (e.g., In has 1 as a dominant eigenvalue with eigenspace
the entirety of Rn). In such cases, Proposition 24.4.2 does not apply.

Example 24.4.3. To finish this section, we go beyond the symmetric case to illuminate Section 16.3.
Although we stated Theorem 24.4.1 for symmetric matrices, the method of its proof (at the end of
Section 24.7) applies more broadly. A motivating example is the non-symmetric 3× 3 matrix

A =




0 1 0
0 0 1
−1 2 1




that arose in Section 16.3, where we saw that the sequence of numbers a1, a2, a3, . . . defined by the
linear recurrence am = am−1+2am−2−am−3 for m ≥ 4 with initial terms a1 = a2 = a3 = 1 satisfies


am
am+1

am+2


 = Am−1



1
1
1


 . (24.4.6)

How can we get a handle on the powers Am−1 for big m? Once again, eigenvalues are the key.
Methods discussed in Section E.5 show that the matrix A has as its eigenvalues the three distinct

roots of the cubic polynomial x3 − x2 − 2x+ 1, given by

λ ≈ 1.8109, λ′ ≈ −1.2469, λ′′ ≈ 0.4450.

The version of Theorem 24.4.1 that applies (with the same proof) to any n×n matrix M with distinct
eigenvalues λ1, . . . , λn – no symmetry assumption onM – is thatM = WDW−1 whereW andD are
defined exactly as in Theorem 24.4.1 (but the matrix W is not orthogonal when M is not symmetric).
Exactly as in our explanation of (24.4.1) above, we have Mm = WDmW−1 for any m ≥ 1.

To apply this to our 3×3 matrixA, we have to compute an eigenvector for each of its 3 eigenvalues
in order to determine the matrix “W ” corresponding to A. Once this is done, feeding the resulting
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expression “WDm−1W−1” for Am−1 into the right side of (24.4.6) and doing some algebra (that we
omit) yields an exact formula: am = cλm + c′λ′m + c′′λ′′m, where the coefficients c, c′, c′′ satisfy


1 1 1
λ λ′ λ′′

λ2 λ′2 λ′′2





c
c′

c′′


 =



2
1
1


 . (24.4.7)

Since |λ| > |λ′|, |λ′′|, for big m the term λm dominates in our exact formula for am and so am ≈ cλm

for big m. By inverting the matrix on the left side of (24.4.7) one can obtain the exact formula
c = −(5/7)λ2 + (3/7)λ+ 12/7 ≈ 0.1672, so am ≈ cλm ≈ (0.1672)(1.8109)m for large m. ■

24.5. Application to support vector machines (optional). In Example 19.4.4 we introduced the
concept of a “support vector machine” as an algorithm to build linear classifiers for multi-dimensional
data: to find a “best” (affine) hyperplane H in Rn for separating n-vector data into two types, depend-
ing on training data t1, . . . , tr ∈ Rn (at least one of each type). That process relied upon multiple-
constraint Lagrange multipliers, but the actual optimization problem that had to be solved in the
end was stated without any explicit mention of the phrase “Lagrange multiplier”: for training data
t1, . . . , tr ∈ Rn and signs s1, . . . , sr = ±1 (with both signs occurring), we want to maximize

r∑

i=1

λi −
1

2

r∑

i,i′=1

sisi′(ti · ti′)λiλi′ (24.5.1)

subject to the constraints λ1, . . . , λr ≥ 0 and
∑r

i=1 λisi = 0.
This method relies on knowing that the training data admits some separation by a hyperplane in

Rn, and in many situations there is no such separating hyperplane. Such failure is illustrated on the
left in Figure 24.5.1, and the picture on the right in Figure 24.5.1 shows an important idea for how to
circumvent that problem via a higher-dimensional space: find a (non-linear) function f : Rn → RN

withN > n so that the modified data f(t1), . . . , f(tr) ∈ RN admits a separating hyperplane (in RN ).

FIGURE 24.5.1. Data in Rn not separated by a hyperplane (as on the left) may admit
a separating hyperplane after putting it into a higher-dimensional space by applying a
suitable function f : Rn → RN (whose output on the data is shown on the right).

But how do we find such an f? It may seem hopeless, but there is a way to essentially do this in
practice thanks to the Spectral Theorem, as we now explain.

Suppose there were some (non-linear) f : Rn → RN for which the data becomes amenable
to the linear methods of Example 19.4.4 after applying f (set aside for a moment how such an f
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would ever be found). When we apply the optimization task (24.5.1) to the modified training data
f(t1), . . . , f(tr), it becomes the task of maximizing

r∑

i=1

λi −
1

2

r∑

i,i′=1

sisi′(f(ti) · f(ti′))λiλi′

subject to the constraints λ1, . . . , λr ≥ 0 and
∑r

i=1 λisi = 0. For this task we don’t need the full
knowledge of f , but rather just the associated scalar-valued function kf (x,y) = f(x) · f(y) (for
x,y ∈ Rn). Moreover, once this task is solved, in practice the resulting non-linear classifier on new
data x ∈ Rn can be described in terms of the values f(x) · f(ti) = kf (x, ti).

So what? If there were some way to characterize the scalar-valued k(x,y) which arise as kf (x,y)
for a (typically non-linear) function f : Rn → RN , then we could avoid having to build any f by
instead working in the language of such functions k. That is, we may try a variety of such k’s until
we find one that works well for the task at hand: implicitly we would be applying some function f to
the data but we never have to exhibit f explicitly. The ability to do exactly this is called the “kernel
trick” (such a function k is called a “kernel” for reasons related to ideas in Math 175).

But the puzzle remains: how can we characterize the functions k(x,y) arising as kf for (unknown)
f : Rn → RN? Any such function k must satisfy two basic properties:
(i) (symmetry). It is symmetric in the sense that k(x,y) = k(y,x) since f(x) · f(y) = f(y) · f(x).

(ii) (positive-semidefiniteness). For any m ≥ 1 and collection of n-vectors x1, . . . ,xm ∈ Rn, the
m × m matrix K = (k(xi,xj)) is positive-semidefinite (i.e., qK(v) = v⊤Kv ≥ 0 for all
v ∈ Rm). Indeed, if k = kf for some f then for them×nmatrixM with jth column mj = f(xj)
we haveK = (kf (xi,xj)) = (f(xi) ·f(xj)) = (mi ·mj) =M⊤M. This is a Gram matrix, hence
positive-semidefinite (qM⊤M(v) = v⊤M⊤Mv = (Mv)⊤(Mv) = (Mv)·(Mv) = ∥Mv∥2 ≥ 0).

Sweeping a couple of technical issues under the rug, incredibly these two conditions on k are
also sufficient to ensure k = kf for some f ! This result is called Mercer’s Theorem. (Examples of
functions k satisfying conditions (i) and (ii) include the “radial kernel” k(x,y) = e−c∥x−y∥2 for c > 0
and the “polynomial kernel” k(x,y) = (x · y + b)d for b ∈ R and an integer d > 0.)

In Example 26.1.10 we will use the Spectral Theorem to prove a remarkable result of similar-
sounding flavor: every symmetric positive-semidefinite matrix has the form M⊤M for some matrix
M . The proof of Mercer’s Theorem uses an infinite-dimensional version of the Spectral Theorem
(treated in Math 175), but controlling continuity properties of f lies deeper [Kü, Lemma 1].

24.6. The unreasonable effectiveness of mathematics (optional). In 1960, the Nobel prize-
winning physicist Eugene Wigner published an essay [Wig] titled “The Unreasonable Effectiveness
of Mathematics in the Natural Sciences”, in which he wrote:

The miracle of the appropriateness of the language of mathematics for the formulation of
the laws of physics is a wonderful gift which we neither understand nor deserve. We should
be grateful for it and hope that it will remain valid in future research and that it will extend,
[. . . ] even though [. . . ] to our bafflement, to wide branches of learning.

Now that you have learned about the concept of eigenvectors and the Spectral Theorem, it seems
apt to present some illustrations of what Wigner was talking about.

Example 24.6.1. In the early 20th century it was observed that electron motion within an atom causes
the emission and absorption of energy at only specific discrete values (called its “spectrum”); this is
one of the discoveries that led to quantum mechanics. In late 1925 Schrödinger wrote in a letter: “At
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the moment I am struggling with a new atomic theory. If only I knew more mathematics! I am very
optimistic about this thing, and expect that, if only I can . . . solve it, it will be very beautiful.”

Soon thereafter he made the key breakthrough in a 4-part series of papers called “Quantization as
an Eigenvalue Problem” ([Sch1], [Sch2], [Sch3], [Sch4]), which showed that for each atom there is a
type of (infinite-dimensional) matrix – later called the Schrödinger operator – that satisfies a version
of the Spectral Theorem and its eigenvalues are exactly those discrete energies. Strictly speaking,
Schrödinger used differential equations rather than matrices. But he showed in a specific case (in
[Sch5]) that his quantum theory is equivalent to another due to Heisenberg based on matrices, and
within a couple of years von Neumann established an infinite-dimensional Spectral Theorem and
used it to prove a precise equivalence of the two quantum theories in general (see [Neu, Ch. I]).

This equality of atomic spectra with eigenvalues of a matrix in the mathematical model of atomic
physics provided by quantum mechanics is an amazing historical coincidence for the following reason.
The mathematician David Hilbert regarded the real-number eigenvalues of a symmetric matrix (as in
the Spectral Theorem) as analogues of spectral lines showing the levels of emission and absorption
of energy in atoms. For this reason, he referred to the collection of eigenvalues of any square matrix
as its “spectrum”, and he came up with the name “Spectral Theorem” accordingly. But this was all
before the discovery of quantum mechanics! So, as illustrated by the quotation at the start of Part
V, it was a huge surprise to Hilbert when Schrödinger later discovered that the spectrum of an atom
actually is the collection of eigenvalues of a specific matrix (so what seemed like a mere analogy to
Hilbert earlier was not just an analogy). ■

Example 24.6.2 (Principal Axes and the Tennis Racket Theorem). The Spectral Theorem in the case
n = 3 has a striking physical consequence for the study of angular momentum in rotational mechanics,
as we now explain. Imagine a rigid physical object spinning around in space under the influence of
some forces (e.g., a spinning top, a rigid bar flying through the air, the Apollo 13 spacecraft, etc.),
with the center of mass regarded as the origin. By physical reasoning, the dependence of the total
angular momentum L on the total angular velocity ω⃗ can be shown to respect vector operations on
ω⃗, so (by Theorem 14.2.1) L is equal to a matrix-vector product Iω⃗ for a 3 × 3 matrix I (sometimes
called the inertia tensor, and generalizing the scalar formula Iω from introductory physics).

~ω

L

FIGURE 24.6.1. Angular momentum L and angular velocity ω⃗ (shown for a spinning
bar with equal masses at its ends) can lie on different lines through the center of mass.

The entries of I can be computed using integration formulas involving the geometry and mass
distribution of the physical object being rotated. Explicit formulas for the entries of I, or energy
considerations in Lagrangian mechanics, show that I is symmetric. The fact that L is typically not
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pointing along the same line as ω⃗ (in effect, I is not a scalar matrix) creates a lot of complexity in
the study of rotational dynamics, especially when the physical object is irregularly-shaped (no axis of
symmetry, etc.). Physical arguments show that the dot product (1/2)(ω⃗ · L) is equal to the rotational
kinetic energy, which is positive whenever the angular velocity ω⃗ is nonzero (since that corresponds
to the presence of actual spinning). Substituting in the formula L = Iω⃗, the rotational kinetic energy
becomes (1/2)(ω⃗ · (Iω⃗)) = (1/2)qI(ω⃗), so the symmetric matrix I is positive-definite.

Applying the Spectral Theorem to I, if we suitably rotate our frame of reference by passing from
an initial xyz-coordinate system to that of an orthonormal basis of eigenvectors v1,v2,v3 for I, the
effect of I in this new reference frame is “diagonal” with diagonal entries (the 3 eigenvalues of I)
that are positive. These eigenvalues are called the principal moments of inertia and they are intrinsic
quantities, independent of any choice of coordinates (unlike entries in the matrix I in general).

The mutually orthogonal lines spanned by the vi’s are called the principal axes of the physical
object, and their existence (via the Spectral Theorem, as we have seen) is called the Principal Axis
Theorem. In case the eigenvalues of I are all different, so we can label them as 0 < λ1 < λ2 < λ3
from smallest to largest, there is a physical interpretation of the principal axes as follows. Let Li be
the line through the center of mass along the direction of an eigenvector for λi. If one imagines a rod
running through the rigid body exactly along Li and tries to spin the object in zero gravity exactly
around that rod then the rod will remain perfectly in place, with no wobbling at all. This is surprising:
for an irregularly-shaped body, it isn’t apparent that any non-wobbling axis of spinning should exist!

There is an important caveat about this interpretation of the principal axes, because in the real
world (rather than in physical idealizations in our head) no spinning around a line is perfectly exact.
The principal axes L3 and L1 for the biggest and smallest eigenvalues are very stable: if one spins the
rigid body approximately around either of those axes, any wobbling that occurs along it is tiny. How-
ever, spinning approximately around L2 is highly unstable, causing unexpected behavior: instability
for the middle eigenvalue is called the “Tennis Racket Theorem” and creates very counterintuitive
motion for spinning objects in the absence of gravity called the “Dzhanibekov effect”, shown in this
short video. (If the rotating body is not rigid and so dissipates energy due to moving internal parts then
by conservation of angular momentum even L1-rotation is unstable: it turns into L3-rotation because
maximizing the moment of inertia minimizes the kinetic energy. The preference for L3-rotation by
dissipative bodies applies to the Earth but became widely recognized only after its effects on Sputnik
I and Explorer I were observed; see [Li, App. A].)

For rotational dynamics of spinning motion (i.e., disregarding effects of gravity), such as in the
“zero gravity” environment inside a spacecraft orbiting the earth, calculations become much easier
when everything is described in terms of the principal axes. For example, the Euler equations of
(rotational) motion for the angular velocity ω⃗ become much more tractable to solve when written in
the reference frame of the principal axes, and if one of the eigenvalues is larger than the others then
the associated principal axis plays a dominant role in the rotational mechanics of the physical object.

FIGURE 24.6.2. An ellipsoid and its three principal axes
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For a rigid body with uniform density in the shape of an ellipsoid (this is essentially an egg-shape,
but a bit more symmetric), the principal axes can be seen directly: as in Figure 24.6.2, they are certain
mutually perpendicular lines through the center. The Principal Axis Theorem implies that for any rigid
body B whatsoever, with an arbitrarily non-uniform density and irregular shape, its purely rotational
dynamics behave as if it were a specific uniform-density solid ellipsoid EB (with the same total mass
and the same principal axes)! The eigenvalue for I along each principal axis for B determines the
length of EB in that direction, and the resulting volume of EB and the mass of the rigid body B
determine the uniform density of EB. Usually EB is called the inertia ellipsoid for B (see [Feyn1,
Vol. II, Sec. 31.3-Sec. 31.4], which also discusses an “energy ellipsoid” for polarization of crystals).

To illustrate the utility of this miracle, first observe three geometric features of solid ellipsoids E:
(i) if the principal axes of E have different lengths then the only “rotational symmetry” (i.e., rotation

around a line by less than a full rotation that carries E into itself) is 180-degree rotation around
each of three perpendicular lines through the center of mass (namely, the principal axes);

(ii) if exactly 2 of the principal axes have the same length, so the plane P through those 2 axes makes
a circular slice of E, the rotational symmetries of E are rotation by any angle around the line
through the center of mass that is perpendicular to the plane P and 180-degree rotation around
every line through the center of mass in that same plane;

(iii) if E has any rotational symmetry beyond what is accounted for in (i) and (ii) then all principal
axes must have the same length and so E is a solid ball.

In particular, an ellipsoid with rotational symmetry that does not fit within cases (i) or (ii) must be in
case (iii); i.e., it must be a solid ball (in which case of course it has the maximal possible rotational
symmetry). Examples of such “extra rotational symmetry” include rotation by an angle different from
180° around two different lines through the center of mass and rotational symmetry around 3 different
lines through the center of mass that are not all in the same plane and not mutually perpendicular.

Let’s apply this to a non-spherical solid body B with uniform density that has either a rotational
symmetry by other than 180° around two different lines through the center of mass or a rotational
symmetry around 3 different lines through the center of mass which are not all in the same plane. For
example, a solid cube C has 90° rotational symmetry around all 3 lines connecting centers of opposite
faces, and 120° rotational symmetry around all 3 diagonal lines connecting opposite corners.

The inertia ellipsoid E = EB for such a B must inherit the same rotational symmetries (since E is
designed to have the same rotational dynamics as B), so E must be a solid ball with uniform density.
(If B is a cube with side length s, by physical arguments its spherical inertia ellipsoid can be shown to
have radius

√
5/12 s.) As a consequence, B’s moment of inertia around any line through its center of

mass (this is a measure of resistance to angular acceleration around that line, much as mass gives such
a measure for linear motion due to Newton’s force law) is the same as for any other such line since
the equality of moments of inertia for all such lines holds for the solid ball E (due to the extensive
rotational symmetry of E, which B does not have!). This conclusion for B is surprising, since many
lines through the center of mass of B pass through B in an asymmetric manner; one wouldn’t expect
that the moment of inertia around such a line is the same for every line through the center. A variant
of this “symmetry analysis” is given (for energy in crystals) near the end of [Feyn1, II, Sec. 31.3]. ■

Remark 24.6.3. The ability to diagonalize the symmetric matrix I via passage to a new orthonormal
reference frame was originally discovered by Laplace in the 18th-century via arguments specific to
the physical setting. The recognition of the role of symmetry of the matrix and the wider validity of
the Spectral Theorem for symmetric n×n matrices for all n only came later, with work of Cauchy on
celestial mechanics in 1829 (see [Ha1, pp. 563-565] and [Ha3, Sec. 4.4] for an historical survey).
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Example 24.6.4. Let’s return to the structural analysis of vibrational mechanical systems that we saw
in Examples 20.3.14 and 24.2.7; you can keep in mind a collection of many springs linked together in
a complicated way (a toy version of which is given in Example 10.1.3). There was a stiffness matrix
K which turned out to be symmetric. We want to explain why that symmetry has useful consequences
for the scientific analysis when one brings in the mathematics of the Spectral Theorem.

The definition of the stiffness matrix is as an n × n matrix where n is the number of “degrees of
freedom” of the system; this n can be quite large (depending on the number of parts in the mechanical
system). Informally, any possible vibration of the system can be described as a sum of contributions
from vibrations along each degree of freedom. These degrees of freedom are something one sees with
one’s eyes by staring at the mechanical system and thinking about the ways in which different parts
can vibrate. But when the equations of motion for the vibrations are written in terms of these degrees
of freedom, they are a huge system of differential equations that is a gigantic mess.

Now comes the contribution of eigenvalues to escape the mess: the Spectral Theorem guarantees
that there is an orthogonal basis of eigenvectors for the stiffness matrix. The eigenvectors can be
interpreted as special types of vibration of the mechanical system; we’ll call them “eigenvibrations”.
The corresponding eigenvalues are stress energies for these specific vibrations.

Why are the eigenvibrations useful, and not just some piece of theoretical math? Let’s first clarify
what it means that this collection of n eigenvibrations is (by its design) a basis for the “space of
vibrations”: instead of describing every possible vibration in terms of contributions from vibrations
along each of the n degrees of freedom (this is something that can be physically seen), we can instead
describe every vibration (uniquely) as a linear combination of the eigenvibrations. The same could be
said for any basis of n vectors for the “space of vibrations”, but the eigenvibrations are not just any old
basis: they are (by design) eigenvectors for the stiffness matrix and are orthogonal to each other. By
combining the orthogonality with the way the stiffness matrix appears in the equations of motion, it
then follows from the eigenvector property that when everything is described as a linear combination
of the eigenvibrations, the mathematics of the vibrational behavior of the original highly coupled
system with n degrees of freedom becomes exactly the mathematics of a collection of n unrelated
1-dimensional spring systems! So one can apply tools developed for the 1-dimensional case, and
reassemble the conclusions to learn information about the original highly coupled mechanical system.

In other words, the differential equations of motion that appear as a mess in terms of the physical
notion of the n vibrational “degrees of freedom” dramatically simplify when everything is written in
terms of the n eigenvibrations. The ability to reformulate the mathematics of the highly correlated
physical systems in terms of the mathematics of a collection of unrelated 1-dimensional systems has
no physical interpretation at all; one could say it is just an amazing mathematical trick (which relies
on the application of a real theorem, namely the Spectral Theorem). Yet the process by which this is
achieved provides the existence of n very special vibrations whose existence could never otherwise
be detected, and those in turn are useful in a deeper study of the mechanics.

Unlike the very physical n “degrees of freedom” for vibrational motion, it is absolutely impossible
to see the existence of the n eigenvibrations by staring at the original mechanical system. One really
has to dig into the mathematics to see the presence of a huge symmetric matrix K and then apply the
Spectral Theorem to it in order to deduce the existence of very special vibrations in terms of which
the equations of motion take on a much more tractable form. So the Spectral Theorem, which may
initially seem to be “just” pure mathematics, can be used to great practical effect in transforming
messy equations of motion into a much more tractable form. In Section 27.1 we present the same
technique in the more tangible context of a pair of linked pendulums (where we completely work out
the passage to unrelated 1-dimensional systems). ■
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Example 24.6.5 (Dinosaur tail eigenvalues). Data shows that for most mammals, the preferred walk-
ing speed and gait minimize the energy expenditure. Assuming this also holds for non-avian dinosaurs,
a new insight in [BSS] was that the bouncing of the massive tail of the Tyrannosaurus rex should be
incorporated into models for such energy minimization.

Under some assumptions concerning the musculature of the tail [BSS, Fig. S3], the bouncing is
modeled by dividing the tail into 5 segments of equal length and treating it as a spring-mass system
as illustrated in this video. The differential equations of motion for the tail are governed by a 10× 10
matrix, and the numerical determination of its eigenvalues on a computer (combined with physiolog-
ical information about the dinosaur) led to the surprising conclusion that the preferred T. rex walking
speed was around 1.28 meters/sec, which is slower than the average human adult preferred walking
speed of around 1.34-1.42 meters/sec! ■

Example 24.6.6 (Dead Sea Scrolls). A rather spectacular application of the Spectral Theorem arises
in archaeology, or more broadly in the study of ancient manuscripts that are rolled up and too brittle to
open. For example, the Dead Sea Scrolls are a series of biblical texts found on parchment in ancient
caves near the Dead Sea beginning in the 1940’s, and among the documents discovered from searches
of the surrounding caves is the En-Gedi Scroll so badly burned (from long ago) that it is essentially a
cylinder of charcoal.

In 2016, sophisticated computerized mathematical techniques based on differential geometry were
applied to a 3-dimensional scan of this artifact to virtually “unwrap” it so that the original ink could
be read! One of the key ingredients in the method rests on the following consequence of the Spectral
Theorem in 3 dimensions (see [LMT, Section 3.3]). Let’s call a positive semi-definite quadratic
form q : R3 → R spherical if q(x) = ∥x∥2, planar if q(x) = ∥ProjP(x)∥2 for some plane
P through the origin (in effect, q depends on 2 variables: coordinates along P ), and stick-like if
q(x) = ∥ProjL(x)∥2 for some line L through the origin (in effect, q depends on 1 variable: a
coordinate alone L). The Spectral Theorem allows us to build up any positive semi-definite quadratic
form Q : R3 → R as a non-negative linear combination of these three special types of quadratic
forms.

To see this, write Q = qA for a symmetric 3 × 3 matrix A. By the Spectral Theorem, there is
an orthonormal basis of R3 consisting of A-eigenvectors, say v1,v2,v3. By rearranging if necessary,
we can assume the associated eigenvalues satisfy λ1 ≥ λ2 ≥ λ3, and they are non-negative since
Q is positive semi-definite. Define the plane P = span(v1,v2) and line L = span(v1). Writing
a 3-vector x as x = a1v1 + a2v2 + a3v3, we have ∥x∥2 = x · x = a21 + a22 + a23 (since the vi’s
are an orthonormal basis of R3) and likewise ∥ProjP(x)∥2 = ∥a1v1 + a2v2∥2 = a21 + a22 and
∥ProjL(x)∥2 = ∥a1v1∥2 = a21. Since the orthonormal vi’s satisfy Avi = λivi, we have

Q(x) = qA(x) = λ1a
2
1 + λ2a

2
2 + λ3a

2
3

= λ3(a
2
1 + a22 + a23) + (λ2 − λ3)(a

2
1 + a22) + (λ1 − λ2)a

2
1

= λ3∥x∥2 + (λ2 − λ3)∥ProjP(x)∥2 + (λ1 − λ2)∥ProjL(x)∥2

with coefficients λ3, λ2 − λ3, λ1 − λ2 that are all non-negative. ■

Example 24.6.7 (Deformation tensors and principal stresses). Another application of the Spectral
Theorem arises in the context of deformations of solids, which we first considered in Example 13.5.7.
There we had a solid body B in space undergoing a deformation f : B → R3, and we said that
engineers refer to (Df)(b) as the deformation gradient; actually, they often call it the deformation
gradient tensor, where “tensor” is a word (derived from the Latin tendere, meaning “to stretch”) that
physicists and engineers use for a linear-algebra gadget – such as a vector or matrix or quadratic form
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– expressed in a certain coordinate-dependent manner (mathematicians use the word with a related
but more intrinsic meaning). The physical nature of the deformation process ensures (by the Chain
Rule) that (Df)(b) is invertible for all b. Engineers often denote (Df)(b) as F(b).

Many quantities of physical interest related to stress and strain in a deformation process are en-
coded in the deformation gradient tensor. To explain this, we require a result in linear algebra that (in
a sense which is too much of a digression to explain here) generalizes polar coordinates on R2:

Theorem (Polar Decomposition). If A is an invertible n × n matrix then we can uniquely write
A = QS where Q is an orthogonal n× n matrix and S is a positive-definite symmetric n× n matrix.
Moreover, also A = S ′Q for the same Q and a positive-definite symmetric n× n matrix S ′.

For a proof, see Theorem B.4.2. As an illustration, A =

[
3/5 −8/5
4/5 6/5

]
has Polar Decomposition

[
3/5 −4/5
4/5 3/5

] [
1 0
0 2

]
= QS = A = S ′Q =

[
41/25 −12/25
−12/25 34/25

] [
3/5 −4/5
4/5 3/5

]
;

in this case S ̸= S ′ though S and S ′ have the same eigenvalues λ1 = 1 and λ2 = 2 (with respective

eigenvectors v1 =

[
1
0

]
, v2 =

[
0
1

]
and v′

1 =

[
3/5
4/5

]
= Qv1, v′

2 =

[
−4/5
3/5

]
= Qv2).

The Polar Decomposition may look similar to the QR-decomposition, but it is deeper: the proof
of the QR-decomposition only uses the Gram–Schmidt process, whereas the proof of the Polar De-
composition rests on the Spectral Theorem. Since QS = A = S ′Q, so S = Q−1S ′Q, geometrically
S ′ looks like S up to a change of reference frame defined by the rigid motion Q. In particular, the
eigenvalues of S ′ are the same as those of S, though the orthonormal bases of eigenvectors for each
(from the Spectral Theorem) generally do not agree: one such basis is carried to the other by applying
the rigid motion Q (or Q−1); the above 2× 2 illustration exhibits these features.

Applying the Polar Decomposition with n = 3 to (Df)(b), we obtain

Q(b)S(b) = (Df)(b) = S ′(b)Q(b) (24.6.1)

for a 3 × 3 orthogonal matrix Q(b) and positive-definite symmetric 3 × 3 matrices S(b) and S ′(b).
(In the materials science literature, Q(b) is denoted as R(b), S(b) is denoted as U(b), and S ′(b)
is denoted as V (b); we avoid that notation since in Chapter 22 we used R and U to denote upper
triangular matrices, as is standard in applied linear algebra.) By the linear-approximation property
f(b + h) ≈ f(b) + ((Df)(b))h for small h, the physical interpretation of (24.6.1) is that (up to a
spatial translation by f(b)) the orthogonal matrix Q(b) encodes the part of the deformation process
near b that is purely rotational (so no change in nearby distances) whereas S ′(b) and S(b) record in
different ways the part of the deformation process near b that involves a change in nearby distances.
Engineers callQ(b) the rotation tensor, S(b) the right stretch tensor, and S ′(b) the left stretch tensor.

To explain the “stretch” terminology, since S(b) and S ′(b) are symmetric they each have an or-
thogonal basis of eigenvectors by the Spectral Theorem and the eigenvalues of those eigenvectors are
positive by Proposition 24.2.10(i). The orthogonal basis can be made into an orthonormal basis by
scaling each eigenvector in the basis to have length 1, which doesn’t change its eigenvalue. We have
noted already that the eigenvalues for S ′(b) and S(b) coincide (though the eigenvectors usually do
not). These common eigenvalues are called the principal stresses at b because the physical interpreta-
tion of the expressionQ(b)S(b) for (Df)(b) is that (up to a spatial translation) near b the deformation
process consists of (i) first stretching or compressing along the lines spanned by the orthonormal basis
of eigenvectors for S(b) (called the principal directions for the deformation at b) with the scaling
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factor along each eigenline (i.e., span of an eigenvector) given by the respective (positive) eigenvalue,
and (ii) then applying the rotation Q(b).

Likewise, the physical interpretation of the expression S ′(b)Q(b) for (Df)(b) is that (up to a
spatial translation) near b the deformation process consists of (i) first applying the rotation Q(b), and
(ii) then stretching or compressing along the lines spanned by the orthonormal basis of eigenvectors
for S ′(b) with the scaling factor along each eigenline given by the respective (positive) eigenvalue.
Preference among Q(b)S(b) or S ′(b)Q(b) expresses preference among the reference frame of the
external environment or of the body undergoing deformation.

In the context of the general Polar Decomposition we have

A⊤A = (QS)⊤(QS) = S⊤Q⊤QS = S(Q⊤Q)S = S2

(using that S⊤ = S by symmetry of S, and Q⊤Q = In by orthogonality of Q), and similarly AA⊤ =
(S ′Q)(S ′Q)⊤ = S ′QQ⊤S ′⊤ = S ′(QQ⊤)S ′ = S ′2. Thus, in the deformation setting we have

((Df)(b))⊤(Df)(b) = S(b)2, (Df)(b)((Df)(b))⊤ = S ′(b)2.

In particular, the principal directions and the squares of the principal stresses at b are encoded in the
(symmetric) Gram matrices ((Df)(b))⊤(Df)(b) and (Df)(b)((Df)(b))⊤ that are respectively called
the right Cauchy–Green tensor and left Cauchy–Green tensor. These two matrices record the change
in geometry near b disregarding rotational effects, up to squaring the principal stresses at b. (The
inverse of the left Cauchy–Green tensor arose in Cauchy’s pioneering 1828 work on deformations of
solids, and G. Green24 introduced the right Cauchy–Green tensor 11 years later; neither Cauchy nor
Green had the efficient language of modern linear algebra that we do.)

Observe how pervasive the Spectral Theorem and matrix algebra are in this discussion! The princi-
pal stresses and principal directions can be recorded in terms of analogues of the inertia ellipsoid from
Example 24.6.2 called the stress ellipsoid and strain ellipsoid (which vary with b ∈ B). Planes of
symmetry through the centers of these ellipsoids are useful visual tools when discussing the fracturing
of material under stress; also see [Feyn1, II, Sec. 31.6] (where the variation of the stress ellipsoid with
b ∈ B is noted near the end). Materials scientists use the preceding concepts all over the place. ■

24.7. Some eigenvalue proofs. This section proves Theorem 24.1.1 and explains where the ma-
trix decomposition (24.4.4) comes from. To prove Theorem 24.1.1, we use notation as in its statement.

PROOF. For part (i), to show that eigenvectors v1, . . . ,vr ∈ Rn for an n×n matrix A are linearly
independent when the associated eigenvalues λ1, . . . , λr are pairwise different, we suppose there is
given a linear relation

a1v1 + · · ·+ arvr = 0 (24.7.1)
in Rn for scalars a1, . . . , ar and aim to show that every ai vanishes. In the case r = 1 there is
nothing to do: we have a1v1 = 0 with v1 nonzero (since eigenvectors are nonzero by definition), so
necessarily a1 = 0 as desired. Hence, we may focus now on cases with r > 1.

We shall proceed by the method of mathematical induction on r: we suppose the result is already
known to hold for any collection of less than r eigenvectors with pairwise different eigenvalues, and
aim to deduce from this fact alone that it also holds for any collection of r such vectors. Once such a
general deduction is carried out, we could conclude that if the desired result is then really established

24George Green (1793-1841) was a British mathematical physicist who introduced potential functions into physics and
defined “Green’s functions” that became fundamental for quantum mechanics and differential equations. Forced to work full-
time during ages 5 to 36 (while his father lived), he was entirely self-educated. He kept up with European math research,
self-published his discoveries, and began college at Cambridge at age 39. His work was appreciated only posthumously.
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in general (and not just assumed) for any collection of r − 1 such vectors then it holds in general for
any collection of r such vectors. In other words, we could bootstrap from settling the case for all
collections of some number of such vectors to the case of all collections with one more such vector.
Beginning with the known “base case” of a single eigenvector, we could then bootstrap to conclude
the case r = 2, and then conclude the case r = 3, and so on to conclude the general case.

So our task is to show for r > 1 that if the result is known for every collection of r−1 eigenvectors
with pairwise different eigenvalues then it holds for our given arbitrary collection v1, . . . ,vr of r
eigenvectors with pairwise different eigenvalues. For any scalar c, we compute the matrix-vector
product (A − cIn)vj = Avj − cInvj = λjvj − cvj = (λj − c)vj. By linearity in v for the matrix-
vector product Bv for any n× n matrix B, multiplying both sides of (24.7.1) by A− cIn yields

(A− cIn)(a1v1) + · · ·+ (A− cIn)(arvr) = (A− cIn)(a1v1 + · · ·+ arvr) = (A− cIn)(0) = 0.

Since (A− cIn)(ajvj) = aj((A− cIn)vj) = aj((λj − c)vj) = (aj(λj − c))vj , we deduce that

(a1(λ1 − c))v1 + · · ·+ (ar(λr − c))vr = 0.

This holds for all scalars c, so by choosing c = λr we eliminate the final term on the left side
(since the coefficient λr − c becomes 0), getting a1(λ1 − λr)v1 + · · · + ar−1(λr−1 − λr)vr−1 = 0.
This is a linear relation for the r − 1 eigenvectors v1, . . . ,vr−1. Recall we are assuming the desired
result is already known for collections of r − 1 eigenvectors with pairwise different eigenvalues, so
the scalars aj(λj − λr) for 1 ≤ j < r vanish. But λj − λr ̸= 0 for j < r since the eigenvalues are
pairwise different, so we can divide by that to get aj = 0 for all j < r. Going back to the initial linear
relation a1v1 + · · · + arvr = 0, the first r − 1 coefficients have been shown to vanish. Hence, this
relation collapses to say arvr = 0, so since vr is nonzero (as eigenvectors are nonzero by definition)
we obtain that ar = 0. We have shown that all coefficients ai vanish, completing the proof of (i).

Now we turn to the proof of (ii), which will be a clever computation. Assuming A is a symmetric
n × n matrix and v,v′ are n-vectors satisfying Av = λv and Av′ = λ′v′ with λ ̸= λ′, we want to
show v · v′ = 0. By the nice interaction of symmetric matrices with dot products (Theorem 20.1.4),
λ(v · v′) = (λv) · v′ = (Av) · v′ = v · (Av′) = v · (λ′v′) = λ′(v · v′). Comparing outer terms, we
thereby obtain 0 = λ(v · v′) − λ′(v · v′) = (λ − λ′)(v · v′). On the right side, the scalar λ − λ′ is
nonzero because we assumed λ ̸= λ′. Hence, the other factor v · v′ must vanish, as desired. □

Having completed the promised proof, next we explain where (24.4.4) comes from. For ease of
notation, let w′

j = wj/∥wj∥; this is a unit vector along the same line as wj , and is also an eigenvector
of A with the same eigenvalue λj . Hence, we have the eigenvector equations

Aw′
1 = λ1w

′
1, Aw

′
2 = λ2w

′
2, . . . , Aw

′
n = λnw

′
n.

We can put together all of these vector equations into a matrix equation:

AW =




| |
Aw′

1 Aw′
2 · · · Aw′

n

| |


 =




| |
λ1w

′
1 λ2w

′
2 · · · λnw

′
n

| |


 = W




λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn


 .

Now multiply both sides on the right by W−1 = W⊤ to get the desired result (since (AW )W−1 =
A(WW−1) = AIn = A).
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Chapter 24 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
nothing new!

Concept Meaning Location in text
pos-definite, neg-definite, indefinite,
pos/neg-semidefinite for n × n sym-
metric matrix A

these notions encode sign(s) of values of
qA(v) for varying nonzero v ∈ Rn

Definition 24.2.2

dominant eigenvalue for n × n sym-
metric matrix A

eigenvalue λ for which |λ| is larger than
absolute value of all other eigenvalues

Proposition 24.4.2

Result Meaning Location in text
for n×nmatrixA, eigenvectors with
distinct eigenvalues are linearly inde-
pendent

if v1, . . . ,vk satisfy Avi = λivi with pair-
wise distinct λi’s then the vi’s are linearly
independent

Theorem 24.1.1(i)

for n× n symmetric A, eigenspaces
for distinct eigenvalues are orthogo-
nal to each other

if Av = λv and Aw = µw with λ ̸= µ
then v ·w = 0

Theorem 24.1.1(ii)

Spectral Theorem for any n × n symmetric matrix A, there
is an orthogonal basis of Rn consisting of
eigenvectors for A

Theorem 24.1.4

diagonalization formula for qA(x)
for n×n symmetric A with orthogo-
nal basis w1, . . . of eigenvectors sat-
isfying Awi = λiwi

when x ∈ Rn is written in terms of wi’s as∑
tiwi then qA(x) has no titj cross-terms

(i ̸= j) and has t2i -coefficient λi(wi ·wi)

(24.2.2)

eigenvectors interact well with pow-
ers and inversion

if Av = λv then Arv = λrv for all r ≥ 1,
and also for r = −1 if A invertible

(24.3.1), Remark 24.3.1

efficiently compute powers of an
n × n symmetric matrix in terms of
eigenvalues and eigenvectors

if w1, . . . , is orthogonal basis of eigenvec-
tors and λ1, . . . are the eigenvalues then
Am = WDmW⊤ for all m ≥ 1, where D
is diagonal with dii = λi and W is orthog-
onal with jth column wj/∥wj∥

Theorem 24.4.1, (24.4.5)

for n × n symmetric A, dominant
eigenvalue (if one exists) controls
Am for big m

if A has a dominant eigenvalue λ and the
λ-eigenspace is a line, spanned by w, then
Am ≈ (λm/(w ·w))ww⊤ for big m

Proposition 24.4.2 (do not
need to know for exams!)

Skill Location in text
given an orthogonal basis w1, . . . ,wn of eigenvectors for an n × n symmetric
A, express qA(x) with no cross-terms upon writing x in terms of the wi’s

Examples 24.2.8, 24.2.9

read off definiteness of an n×n symmetric matrix by inspecting signs of eigen-
values (not by inspecting signs of matrix entries!)

Prop. 24.2.10, Rem. 24.2.11

for 2 × 2 symmetric A, compute Ar(v) for r ≥ 1 (and r = −1 if A invertible)
by writing v in terms of an orthogonal basis of eigenvectors for A

Example 24.3.2
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24.8. Exercises. (links to exercises in previous and next chapters)

Exercise 24.1. Let A be an n× n matrix with an eigenvector v having eigenvalue λ.
(a) Let B be an n × n matrix. Assume that v is also an eigenvector to B, with eigenvalue µ. Show that

v is an eigenvector of A+B with eigenvalue λ+ µ.
(b) Now consider the matrix M = A2 + 2A + 3In. Show that v is also an eigenvector of M , with

eigenvalue λ2 + 2λ+ 3.
(c) More generally, let f(t) = cmt

m + cm−1t
m−1 + . . .+ c1t+ c0 be a polynomial. We can “plug A into

f” by forming the n× n matrix

f(A) = cmA
m + cm−1A

m−1 + . . .+ c1A+ c0In.

Show that v is again an eigenvector to f(A) with eigenvalue f(λ). (Hint: Arv = λrv for any r ≥ 1,
as noted in (24.3.1).)

Exercise 24.2. Use the eigenvalues of the corresponding symmetric matrix to classify each of the follow-
ing quadratic forms as positive-definite, negative-definite, positive-semidefinite, negative-semidefinite, or
indefinite:
(a) qA(x, y) = 3x2 − 12xy + 12y2.
(b) qB(x, y) = −5x2 + 4xy − 5y2.

Exercise 24.3. Consider the symmetric matrix A =




6 0 −2
0 −1 0
−2 0 6


.

(a) Check that



0
1
0


,



1
0
1


, and




1
0
−1


 are eigenvectors for A, and give the eigenvalue for each. (These

eigenvectors are pairwise orthogonal; this is very much related to the symmetry of A.)
(b) Determine whether the quadratic form qA(x) = x · (Ax) = 6x2 − y2 +6z2 − 4xz is positive-definite,

negative-definite, indefinite, etc. (Hint: use the eigenvalues that you found in (a)! This method for
determining definiteness via eigenvalues is a special case of general principles that will later give rise
to the multivariable second derivative test.)

Exercise 24.4. Suppose A is an n× n symmetric matrix.
(a) Explain why each of A2, A3, etc. is also symmetric. (Hint: if you are stuck, look back at Example

20.3.6.)
(b) Using the expression A = WDW−1, show that A is invertible exactly when its eigenvalues are all

nonzero. (You are being asked to show that if A is invertible then 0 is not an eigenvalue, and that if
all eigenvalues are nonzero then A is invertible.)

Exercise 24.5. Let M be an m× n matrix (where m doesn’t necessarily equal n).
(a) Explain why the n × n matrix M⊤M is symmetric. (See Example 26.1.10 for discussion of the

interest in such matrices.)
(b) Consider the n-variable quadratic form q(x) = x · (M⊤Mx). Show that q(x) = ∥Mx∥2. Conclude

that q is positive-semidefinite.
(c) Show that q is positive-definite exactly when N(M) = {0}. (Hint: when is the length of Mx equal

to zero?)

Exercise 24.6. Let A =

[
1 1 −2
0 3 −1

]
, B = A⊤A, and qB be the 3-variable quadratic form associated with

B (by Exercise 24.5(a), B is symmetric; alternatively, you can just check this by computing B directly).
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(a) By Exercise 24.5(b), qB is positive-semidefinite. Argue using the number of rows and columns of A
(i.e. without doing any algebra!) that qB is not positive-definite. (Hint: you may take on faith the
conclusion of Exercise 24.5(c).)

(b) It is a fact (which you do not have to prove) that the largest eigenvalue of B is 8+
√
29. Consider the

symmetric 2 × 2 matrix C = AA⊤. Check that 8 +
√
29 is also an eigenvalue of C. (This is not a

coincidence; for any matrix A, the nonzero eigenvalues of A⊤A and AA⊤ always coincide, as arises
in Section 27.3 on the all-powerful singular value decomposition.)

Exercise 24.7. Consider the symmetric matrix A =



−5 −14 2
−14 4 −16
2 −16 10


.

(a) Check that the following are eigenvectors for A, determining the eigenvalue for each (all eigenvalues
are integers):

v1 =




1
−2
2


 , v2 =



2
2
1


 , v3 =



−2
1
2


 .

(These vi’s are readily seen to be nonzero and pairwise orthogonal, as the Spectral Theorem guaran-
tees can always be arranged, so these vi’s constitute an orthogonal basis of R3.)

(b) Write each standard basis vector ei as a linear combination of v1,v2,v3 by computing the projection
of ei onto each of v1,v2,v3.

(c) Use the following strategy to compute A10 (you can leave expressions like λ10, where λ is an eigen-
value of A, in your answer, rather than multiplying them all out): for each i = 1, 2, 3, the ith column
of A10 is given by A10ei, which we can compute by writing ei in the orthogonal basis of eigenvectors
from part (a). As a safety check, make sure that your answer is symmetric, since any power of a
symmetric matrix is symmetric (you might like to think on your own about why that is true).

(d) Use another strategy to compute A10: since each vi has length 3, the eigenvectors v′
i = vi/3 are

unit vectors and hence constitute an orthonormal basis. Thus, the matrix Q with ith column v′
i is

orthogonal and we know that A = QDQ−1 = QDQ⊤ where D is the diagonal 3× 3 matrix with ith
entry λi, so A10 = QD10Q−1 = QD10Q⊤.
Write out Q and compute this expression for A10. (Hint: before multiplying matrices, you should be
able to cancel out the 3’s in the denominators, so all work is then with integers, not fractions.) You
should get the same answer as for (c)!

Exercise 24.8. In this exercise, we use eigenvalues to understand the behavior of the Fibonacci sequence
{f1, f2, f3, . . . } that is defined by the condition f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n > 2 (so

the sequence begins {1, 1, 2, 3, 5, . . . }). Consider the matrix A =

[
0 1
1 1

]
, which has the property that

A

[
fn−2

fn−1

]
=

[
fn−1

fn

]
for n ≥ 3 (to see why, work out the matrix-vector product on the left side).

(a) Check that λ1 = (1 +
√
5)/2 (≈ 1.618) and λ2 = (1 −

√
5)/2 (≈ −0.618 ) are the two eigenvalues

of A. (The positive eigenvalue λ1 is often denoted ϕ and called the “Golden Ratio”.)

(b) Explain why An

[
0
1

]
=

[
fn
fn+1

]
for n ≥ 1.

(c) Find an eigenvector for each of the two eigenvalues λ1, λ2, and write
[
0
1

]
as a linear combination of

the two eigenvectors.
(d) Using parts (b) and (c), give a closed form expression for fn (involving powers of the eigenvalues).
(e) Using that |λ2| < 1, find an approximation for fn in terms of ϕ = λ1 when n is large.
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(f) Using a calculator, compare your approximation to fn in (e) to two decimal digits with the actual
value for n = 4, 5, 6, 10.

Exercise 24.9. Suppose A is a symmetric 4 × 4 matrix with distinct eigenvalues. Assume that −3 is an

eigenvalue for A, that |λ| < 3 for all other eigenvalues λ, and that w =




−3
4
2
1


 is an eigenvector for A

with eigenvalue −3. Give a good approximate expression for A10. (Hint: use Proposition 24.4.2.)

Exercise 24.10. This exercise investigates the applications of eigenvalues and eigenvectors to population
dynamics (see Section 16.1). The cases we consider will have a symmetric “transition matrix,” which is
rather special from the standpoint of realism (it means the proportion of birds from island i that move to
island j is the same as the proportion of birds from island j that move to island i), but it allows us to apply
the results of this section (especially the Spectral Theorem).

[In case restricting to the symmetric case seems unnatural to you (for example, it doesn’t include the
example of Section 16.1), be reassured that we can still use the ideas of eigenvalues and eigenvectors
to study the more general “non-symmetric” situations (and this is done in Math 104 and Math 113).
You may also wish to revisit Exercises 16.9 and 16.10 (with your new understanding of eigenvalues and
eigenvectors), which don’t require symmetry of M .]

Let M =



a b c
b d e
c e f


 be a 3 × 3 symmetric matrix with non-negative entries for which the sum of

the entries of each column (equivalently, each row) is 1. [Interpretation: the ij entry of M tells us the
proportion of birds starting on island j in a given year that move to island i in the next year.; islands 1, 2,
3 will also be called islands A, B, C respectively.]

(a) Check that



1/3
1/3
1/3


 is an eigenvector for M with eigenvalue 1. [Interpretation: if the birds are equally

distributed across the three islands in some year, they will remain so in the next year.]
(b) Assume that M satisfies the hypotheses of Proposition 24.4.2; that is, 1 is a “dominant eigenvalue”

in the sense that any other eigenvalue λ of M satisfies |λ| < 1, and the eigenvectors with eigenvalue

1 are all scalar multiples of



1/3
1/3
1/3


. Use Proposition 24.4.2 to give an approximation for Mk, where

k is large. Verify that for any starting populations PA, PB, PC , the population of each island after k
years (where k is large) is very close to PA+PB+PC

3
. [Interpretation: no matter the starting populations

of the three islands, after many years, each island will have roughly one-third of the birds (although
the individual birds are still moving each year).]

(c) Let M =



0 1 0
1 0 0
0 0 1


. Check that



0
0
1


 and




1
−1
0


 are eigenvectors for M , and determine their

respective eigenvalues. Explain why, in this case, M does not satisfy the hypotheses of Proposition
24.4.2. [Interpretation: in this case, depending on the starting populations of the islands, the long-term
populations may not converge to a “steady state.”]

Exercise 24.11. This exercise works out an explanation of the fact that if A is an n×n matrix, then A and
A⊤ have the same eigenvalues (which is remarkable since the eigenvectors have nothing to do with each
other).
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(a) For an n×nmatrixM , ifMv = 0 with v ̸= 0 then show that C(M⊤) ⊂ v⊥. (Hint: C(M⊤) consists
of vectors of the form M⊤x for x ∈ Rn.) In particular, dimC(M⊤) < n when N(M) ̸= 0.

(b) If an n× n matrix B satisfies N(B) = {0}, show that the n vectors Be1, . . . , Ben in Rn are linearly
independent, and so they span Rn; i.e., C(B) = Rn. (Hint:

∑n
j=1 cjBej = B(

∑n
j=1 cjej))

(c) Using (a) and (b), deduce that if N(M) is nonzero then N(M⊤) is nonzero.
(d) For M = A − λIn, check that M⊤ = A⊤ − λIn and deduce that λ is an eigenvalue of A precisely

when it is an eigenvalue of A⊤. (Hint: nonzero vectors in N(M) are exactly eigenvectors for A with
eigenvalue λ.)

Exercise 24.12. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):
(a) If {w1,w2} is an orthogonal basis of R2 consisting of eigenvectors for both 2× 2 matrices A and B

then AB = BA.

(b) The quadratic form qA(v) associated to the matrix A =

[
1 2
2 3

]
is positive-definite.
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25. The Hessian and quadratic approximation

In single-variable calculus we use the second derivative f ′′ of a function f : R → R to analyze when
a critical point (i.e., a point where f ′ vanishes) is a local maximum or local minimum. For any a at which
f ′ vanishes, if f ′′(a) < 0 then x = a is a local maximum for f (i.e., f(a) ≥ f(x) for x near a) and if
f ′′(a) > 0 then x = a is a local minimum for f (i.e., f(a) ≤ f(x) for x near a); this is the “second
derivative test” from single-variable calculus (which is inconclusive when f ′′(a) = 0).

We now work towards an analogue of this concept for a scalar-valued multivariable function f : Rn →
R. The main wrinkle, as we saw in Chapter 9 and Example 10.2.11, is that there are several second
derivatives at each a ∈ Rn (ultimately due to the greater range of possibilities for how to move around
in Rn for n > 1, in contrast with motion in R). For example, a function f(x, y) of 2 variables has three
associated “second derivatives” at each (a, b) ∈ R2.

We will arrange these second derivatives as the entries in a (symmetric) matrix (Hf)(a), called the
Hessian, and use it to make accurate approximations to f near a. In Chapter 26 we will use the Hes-
sian matrix of second derivatives to systematically find local maxima and local minima for multivariable
functions f : Rn → R (recovering the second-derivative test from single-variable calculus when n = 1).

By the end of this chapter, you should be able to:
• symbolically compute the Hessian (Hf)(a) at a ∈ Rn for a multivariable function f : Rn → R;
• determine the quadratic approximation to f near a ∈ Rn in terms of (∇f)(a) and (Hf)(a);
• draw approximate level curves of qA(x) for symmetric 2×2 matricesAwith nonzero eigenvalues,

and relate this to level curves of f(x, y) near a critical point a ∈ R2 with A = (Hf)(a).

25.1. Review of second partials. In Section 9.6 we introduced second partial derivatives. As a review
of computing second partials and the surprising fact called “equality of mixed partials” (Theorem 9.6.4),
let’s work out a 3-variable example to see this all in action.

Example 25.1.1. Consider f(x, y, z) = 5x2y − 7z3 + xe2y sin(z) + 2
y

z
− ln(xy + z). We have

fx = 10xy + e2y sin(z)− y

xy + z
, fy = 5x2 + 2xe2y sin(z) +

2

z
− x

xy + z
,

fz = −21z2 + xe2y cos(z)− 2
y

z2
− 1

xy + z
.

Thus (please check for yourself),

∂2f

∂y∂x
= 10x+ 2e2y sin(z)− (xy + z)− yx

(xy + z)2
,

∂2f

∂x∂y
= 10x+ 2e2y sin(z)− (xy + z)− xy

(xy + z)2
, (25.1.1)

so
∂2f

∂x∂y
=

∂2f

∂y∂x
by inspection. The intermediate steps for computing

∂2f

∂x∂y
and

∂2f

∂y∂x
are not the same

(one of them passes through computing fx, the other through computing fy, and the formulas for fx and
fy are rather different from each other), so it may be surprising that the final results coincide (as they must,
by Theorem 9.6.4).

Likewise,
∂2f

∂z∂x
= e2y cos(z) +

y

(xy + z)2
and

∂2f

∂x∂z
= e2y cos(z) +

y

(xy + z)2
(please check those

for yourself), so
∂2f

∂z∂x
=

∂2f

∂x∂z
by inspection. Finally (please check for yourself),

∂2f

∂z∂y
= 2xe2y cos(z)− 2

z2
+

x

(xy + z)2
,

∂2f

∂y∂z
= 2xe2y cos(z)− 2

z2
+

x

(xy + z)2
,
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so by inspection the equality of mixed partials
∂2f

∂z∂y
=

∂2f

∂y∂z
also holds. ■

One can also define and compute higher-order partial derivatives, such as
∂3g

∂y∂x∂w
,

∂4g

∂x∂y∂y∂w

for a function g(x, y, z, w). Equality of mixed partials holds in the higher-order case too (rearranging
the partial derivatives in any order); it can be deduced from the case of equality of second-order partials
in Theorem 9.6.4. We will not investigate those in this course, but they arise in an essential way in
multivariable power series (generalizing single-variable power series) and in work on partial differential
equations: these involve relations among partial derivatives of functions of more than one variable.

With equality of second-order mixed partials (and even for higher-order mixed partials) in our mathe-
matical toolkit, we introduce some shorthand: for f(x1, . . . , xn) and 1 ≤ i, j ≤ n we define the notation

fxixj
=

∂2f

∂xi∂xj
= fxjxi

(25.1.2)

and similarly gyxw =
∂3g

∂y∂x∂w
, gxyyw =

∂4g

∂x∂y∂y∂w
=

∂4g

∂x∂y2∂w
for any g(x, y, z, w), and so on.

Example 25.1.2. Much as differential equations in a single variable (typically “time”) pervade many ap-
plications in the natural sciences for which one studies how a system evolves, for phenomena involving
the interaction among several parameters one encounters partial differential equations.

Many equations in physics, economics, and engineering are partial differential equations; such equa-
tions also arise in computer science (especially related to images). Here are some famous examples:
• In the study of how heat dissipates through a region of space, if u(x, y, z, t) is the temperature

at time t at a point (x, y, z) then considerations with conservation of energy and Fourier’s law of
heat conduction lead to the heat equation

ut = α(uxx + uyy + uzz)

for a physical constant α > 0 (called the “thermal diffusivity”).
• For a class of financial instruments called “options”, which involve a bet on the future value of an

investment and have existed in various forms going back centuries, it was a long-standing problem
to figure out the right way to set their price. The solution, inspired by ideas from statistical physics
and leading to the 1997 Nobel Prize in economics, was given in terms of a partial differential
equation discovered in the early 1970’s by Fischer Black (then at the University of Chicago) and
Myron Scholes (then at MIT; he later moved to the University of Chicago, and then Stanford): if
V (S, t) is the “best” value for an option on a stock with price S at time t then the Black–Scholes
equation is

Vt + (1/2)σ2S2VSS = rV − rSVS
where σ is a measure of volatility of the stock and r is a certain “risk-free interest rate”. (An
explicit solution, called the Black–Scholes formula, was given by Black and Scholes; around the
same time a more robust solution was discovered by Robert C. Merton, then at MIT.) Curiously,
after a non-obvious change of variables this becomes the heat equation for 1 spatial dimension.

• The electric and magnetic forces arising from a distribution of electrical charge in space (which
may moreover be moving in time) is governed by a system of linked partial differential equations
called Maxwell’s equations. Even when expressed in terms of the efficient language of vector
calculus, the equations are quite a mouthful to write out (as one sees on various t-shirts).
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• In biology, the Fisher-KPP equation

ut = D(uxx + uyy) + ru(1− u/K)

governs the population density u(x, y, t) of an advantageous gene at time t and position (x, y)
(for constants D, r, and K related to the biological situation).

There are many more examples in physics (e.g., Schrödinger’s equation in quantum mechanics,
Einstein’s field equations in General Relativity), image processing and computer vision (the Perona–
Malik equation to smooth or restore images), fluid mechanics (the Navier–Stokes equation, also rele-
vant to weather forecasting, aerodynamics, and realistic-looking smoke in video games), and so on.

■

Remark 25.1.3. There is a surprising dichotomy between single-variable differential equations (called
“ordinary” differential equations and studied in Math 53) and partial differential equations. Although not
relevant to this course, it is worthwhile to be aware of the distinction: for ordinary differential equations
essentially all examples have solutions (with any initial condition) but for partial differential equations this
is not true. In fact, there is essentially only one general result guaranteeing existence of a solution for a
large class of examples: the equations expressing a time derivative (∂/∂t)kf in terms of a mixture of spa-
tial and time derivatives with total order at most k. This result, the (higher-order) Cauchy–Kovalevskaya25

Theorem, has a restrictive hypothesis (called “analyticity”) that limits its applicability, so most results on
partial differential equations focus on specific equations rather than on large classes of equations.

For example, existence and uniqueness for solutions to Einstein’s equations in General Relativity was
first proved in useful generality in 1951 by Choquet-Bruhat26, around 35 years after Einstein’s discovery of
the equations in 1915. Also, the existence and uniqueness (under physically reasonable initial conditions)
for solutions to the 2-dimensional case of the Navier-Stokes equations in fluid mechanics was first proved
in the late 1950’s largely by Ladyzhenskaya27; the 3-dimensional case remains wide open and is one of
the million-dollar Clay Millenium Problems.

25.2. The Hessian matrix. The role of the second derivative at a point, for multivariable functions
f : Rn → R, is played by an n × n (square) matrix called the Hessian. 28 For n = 1 this is the 1 × 1
matrix whose single entry is the scalar value of the second derivative from single-variable calculus.

Let’s discuss the case n = 2 before we move onto the general case. For a function f(x, y) of two
variables, there are four types of second partial derivative, two of which are equal:

∂2f

∂x2
,

∂2f

∂x∂y
=

∂2f

∂y∂x
,
∂2f

∂y2
.

25Sofia Kovalevskaya (1850-1891) was a Russian mathematician who worked on differential equations and mathematical
problems in mechanics. Her PhD thesis included the first general existence theorem for solvability of partial differential
equations (known earlier only in special cases), and during her academic career in Stockholm she produced prize-winning work
on rigid body mechanics. She began to learn about calculus at age 11 when her parents compensated for a shortage of wallpaper
by using her father’s old notes from his college calculus course as wallpaper for her room (a novel type of “applied math”).

26Yvonne Choquet-Bruhat (b. 1923) is a French mathematician who has had a prolific career of more than a half-century
at the forefront of mathematical physics. Her scientific work, which led to membership in the French Academy of Sciences in
1979, began in the early 1950’s when she established breakthrough existence theorems in mathematical General Relativity. She
worked in Princeton during 1951-52, where she discussed her ideas with Einstein, an experience that she summarizes in [C].

27Olga Ladyzhenskaya (1922-2004) emerged from tragic family circumstances in Stalinist Russia (her father was executed
as an “enemy of the people” when she was 15, due to which she was initially banned from university education) to become one
of the world’s leading experts in partial differential equations in the mid-20th century. She was on the shortlist for the Fields
Medal in 1958, and led a large research group in mathematical physics at the Steklov Institute in St. Petersburg, where she was
a Director for nearly 40 years.

28Otto Hesse (1811-1874) was a German mathematician who worked on algebraic geometry and the calculus of variations.
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We put these into a 2 × 2 matrix




∂2f

∂x2
∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂y2


 that we call the Hessian; this is symmetric precisely

because
∂2f

∂x∂y
=

∂2f

∂y∂x
. Each of the entries here is a function that we can evaluate at a common point in

R2 to get a 2× 2 matrix with scalar entries.
For example, if f(x, y) = x3 + xy2 − 5y4 then fx = 3x2 + y2 and fy = 2xy − 20y3, so fxx = 6x,

fxy = fyx = 2y, and fyy = 2x− 60y2. The Hessian at a point (x, y) = (a, b) is then
[
6a 2b
2b 2a− 60b2

]
.

Note that this is indeed symmetric. Now for the general case:

Definition 25.2.1. For a function f : Rn → R, the Hessian matrix (Hf)(a) of f at a point a ∈ Rn

is defined to be the matrix of second partial derivatives, with ij-entry equal to
∂2f

∂xi∂xj
(a) (so there is

nothing complicated to memorize: the entry label matches the second partial occurring there):

(Hf)(a) =




∂2f
∂x2

1
(a) ∂2f

∂x1∂x2
(a) ∂2f

∂x1∂x3
(a) . . . ∂2f

∂x1∂xn
(a)

∂2f
∂x2∂x1

(a) ∂2f
∂x2

2
(a) ∂2f

∂x2∂x3
(a) . . . ∂2f

∂x2∂xn
(a)

∂2f
∂x3∂x1

(a) ∂2f
∂x3∂x2

(a) ∂2f
∂x2

3
(a) . . . ∂2f

∂x3∂xn
(a)

...
...

... . . . ...
∂2f

∂xn∂x1
(a) ∂2f

∂xn∂x2
(a) ∂2f

∂xn∂x3
(a) . . . ∂2f

∂x2
n
(a)



.

Remark 25.2.2. The Hessian matrix (Hf)(a) of second partial derivatives is exactly (D(∇f))(a)
from Example 13.5.6, which is symmetric due to equality of mixed partials. In Section 25.3 the
Hessian (Hf)(a) will be used to analyze the behavior of f(x1, . . . , xn) near a point a, to be built upon
in Chapter 26 via the Spectral Theorem for the (symmetric!) Hessian when a is a critical point, and
in Section 25.4 its visual significance will be illustrated for the case n = 2.

Example 25.2.3. For F (x, y, z) = x2yz + cos(xy) + zey, the Hessian (HF )(x, y, z) is in (13.5.2). ■

Example 25.2.4. Let’s compute the gradient and the Hessian of the function f(x, y) = ln(xy − 1) at the

point (x, y) = (1, 2). The partial derivatives are fx =
y

xy − 1
and fy =

x

xy − 1
, so (∇f)(1, 2) =

[
2
1

]
.

From the first partial derivatives we compute the second partial derivatives:

fxx =
−y2

(xy − 1)2
, fyy =

−x2
(xy − 1)2

, fxy =
−1

(xy − 1)2.

Sticking these into a matrix yields

(Hf)(x, y) =

[
−y2/(xy − 1)2 −1/(xy − 1)2

−1/(xy − 1)2 −x2/(xy − 1)2

]
,

and then plugging in the point (1, 2) gives (Hf)(1, 2) =
[
−4 −1
−1 −1

]
. ■
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Remark 25.2.5. The Hessian arises in many real-world optimization problems. We discuss this in the
context of Newton’s method for optimization in Appendix I (useful for speeding up gradient descent
algorithms that arise in machine learning and solving non-linear problems in many scientific and
engineering contexts) and for applications in economics and the natural sciences in Chapter 26 (see
Examples 26.2.4, 26.2.5, and 26.4.3) and Appendix J. Section 25.3 discusses its role in improving
linear approximation via gradients, leading to the multivariable second derivative test in Chapter 26.

25.3. Using the Hessian for approximations.

Definition 25.3.1. The quadratic approximation to f : Rn → R near a ∈ Rn is the expression on the
right side of

f(a+ h) ≈ f(a) + (∇f)(a) · h+
1

2
h⊤((Hf)(a))h (25.3.1)

(with small h), where the last term uses matrix-vector products; this refines “linear approximation”
via the gradient from (11.1.2).

(The single-variable analogue is f(a + h) ≈ f(a) + f ′(a)h + 1
2
f ′′(a)h2, so (Hf)(a) plays the role

that f ′′(a) does; for n = 1 the matrix (Hf)(a) is the 1× 1 matrix [f ′′(a)].)

In Section 25.5 we explain where this approximation comes from, for those who are interested. It is
the “degree 2” part of a multivariable Taylor series for f at a (there is a general theory of multivariable
power series, which we are not discussing in this course), so the factor 1/2 appears for the same reason
that 1/2! = 1/2 appears in the quadratic part of a Taylor series in single-variable calculus.

Example 25.3.2. Continuing Example 25.2.4, let’s use the gradient and Hessian to estimate the value of
f(x, y) = ln(xy − 1) at (1.2, 1.8) = a+ h for a = (1, 2) and h = (0.2,−0.2).

We already computed that (∇f)(1, 2) =
[
2
1

]
and (Hf)(1, 2) =

[
−4 −1
−1 −1

]
. Also f(1, 2) = 0, so for

all small (h, k) ∈ R2 the quadratic approximation to f(1 + h, 2 + k) is

f(1 + h, 2 + k) ≈ 0 +

[
2
1

]
·
[
h
k

]
+

1

2

[
h
k

]⊤ [−4 −1
−1 −1

] [
h
k

]
= 2h+ k +

1

2

(
−4h2 − 2hk − k2

)
.

To estimate f(1.2, 1.8) we take (h, k) = (0.2,−0.2) to get f(1.2, 1.8) ≈ 0.14. In reality, f(1.2, 1.8) =
0.1484 . . . ; the agreement is much better than the linear approximation, which gives f(1.2, 1.8) ≈ 0.2. ■

Example 25.3.3. Let f(x, y) = cos(x/y). We use the gradient and Hessian to estimate the value of f(x, y)
near a = (0, 1). By computing partial derivatives of f we obtain that

(∇f)(x, y) =
[
−(1/y) sin(x/y)
(x/y2) sin(x/y)

]
.

Computing partial derivatives of each entry in the gradient, we obtain second partial derivatives and hence:

(Hf)(x, y) =

[
− cos(x/y)/y2 (1/y3)(y sin(x/y) + x cos(x/y))

(1/y3)(y sin(x/y) + x cos(x/y)) −(x/y4)(2y sin(x/y) + x cos(x/y))

]
.

Thus, the quadratic approximation

f(a+ h) ≈ f(a) + (∇f)(a) · h+
1

2
h⊤((Hf)(a))h
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at a = (0, 1) says that for (h1, h2) near (0, 0),

cos(h1/(1 + h2)) = f(h1, 1 + h2) ≈ f(0, 1) + (∇f)(0, 1)
[
h1
h2

]
+

1

2

[
h1 h2

]
((Hf)(0, 1))

[
h1
h2

]

= 1 +

[
0
0

]
·
[
h1
h2

]
+

1

2

[
h1 h2

] [−1 0
0 0

] [
h1
h2

]

= 1 + 0− 1

2
h21

= 1− 1

2
h21

■

Example 25.3.4. The scale on which the quadratic approximation applies can be very small, even for an
innocuous-looking function. Consider f(x, y) = 2x2 − 5xy + 2y3 + 3x2y + 2y2 whose surface graph
across the square region of points (x, y) with −2 ≤ x, y ≤ 2 is shown in Figure 25.3.1 (the height of the
graph is on a rather condensed scale, since f(−2, 2) = 76).

−2 −1 0
1

2−2

0

2

−50

0
50

••

−2 −1 0
1

2−2

0

2

−50

0
50

••

FIGURE 25.3.1. Surface graph of f(x, y) = 2x2−5xy+2y3+3x2y+2y2 with two rather
close critical points, one a local minimum and one a saddle point; which is which? The
white curves in the picture on the right are level curves for f .

There are two critical points for f , corresponding to two red dots in the surface graph: one red dot
lies over P = (0, 0), and the other lies over Q = (a, b) ≈ (0.137369, 0.131586). (To be precise, a is the
unique real root of 36x3 − 120x2 + 125x− 15 and b = 4a/(5− 6a): the latter expresses that fx(a, b) = 0
since fx = 4x − (5 − 6x)y with a ̸= 0, and plugging this into the equation fy(a, b) = 0 gives the cubic
condition on a ̸= 0.) It is hard to tell from the scale of the picture that the local behavior of f near these
points is completely different: P is a saddle point and Q is a local minimum.

In Chapter 26 we will learn systematic techniques based on eigenvalues of Hessians to figure out the
behavior near a critical point, and we will revisit this example and zoom in by a factor of 25 to see what is
going on near these points. In particular, we’ll see the very different nature of the contour plots sufficiently
near each of these points. (If you want to kill the suspense, see Example 26.4.5 now.) The main lesson is
that the usefulness of the quadratic approximation discussed above may require working on an extremely
small region near a critical point, as in this example (where the types of the quadratic approximation at the
saddle point P and local minimum Q are very different). ■
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25.4. Geometry of contour plots near critical points. The quadratic approximation (25.3.1) can be
used to understand the behavior of a function f : R2 → R near a critical point (e.g., local maximum, local
minimum, or saddle point?) in terms of the contour plot near such a point. The link between the geometry
of the contour plot near such a point and the behavior of f near there was suggested in Example 10.2.13,
where it seemed that the level sets of f near a critical point are approximate ovals near a local extremum
and are approximate hyperbolas approaching an “X” near a saddle point. The quadratic approximation
makes it possible to understand that observation in more precise terms, as we now explain.

The basic idea is as follows. Suppose a ∈ R2 is a critical point of f : R2 → R, so (∇f)(a) = 0.
Hence, the gradient term in the quadratic approximation (25.3.1) disappears, so for h near 0 we have

f(a+ h) ≈ f(a) +
1

2
q(Hf)(a)(h),

where qA(x) is the quadratic form x⊤Ax for a symmetric n × n matrix A and x ∈ Rn. Hence, for a
scalar c near f(a), the level curve f(a + h) = c for h near 0 is well-approximated by the level curve
f(a) + (1/2)q(Hf)(a)(h) = c for h near 0, or equivalently is by q(Hf)(a)(h) = 2(c− f(a)) for h near 0.

In other words, up to replacing the scalar c ≈ f(a) with the scalar 2(c − f(a)) ≈ 0 and shifting the
coordinate system to be centered at (0, 0) rather than at a, level curves for f near a are approximated
by level curves for q(Hf)(a)(x) near (0, 0). Thus, the level curves of f near a critical point a ∈ R2 are
well-approximated by the level curves of the quadratic form q(Hf)(a) near the origin. This motivates:

Goal. For a symmetric 2× 2 matrix A, describe the level curves of qA(x) = x⊤Ax for x near (0, 0).

We shall use geometric information from the Spectral Theorem, such as orthogonal eigenvectors and their
associated eigenvalues, to achieve this Goal. In Chapter 26 that will be applied to A = (Hf)(a) to turn
such geometric information into a description of how f : R2 → R behaves near a critical point a (and
further use of the Spectral Theorem applied to Hessians will provide a way to analyze n-variable functions
near critical points for any n). For the rest of this section, we focus on the preceding Goal that we have
seen is well-motivated by the task of understanding how 2-variable functions behave near critical points.

As a preliminary step, we discuss the graphs of certain equations as hyperbolas, determining their
asymptotes and where they meet the coordinate axes. There is no need to memorize any general formulas,
since the numerical example will illustrate how to work out the geometry in each case from scratch.

Example 25.4.1. Let’s figure out the graph of 4t21−3t22 = 7. As for any equation of the formAt21−Bt22 = C
with A,B > 0 and C ̸= 0, this is a hyperbola aligned with the coordinate axes.

`+`−

t1

t2

FIGURE 25.4.1. A sketch of 4t21− 3t22 = 7, with asymptotes ℓ± as dotted lines a bit nearer
to the t2-axis than to the t1-axis, where ℓ± is the line t2 = ±

√
4/3 t1 with slope ±

√
4/3.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 568



We shall use basic algebra to get the picture in Figure 25.4.1 (though we will only care about some
qualitative features that can be determined by human thought, not needing any numerical precision from
a computer). To determine algebraically which of the axis lines it crosses, we set each tj equal to 0 in the
equation and try to solve for the remaining variable. If we set t1 = 0 (“t2-axis”) we get −3t22 = 7, which
is impossible due to the incompatible signs of the two sides. So the graph doesn’t meet that line. If we set
t2 = 0 (“t1-axis”) then we get 4t21 = 7, or t1 = ±

√
7/4. So the graph cuts the t1-axis in the two points

t1 = ±
√

7/4 that lie somewhere between ±1 and ±2 (since 7/4 is between 1 and 4 = 22). We shall next
work out the precise asymptotes (i.e., the slopes of those two lines), though for qualitative purposes we
will only care if the slopes have absolute value bigger or smaller than (or equal to) 1.

To find the asymptotes, which are lines that approximate the curve very well far from the origin, divide
the equation “4t21 − 3t22 = 7” by either t21 or t22; both will lead to the same equations for the asymptotes
(written either as t2 = ±mt1 for some m ̸= 0 or as t1 = ±m′t2 for m′ = 1/m). If we divide by t22 then
we get 4(t1/t2)2 − 3 = 7/t22 ≈ 0 for |t2| large, so 4(t1/t2)

2 ≈ 3 or equivalently t1/t2 ≈ ±
√

3/4. This
gives us the asymptotes as t1 = ±

√
3/4 t2 or equivalently t2 = ±

√
4/3 t1. Hence, the slopes are ±

√
4/3

if we write the t1-axis horizontally and the t2-axis vertically as in Figure 25.4.1.
Since | ±

√
4/3| > 1 (as 4/3 > 1), these asymptotes are nearer to the t2-axis than to the t1-axis; think

of the lines t2 = ±2t1 and t2 = ±(1/2)t1 to remember which coordinate axis a line through the origin is
“nearer” depending on whether the slope has absolute value> 1 or< 1 (or = 1). The important qualitative
features are that the hyperbola crosses the t1-axis between ±1 and ±2, and the asymptotes are nearer to
the t2-axis than to the t1-axis (since the slopes ±

√
4/3 are bigger than 1 in absolute value). ■

Next, we use the method of the preceding example to figure out the geometry of the level sets for a
specific indefinite 2-variable quadratic form; these level sets will be “tilted hyperbolas”.

Example 25.4.2. For the symmetric matrix A =

[
1 2
2 −2

]
we seek to plot the level sets

qA(x, y) = x2 + 4xy − 2y2 = c

for nonzero scalars c. Since detA = −6 < 0, this is indefinite; for such cases the level sets will always be
hyperbolas (as we shall soon see quite concretely). In Example 24.2.9 we worked out an orthogonal basis

of eigenvectors for A: w1 =

[
2
1

]
, w2 =

[
−1
2

]
with respective eigenvalues λ1 = 2 and λ2 = −3.

To maintain accurate contact with geometry, consider the unit eigenvectors w′
i = wi/∥wi∥. The pair

{w′
1,w

′
2} is an orthonormal basis, so writing vectors in terms of these is tantamount to applying a rotation

to R2 that moves the standard orthonormal basis {e1, e2} into this new one. In other words, by writing
v = t′1w

′
1 + t′2w

′
2 for v ∈ R2, such (t′1, t

′
2)-coordinates correspond to a grid that is a rotated version of

the standard one. When qA is expressed in terms of these new coordinates, by the diagonalization formula
(24.2.2) the expression will have no cross-term, so the geometry will be easier to understand than in the
original expression with (x, y)-coordinates.

To be specific, when (24.2.2) is applied with these unit eigenvectors we obtain

qA(t
′
1w

′
1 + t′2w

′
2) = λ1t

′
1
2
+ λ2t

′
2
2
= 2t′1

2 − 3t′2
2

where λ1 = 2 is the eigenvalue for w′
1 and λ2 = −3 is the eigenvalue for w′

2. The opposite signs of the
eigenvalues, which are the coefficients on the right side, tell us as in Example 25.4.1 that the level curves
of the quadratic form are hyperbolas whose axes of symmetry are the t′1-axis and t′2-axis. These two axes
are the perpendicular lines spanned by w′

1 and by w′
2, or equivalently by w1 and by w2.

We now work out the sketch of the level set qA(x, y) = c for two values of c with opposite signs, say
c = 5 and c = −4. Eventually we will arrive at the picture shown in Figure 25.4.2.
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−4

−4

−4−4

5

5

w2

w1

−w2

−w1

w′2

w′1

−w′2

−w′1

−2 0 2

−2

0

2

FIGURE 25.4.2. The level sets x2 + 4xy − 2y2 = 5 (blue) and x2 + 4xy − 2y2 = −4 (red).

As we have discussed, in (t′1, t
′
2)-coordinates the quadratic form qA(x, y) = x2 + 4xy − 2y2 becomes

2t′1
2 − 3t′2

2, so the level set x2 + 4xy − 2y2 = 5 is equivalent to

2t′1
2 − 3t′2

2
= 5;

this is a hyperbola that meets the “t′1-axis" (i.e., the line t′2 = 0, which is span(w′
1)) at the points (t′1, t

′
2) =

(±
√

5/2, 0) (i.e., ±
√

5/2w′
1) with ±

√
5/2 between ±1 and ±2 (since 5/2 is between 1 and 4 = 22). It

does not meet the t′2-axis (the line t′1 = 0, which is span(w′
2)) since −3t′2

2 = 5 has no solution in R.

Arguing similarly to what we did in Example 25.4.1, the asymptotes are t′2 = ±
√

2/3 t′1 with “slopes”
±
√

2/3 after tilting one’s head to make the t′1-axis horizontal and the t′2-axis vertical. Since these slopes
are < 1 in absolute value (as 2/3 < 1), the asymptotes are nearer to the t′1-axis than to the t′2-axis. In
Figure 25.4.2 the level curve qA = 5 is drawn in blue with asymptotes as the dotted lines, nearer to the
t′1-axis through w′

1 and w1 than to the t′2-axis through w′
2 and w2.

When the equation x2 + 4xy − 2y2 = −4 is written in terms of (t′1, t
′
2)-coordinates it becomes

2t′1
2 − 3t′2

2
= −4.

This is a hyperbola that meets the t′2-axis (i.e., the line t′1 = 0, which is span(w′
2)) at the points (t′1, t

′
2) =

(0,±
√

4/3) (i.e., ±
√

4/3w′
2). The two branches approach the asymptotes t′1 = ±

√
3/2 t′2, which are

exactly the same as the lines t′2 = ±
√

2/3 t′1 that were the asymptotes we computed for the level set
qA(x, y) = 5. The hyperbola qA = −4 is sketched in red in Figure 25.4.2.

There is nothing special about the values c = 5 and c = −4 considered above. What really matters in
such cases for which the eigenvalues have opposite signs (as above) is that: (i) the equation written in the
reference frame of orthonormal eigenvectors for A has no cross-term, and (ii) the asymptotes are “nearer”
to the line spanned by the eigenvector whose eigenvalue is smaller in absolute value (as can be worked
out by computing the asymptotes in a typical example, such as 2t′1

2 − t′2
2 = c, to remind oneself what the

pattern is without having to memorize anything). ■

Example 25.4.3. Now we turn to a definite quadratic form q(x, y), the level sets of which are always
(possibly tilted) ellipses centered at the origin. Consider the quadratic form qA(x, y) = 13x2 − 6xy + 5y2

associated withA =

[
13 −3
−3 5

]
. This matrix has trace 13+5 = 18 and determinant (13)(5)−(−3)(−3) =

65 − 9 = 56 > 0, so it is definite and its characteristic polynomial is PA(λ) = λ2 − 18λ + 56 =
(λ − 14)(λ − 4). (You can use the quadratic formula to figure out that the roots are 4 and 14 if you don’t
eye-ball the factorization.)
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To find corresponding eigenvectors we want to find nonzero solutions to each of Ax = 14x and
Ax = 4x, by writing each as a pair of 2 equations in 2 unknowns. For Ax = 14x we get the eigenvector

w1 =

[
3
−1

]
for the eigenvalue λ1 = 14, and for Ax = 4x we get the eigenvector w2 =

[
1
3

]
for the

eigenvalue λ2 = 4. Let w′
i = wi/∥wi∥ be the associated unit eigenvectors. Writing vectors in terms of

{w′
1,w

′
2} as t′1w

′
1 + t′2w

′
2, the diagonalization formula (24.2.2) yields

qA(t
′
1w

′
1 + t′2w

′
2) = λ1t

′
1
2
+ λ2t

′
2
2
= 14t′1

2
+ 4t′2

2
.

The level sets qA(x, y) = c written in (t′1, t
′
2)-coordinates therefore have the form 14t′1

2 + 4t′2
2 = c,

which are ellipses (for c > 0). These ellipses are tilted relative to the x-axis and y-axis, being aligned with
the coordinate axes for the (t′1, t

′
2)-coordinate system, which is to say the lines span(w′

1) = span(w1) and
span(w′

2) = span(w2). Since the positive coefficient of t′2
2 is smaller (4 < 14), the ellipse is longer along

the t′2-axis, which is to say it is longer along the span of w2. This is shown in Figure 25.4.3, which shows
the orthogonal eigenvectors, the associated unit eigenvectors, and the ellipse level curves aligned along
their directions.

5

3
0

3
0

30

20

2
0

20
1
0

1
0

w2

w1

−w2

−w1
w′

2

w′
1

−4 −2 0 2 4
−4

−2

0

2

4

FIGURE 25.4.3. Some of the level sets of 13x2 − 6xy + 5y2.

The general pattern in the definite case (so eigenvalues both positive, or both negative) goes exactly as
in this example, by the same reasoning: the line spanned by the eigenvector whose eigenvalue has smaller
absolute value is the direction along which the ellipse is longer. ■

Summary. Let’s reformulate the discussion at the start of this section in light of the preceding eigen-
vector analysis applied to symmetric 2×2 Hessian matrices at critical points. If f(x, y) has a critical point
a at which the Hessian (Hf)(a) has eigenvalues λ1, λ2 ̸= 0 then in a typically tilted reference frame
given by the orthogonal eigenlines the quadratic approximation to f(x) near a has level sets

λ1t
′
1
2
+ λ2t

′
2
2
= 2(c− f(a)). (25.4.1)

These are good approximations to the level sets f(x) = c for x near a (up to tilting one’s head), so:
(i) these level sets for f near a look like hyperbolas when λ1, λ2 have opposite signs (indefinite Hessian),

with asymptotes nearer to the eigenline for (Hf)(a) whose eigenvalue has smaller absolute value,
(ii) these level sets for f near a look like ellipses when λ1, λ2 have the same sign (definite Hessian), with

the longer direction of the ellipse along the line spanned by the eigenvector whose eigenvalue has
smaller absolute value.
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In Chapter 26, algebraic considerations with eigenvalues will be combined with the preceding geomet-
ric lessons to conclude that when the eigenvalues λ1, λ2 are both nonzero then cases (i) and (ii) correspond
exactly to two possibilities for the behavior of f near a:
(i′) when the (nonzero) eigenvalues have opposite signs (the “hyperbola” case) then f has a saddle point

at a;
(ii′) when the (nonzero) eigenvalues have the same sign (the “ellipse” case) then f has a local extremum

at a.
In the latter case, we can distinguish local maxima from local minima either by inspecting numerically
how the values of f near a behave – increasing or decreasing – as we approach a along a single direction,
or (more conceptually) by computing the common sign of the eigenvalues of (Hf)(a).

As will be explained in detail in Chapter 26 (with examples and an adaptation to the general multivari-
able case), the case of two positive eigenvalues corresponds to local minima and the case of two negative
eigenvalues corresponds to local maxima (reminiscent of the sign cases for the single-variable second
derivative test).

Since the quadratic approximation is a good approximation to f(x) for x near a, we conclude that the
presence of such critical points and their local nature (saddle point, local maximum, or local minimum)
can be determined by visually inspecting a contour plot to find nested collections of approximate ellipses
around a point and nested collections of approximate hyperbolas around a point. Here is an example that
illustrates all of these possibilities.

Example 25.4.4. For f(x, y) = x3 − 3(x2 + y2) + y3, its surface graph is given in Figure 25.4.4.

0
2 0

2

−5

0
•

•

•

•

FIGURE 25.4.4. Graph of f(x, y) = x3 − 3(x2 + y2) + y3, with dark dots at the local
maximum (0, 0) and saddle points (0, 2) and (2, 0), and a yellow dot at the local minimum
(2, 2).

This surface graph shows a local maximum, a local minimum, and two saddle points. We shall now
recover that information by computing with gradients and Hessians, and interpret the outcome in terms of
a contour plot.

The gradient of f is

∇f =

[
3x2 − 6x
3y2 − 6y

]
=

[
3x(x− 2)
3y(y − 2)

]
,

so there are 4 critical points: (0, 0), (0, 2), (2, 0), (2, 2). Computing second partials, we get the general
Hessian

Hf =

[
6x− 6 0

0 6y − 6

]
,
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so at the 4 critical points the Hessian comes out as follows:

(Hf)(0, 0) =

[
−6 0
0 −6

]
, (Hf)(2, 2) =

[
6 0
0 6

]
, (Hf)(0, 2) =

[
−6 0
0 6

]
, (Hf)(2, 0) =

[
6 0
0 −6

]
.

The corresponding quadratic forms q(Hf)(a)(h) for critical points a are

−(6h21 + 6h22), 6h21 + 6h22, −6h21 + 6h22, 6h21 − 6h22;

the corresponding quadratic approximations f(a+ h) ≈ f(a) + (1/2)q(Hf)(a)(h) at critical points a are

f(h1, h2) ≈ −(3h21 + 3h22), f(2 + h1, 2 + h2) ≈ −8 + 3h21 + 3h22

f(h1, 2 + h2) ≈ −4− 3h21 + 3h22, f(2 + h1, h2) ≈ −4 + 3h21 − 3h22
for (h1, h2) near (0, 0).

We conclude that the contour plot near (0, 0) and (2, 2) must consist of approximate ellipses since the
eigenvalues have the same sign, and the contour plot near (2, 0) and (0, 2) must consist of approximate
hyperbolas approaching an “X” since the eigenvalues have opposite signs. This is all encoded in the
contour plot shown in Figure 25.4.5.
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FIGURE 25.4.5. Contour plot of f(x, y) = x3 − 3(x2 + y2) + y3. Note the four critical points.

Note that the eigenvalues for the Hessian at (0, 0) are negative and those for the Hessian at (2, 2) are
positive. The surface graph in Figure 25.4.4 correspondingly exhibits a local maximum at (0, 0) and a
local minimum at (2, 2), and saddle points at the other two critical points (whose Hessians we saw have
eigenvalues with opposite signs). ■

25.5. Where does the quadratic approximation (25.3.1) come from? As a warm-up, let’s con-
sider the case n = 1, which is to say a function f : R → R as in single-variable calculus. Suppose
we want to find some quadratic polynomial

Q(h) = A+Bh+ Ch2 (25.5.1)

that is a good approximation to f(a+ h) when h ≈ 0. How should we pick A,B,C?
A reasonable first guess is to try to match things when h = 0:

f(a+ 0) = Q(0), which says f(a) = A+B(0) + C(0)2 = A+ 0 + 0 = A.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 573



That leaves B and C undetermined. To get a better approximation, let’s try to match first derivatives

f ′(a+ 0) = Q′(0), which says f ′(a) = B + 2C(0) = B + 0 = B

(we have used that the derivative of A + Bh + Ch2 with respect to h is B + 2Ch), and then second
derivatives

f ′′(a+ 0) = Q′′(0), which says f ′′(a) = 2C

(we have used that the second derivative of A+Bh+ Ch2 with respect to h is 2C).
So we have shown that A = f(a), B = f ′(a), C = f ′′(a)/2. This gives the approximation

f(a) + f ′(a)h+ f ′′(a)
h2

2
for f(a+ h), recovering what one learns with Taylor series in single-variable calculus.

This idea will work for functions f : Rn → R with any n, to find a good quadratic approximation
to f near a point a ∈ Rn. To make things more concrete, we treat the case of a function in two
variables f(x, y), and work out an approximation near a point (a, b).

A quadratic approximation would look like this:

f(a+ h1, b+ h2) ≈ Q(h1, h2) = A+ (B1h1 +B2h2) + (C11h
2
1 + C12h1h2 + C22h

2
2)

for some coefficients A,B1, B2, C1, C12, C22 to be determined (compare this to (25.5.1)). We can
write this in matrix language as follows:

Q(h1, h2) = A+

[
B1

B2

]
·
[
h1
h2

]
+

[
h1
h2

]⊤ [
C11 C12/2
C12/2 C22

] [
h1
h2

]
. (25.5.2)

(Please expand out the right side to see that it really does equal Q(h1, h2); to have the symmetric
matrix at the end with a common entry in the upper-right and lower-left, that entry must be half of the
coefficient of h1h2 in the definition of Q.)

As in the single-variable case, we will try to solve for all the unknowns on the right side – namely
A,B1, B2, C11, C12, C22– by differentiating with respect to h1 and h2 and then setting h1 = h2 = 0.
That is, in order that f(a+ h1, b+ h2) ≈ Q(h1, h2) up to “second order” for all small h1, h2, we want
to have:

f(0, 0) = Q(0, 0),
∂f

∂h1
(a+ h1, b+ h2)

∣∣∣
(h1,h2)=(0,0)

=
∂Q

∂h1
(0, 0),

∂f

∂h2
(a+ h1, b+ h2)

∣∣∣
(h1,h2)=(0,0)

=
∂Q

∂h2
(0, 0),

∂2f

∂h21
(a+ h1, b+ h2)

∣∣∣
(h1,h2)=(0,0)

=
∂2Q

∂h21
(0, 0),

∂2f

∂h22
(a+ h1, b+ h2)

∣∣∣
(h1,h2)=(0,0)

=
∂2Q

∂h22
(0, 0),

∂2f

∂h1∂h2
(a+ h1, b+ h2)

∣∣∣
(h1,h2)=(0,0)

=
∂2Q

∂h1∂h2
(0, 0).

The evaluations of (a + h1, b + h2) at (h1, h2) = (0, 0) are just evaluations at (a, b), and by change
of dummy variable the values at (h1, h2) = (0, 0) of the partial derivatives of f(a + h1, b + h2) with
respect to h1 and/or h2 are the values at (a, b) of the partial derivatives of f(x, y) with respect to x
and/or y. In this way we can clean up the desired equalities a bit:

f(a, b) = Q(0, 0), fx(a, b) =
∂Q

∂h1
(0, 0), fy(a, b) =

∂Q

∂h2
(0, 0), (25.5.3)

fxx(a, b) =
∂2Q

∂h21
(0, 0), fyy(a, b) =

∂2Q

∂h22
(0, 0), fxy(a, b) =

∂2Q

∂h1∂h2
(0, 0). (25.5.4)
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But the right sides can be computed explicitly from the defining expression

Q(h1, h2) = A+ (B1h1 +B2h2) + (C11h
2
1 + C12h1h2 + C22h

2
2),

namely:

Q(0, 0) = A,
∂Q

∂h1
Q(0, 0) = B1,

∂Q

∂h2
(0, 0) = B2,

∂2Q

∂h21
(0, 0) = 2C11,

∂2Q

∂h1∂h2
(0, 0) = C12,

∂2Q

∂h22
(0, 0) = 2C22.

Plugging these into the expressions in (25.5.3) and (25.5.4), we obtain the constraints

f(a, b) = A, fx(a, b) = B1, fy(a, b) = B2, fxx(a, b) = 2C11, fxy(a, b) = C12, fyy(a, b) = 2C22.

These express the unknown coefficients in terms of values of f and its partial derivatives up to second
order:

A = f(a, b), B1 = fx(a, b), B2 = fy(a, b),

C11 = (1/2)fxx(a, b), C12 = fxy(a, b), C22 = (1/2)fyy(a, b).

Plugging these into (25.5.2) yields exactly (25.3.1) in the case of a two-variable function f(x, y); in
particular, we have the factor 1/2 throughout the 2×2 matrix in the quadratic part of the approximation
(just as half of the Hessian shows up in (25.3.1)).
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Chapter 25 highlights (links to highlights in previous and next chapters)

Notation Meaning Location in text
(Hf)(a) Hessian matrix for f : Rn → R at a ∈ Rn Definition 25.2.1

Concept Meaning Location in text

Hessian matrix of f : Rn → R matrix whose ij-entry is fxixj
Definition 25.2.1

quadratic approximation to f : Rn → R
near a ∈ Rn

refinement of gradient linear approxima-
tion, using (1/2)q(Hf)(a)(h) to get better
approximation to f(a+ h) for small h

Definition 25.3.1

Result Meaning Location in text

symmetry of Hessian matrix for f : Rn → R and a ∈ Rn, the matrix
(Hf)(a) is symmetric

Remark 25.2.2

for n = 2, eigenvector information for
Hessian controls contour plot near critical
point a

if eigenvalues have same sign then plot near
a is approximate nested ellipses aligned with
the eigenvector directions; if eigenvalues
have opposite signs then plot near a is ap-
proximate nested hyperbolas aligned with the
eigenvector directions

Section 25.4 from
(25.4.1) onwards

Skill Location in text

compute Hessian of f : Rn → R symbolically and at specific a ∈ Rn Example 25.2.4

compute quadratic approximation to f : Rn → R near a ∈ Rn Examples 25.3.2, 25.3.3

for n = 2, use eigenvectors for symmetric 2× 2 matrix A and the signs
of the eigenvalues to sketch qualitatively correct level curves for qA(x)
(nested ellipses or hyperbolas aligned with orthogonal lines spanned by
eigenvectors: ellipse is longer in direction of such a line whose eigen-
value has smaller absolute value, hyperbola asymptotes are “closer” to
such a line whose eigenvalue has smaller absolute value)

Examples 25.4.2, 25.4.3
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25.6. Exercises. (links to exercises in previous and next chapters)

Exercise 25.1. The wave equation describes how waves (of water, sound, light, etc.) propagate. In the
2-variable case, this is the equation

∂2f

∂t2
− c2

∂2f

∂x2
= 0,

for a function f(x, t) that is interpreted as the amplitude of a wave, where the constant c > 0 is called
the “speed of wave propagation”. (When f is the amplitude of an electromagnetic wave, c is the speed of
light.)
(a) Show that for any fixed numbers A and B, any function f(x, t) = A sin(x − ct) + B sin(x + ct)

satisfies the wave equation. (Do not use addition laws for sin in your calculation; it is best to treat
each function sin(x± ct) as a single entity.)

(b) More generally than (a), check that for any (sufficiently differentiable) function h of one variable, the
function f(x, t) = Ah(x− ct) +Bh(x+ ct) satisfies the wave equation.

(c) Show that f(x, t) = sin(x) sin(ct) can be written in the form in (b) with A = 1/2, B = −1/2, and
h = cos (so this f also satisfies the wave equation, as could also be checked directly, but we’re not
asking you to do that).

Exercise 25.2. An important partial differential equation in physics is the heat equation (for studying the
flow of heat in the air, or in a metal plate, and so on). In the case of heat flowing in a plane as time passes,
this is the equation

ft = fxx + fyy

for a function f(x, y, t) (where t corresponds to time, and f is a measure of heat intensity).
(a) Check that for all real numbers λ and µ, the function

f(x, y, t) = e−(λ2+µ2)t sin(λx) sin(µy)

is a solution of the heat equation. (This function tends to zero at an exponential rate as t → ∞, as is
the case for many solutions to the heat equation.)

(b) Show that if f1(x, y, t), f2(x, y, t), . . . , fN(x, y, t) are solutions to the heat equation then so is any
“linear combination” a1f1(x, y, t) + a2f2(x, y, t) + · · ·+ aNfN(x, y, t) for scalars a1, . . . , aN .

(c) Consider a 1-dimensional version, so the heat equation becomes ft = fxx. Heat conduction in a metal
rod of length L is modeled by solutions of the heat equation defined for 0 ≤ x ≤ L and t ≥ 0.

It is useful to seek solutions f(x, t) for which f(x, 0) is equal to some specified function f0(x) (“initial
conditions”) and f(0, t) = 0 = f(L, t) for all t ≥ 0 (“boundary conditions”). This corresponds to
specifying the initial heat distribution at time t = 0 (given by f0) and demanding that the ends of the
rod (x = 0, L) be held at a fixed temperature (which we take to be 0 here for simplicity) for all time.

For f0(x) = A1 sin(πx/L) + A2 sin(2πx/L) + . . . + AN sin(Nπx/L) with numbers A1, . . . , AN ,
show that the function

f(x, t) = A1e
−π2t/L2

sin(πx/L) + A2e
−4π2t/L2

sin(2πx/L) + . . .+ ANe
−N2π2t/L2

sin(Nπx/L)

is a solution to the heat equation satisfying the initial condition f(x, 0) = f0(x) and the boundary
conditions f(0, t) = 0 = f(L, t) for all t. (Hint: to make your calculations clean, first treat the case
f0(x) = sin(kπx/L) and f(x, t) = e−k2π2t/L2

sin(kπx/L) for k = 1, 2, . . . , N , and once that is done
then pass to a “linear combination” of such expressions as above, using the idea as in (b).)

Remark. When t is large, the first term of this solution is much larger than the other terms and the
corresponding first term A1 sin(πx/L) in the initial function f0 is the one in f0 that oscillates the least
quickly. This part of f0 thereby provides the dominant contribution to the solution for large t.
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Historical note. It was a great insight of the French mathematician Joseph Fourier that essentially
every (reasonable) function f0(x) defined on [0, L] can be written as an infinite sum of terms

f0(x) = A1 sin(πx/L) + A2 sin(2πx/L) + . . . ,

though analyzing precisely how this series converges can be a very tricky matter in general. Such
expansions are the beginning of a large and very useful field called Fourier analysis. Fourier was
motivated by the heat equation and he used this expression for f0 to write down a solution of the
general problem posed above, namely

f(x, t) = A1e
−π2t/L2

sin(πx/L) + A2e
−4π2t/L2

sin(2πx/L) + . . .

Exercise 25.3. Let f(x, y) = ln(x2 + y).
(a) Compute (∇f)(x, y) and (Hf)(x, y) symbolically (please check your work with others to catch er-

rors).
(b) Compute the quadratic approximation f(1 + h, k) to f at (1, 0) (with h, k near 0).
(c) Use your answer in (b) to estimate f(1.1, 0.2) and compare with the corresponding linear approx-

imation (i.e., omitting the Hessian term) and the “exact” answer on a calculator. Is the quadratic
approximation more accurate than the linear approximation?

Exercise 25.4. Let f(x, y) = e3x−2y.
(a) Compute (∇f)(x, y) and (Hf)(x, y) symbolically (please check your work with others to catch er-

rors).
(b) Compute the quadratic approximation f(2 + h, 3 + k) to f at (2, 3) (with h, k near 0).
(c) Use your answer in (b) to estimate f(2.2, 2.9) and compare with the corresponding linear approx-

imation (i.e., omitting the Hessian term) and the “exact” answer on a calculator. Is the quadratic
approximation more accurate than the linear approximation?

Exercise 25.5. On the region in R2 where x+ 2y > 0, consider the function

f(x, y) = 3x2y − 2xy + 2
√
x+ 2y.

(a) Compute the Hessian matrix symbolically (i.e., as a 2× 2 matrix whose entries are functions of x, y).
(b) Compute the Hessian matrix at (x, y) = (−1, 1) and at (1, 0) (as matrices whose entries are fractions).
(c) Using (b), determine the quadratic approximations to f(−1 + h, 1 + k) and f(1 + h, k) for small

numbers h and k (these are the quadratic approximations to f near (−1, 1) and (1, 0)).

Exercise 25.6. Consider the function f(x, y) = (xy)1/4 − x− 1
4
y for x, y > 0.

(a) Show that f has exactly one critical point (at (1/8, 1/2)).
(b) Compute the 2 × 2 Hessian matrix (Hf)(x, y) symbolically, and use your answer to confirm that

(Hf)(1/8, 1/2) =

[
−6 1/2
1/2 −3/8

]
. (Hint: The final answer can be simplified by writing certain inte-

gers explicitly as powers of 2, so that quantities like (16)1/4 can be rewritten as (24)1/4 = 24·1/4 = 2.)
(c) Compute the quadratic approximation for f at (1/8, 1/2); i.e., give the quadratic approximation to

f((1/8) + h, (1/2) + k) for small h and k. (The “linear part” of the quadratic approximation at this
point vanishes since it is a critical point.)

Exercise 25.7. This exercise provides practice with a technique that will relate contour plots to the multi-
variable second derivative test in Chapter 26.

For each quadratic form q(x, y) below, compute the eigenvalues λ1, λ2 of the associated symmetric
2 × 2 matrix and find an orthogonal basis {w1,w2} of corresponding eigenvectors. (The eigenvalues are
integers in both cases.)
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Also sketch qualitatively correct level sets, including justification in terms of the eigenvalues: in a
definite case draw ellipses aligned with the eigenlines and longer along the correct eigenline, and in an
indefinite case draw hyperbolas q(x, y) = ±c aligned with the eigenlines and with asymptotes drawn
“closer” to the correct eigenline.

In an indefinite case, indicate as well (with justification in terms of eigenvalue information) which
hyperbolas are q(x, y) = c with c > 0 and which are q(x, y) = c with c < 0.
(a) q(x, y) = −4x2 − 2xy − 4y2

(b) q(x, y) = 7x2 − 24xy + 17y2

Exercise 25.8. This exercise provides practice with a technique that will relate contour plots to the multi-
variable second derivative test in Chapter 26.

For each quadratic form q(x, y) below, compute the eigenvalues λ1, λ2 of the associated symmetric
2 × 2 matrix and find an orthogonal basis {w1,w2} of corresponding eigenvectors. (The eigenvalues are
integers in both cases.)

Also sketch qualitatively correct level sets, including justification in terms of the eigenvalues: in a
definite case draw ellipses aligned with the eigenlines and longer along the correct eigenline, and in an
indefinite case draw hyperbolas q(x, y) = ±c aligned with the eigenlines and with asymptotes drawn
“closer” to the correct eigenline.

In an indefinite case, indicate as well (with justification in terms of eigenvalue information) which
hyperbolas are q(x, y) = c with c > 0 and which are q(x, y) = c with c < 0.
(a) q(x, y) = −x2 + 12xy − y2

(b) q(x, y) = 12x2 − 6xy + 4y2

Exercise 25.9. Briefly justify whether each of the following statements is either true (i.e., always true) or
false (i.e., sometimes not true):
(a) The level curves for f(x, y) = 8x3 − 12xy + 3y2 near the critical point (1, 2) are approximately

hyperbolas.
(b) For f(x, y) = sinx cos y, the quadratic approximation to f((π/2) + h, k) is 1− (1/2)h2 − (1/2)k2.
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26. Grand finale: application of the Hessian to local extrema, and bon voyage

In this chapter we use the quadratic approximation to a function f : Rn → R near a critical point a to
formulate a multivariable second derivative test: to determine whether the graph of f inside Rn+1 near a is
either “bowl-shaped” downward (local maximum) or upward (local minimum) or perhaps looks more like
a “saddle” or maybe is “too flat” to accurately describe using information from second partial derivatives.

The main tool is the symmetric Hessian matrix (Hf)(a), or rather its associated quadratic form

q(x) =
n∑

i=1

biix
2
i + 2

∑

1≤i<j≤n

bijxixj

= (b11x
2
1 + b22x

2
2 + · · ·+ bnnx

2
n) + 2b12x1x2 + 2b13x1x3 + · · ·+ 2b1nx1xn

+ 2b23x2x3 + 2b24x2x4 + · · ·+ 2b2nx2xn + 2b34x3x4 + · · ·+ 2b3nx3xn + · · ·+ 2bn−1,nxn−1xn

with bij = fxixj
(a), via the link in (20.3.1) and Example 20.3.12 between quadratic forms and symmetric

matrices. (There are 2’s in front of the cross-terms above because for i < j the coefficient of xixj in the
quadratic form qM(x) associated with an n×n symmetric matrix M is mij+mji = 2mij; for n = 2, 3 see
(20.3.2), (20.3.3) respectively. When n = 2 this is q(x1, x2) = fx1x1(a)x

2
1 +2fx1x2(a)x1x2 + fx2x2(a)x

2
2.)

A key question, seen early in Section 25.4, is: what is the geometry of the level sets q(x1, . . . , xn) = c?
We will use eigenvectors to understand this in a systematic way for every n, building on what we saw in
Section 25.4 for n = 2. Applying this to the quadratic form associated with the Hessian at a critical point a
of a function f : Rn → R will tell us if a is a local maximum, local minimum, saddle point, or something
else; for n = 1 this will recover the second derivative test from single-variable calculus.

In Section 26.5, we review your mathematical growth during this course and give advice on further
courses in linear algebra.

By the end of this chapter, for f : Rn → R you should be able to:
• identify local maxima, local minima, and saddle points from a contour plot when n = 2;
• determine if a critical point a ∈ Rn for f is a local maximum, local minimum, or a saddle point

when (Hf)(a) is a diagonal matrix;
• determine the definiteness of the Hessian in general using eigenvalues, and use that information

at critical points to identify local maxima, local minima, and saddle points;
• know which Stanford Math course on further linear algebra is a better fit for your interests.

26.1. Definiteness and saddle points. To formulate a “second derivative test” for f : Rn → R with
any n, first recall from Chapter 25 that if f : Rn → R is a function then the quadratic approximation to f
near a point a ∈ Rn is given by f(a+h) ≈ f(a)+(∇f)(a) ·h+(1/2)h⊤((Hf)(a))h for h ∈ Rn near 0.
For n = 1, this is the Taylor approximation f(a+ h) ≈ f(a) + f ′(a)h+ (1/2)f ′′(a)h2 in single-variable
calculus to second order in h ∈ R near 0.

Suppose a is a critical point; i.e., (∇f)(a) = 0. The quadratic approximation then becomes

f(a+ h) ≈ f(a) +
1

2
h⊤((Hf)(a))h. (26.1.1)

Example 26.1.1. Consider n = 1, so this is the approximation f(a+h) ≈ f(a)+ (1/2)f ′′(a)h2 at critical
points in single-variable calculus. If f ′′(a) > 0 then the quantity (1/2)f ′′(a)h2 is positive for all h ̸= 0,
so f(a + h) > f(a) for all nonzero h near 0 – a local minimum at a. Similarly, if f ′′(a) < 0 then the
quantity (1/2)f ′′(a)h2 is negative for all small h ̸= 0, so f(a + h) < f(a) for all nonzero h near 0 – a
local maximum at a. We have just recovered the second derivative test in single-variable calculus via the
perspective of the quadratic approximation at a critical point, applied in the case n = 1. ■
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To extend Example 26.1.1 to n > 1, by (26.1.1) we see f(a + h) − f(a) ≈ (1/2)h⊤((Hf)(a))h
for all small h. Hence, to determine if f(a) is a local maximum (i.e., is f(a + h) < f(a) for all small
h ̸= 0) or a local minimum (i.e., is f(a + h) > f(a) for all small h ̸= 0?), we want to know if
q(Hf)(a)(h) = h⊤((Hf)(a))h is negative for all small h near 0 or positive for all small h ̸= 0.

In the terminology of Definition 24.2.2: is the symmetric Hessian matrix (Hf)(a) (or equivalently
q(Hf)(a)(x)) negative-definite or positive-definite or something else? The possibilities for variation in the
values of an n-variable quadratic form near 0 are much more complicated when n > 1 than when n = 1,
as we see for n = 2 in contour plots near (0,0) for some quadratic forms q(x1, x2) in Figure 26.1.1: the
level sets for the first are hyperbolas, for the second are ellipses, and for the third are pairs of parallel lines.
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FIGURE 26.1.1. Contour plots of several quadratic functions of 2 variables

For an n × n symmetric matrix A (such as A = (Hf)(a) as above), let’s think about the scalar
qA(x) = x⊤Ax ∈ R as a function of x ∈ Rn. We have encountered functions of this type earlier, in
Section 20.3, where we found for n = 2, 3:

[
x
y

]⊤ [
a u
u b

] [
x
y

]
=
[
x y

] [a u
u b

] [
x
y

]
= ax2 + by2 + 2uxy,



x
y
z




⊤ 

a u v
u b w
v w c





x
y
z


 =

[
x y z

]


a u v
u b w
v w c





x
y
z


 = ax2 + by2 + cz2 + 2uxy + 2vxz + 2wyz.

(The contributions on the right side from the off-diagonal matrix entries all occur with a 2 in front.)
The quadratic approximation at critical points has motivated interest in determining where such func-

tions q(x) are positive or negative. When n > 1 there is an additional possibility with no analogue for
n = 1, as we now discuss. First consider the case n = 2. For a critical point a = (a1, a2) ∈ R2 of f , it
might happen that the part of the surface graph z = f(x, y) over some line L in R2 through a has a local
minimum at a and the part of the surface graph z = f(x, y) over another line L′ in R2 through a has a
local maximum at a. This is visualized by a “saddle” appearance of the surface graph z = f(x, y) near
(a1, a2, f(a1, a2)) ∈ R3:

Example 26.1.2. For Example 10.2.8 with f(x, y) = x2− y2, the contour plot in Figure 10.2.2 consists of
hyperbolas and the surface graph in Figure 10.2.3 is a “saddle” over (0, 0) ∈ R2. The cause of the saddle
shape is that there are vertical planes P and P ′ that cut the surface graph S through (0, 0, f(0, 0)) along
respective curves C and C ′ with opposite local extrema behavior at (0, 0, f(0, 0)). Indeed, the vertical
plane x = 0 cuts S along the curve {(0, y, f(0, y)) : y ∈ R} that is the upside-down parabola graph
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of f(0, y) = −y2 with a local maximum at y = 0, and the vertical plane y = 0 cuts S along the curve
{(x, 0, f(x, 0)) : x ∈ R} that is the parabola graph of f(x, 0) = x2 with a local minimum at x = 0.

In general, a vertical plane through (0, 0, f(0, 0)) amounts to choosing a line ℓ in the xy-plane through
(0, 0) (where the vertical plane cuts the xy-plane), and the curve along which that vertical plane cuts the
surface graph is exactly the graph of f(x, y) over the points in the line ℓ. There are many lines ℓ through
(0, 0) aside from the coordinate axes along which f(x, y) = x2 − y2 has a local extremum at (0, 0).
For instance: on y = 5x and y = −3x there a local maximum at (0, 0) since f(x, 5x) = −24x2 and
f(x,−3x) = −8x2, whereas on y = x/2 and y = −(2/3)x there is a local minimum at (0, 0) since
f(x, x/2) = (3/4)x2 and f(x,−(2/3)x) = (5/9)x2.

As another example, look at Figure 26.1.2 for the surface graph of f(x, y) = sin(x) sin(y) that has a
“saddle” shape over (π, π). Near (π, π), the contour plot in Figure 26.1.3 looks like a tilted version of the
collection of hyperbolas in Figure 10.2.2 (and likewise for the contour plot on the left in Figure 26.1.1).
If we look at f over the lines y = x and y = −x, we get opposite local extrema behavior over the origin
in those respective lines: f(x, x) = sin2(x) has a local minimum at x = 0 and f(x,−x) = − sin2(x) has
a local maximum at x = 0. More generally, looking at the labels on the level curves in the contour plot
shows that the behavior of f on any line y = cx with c > 0 has a local minimum at the origin and the
behavior of f on any line y = −cx has a local maximum at the origin.
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FIGURE 26.1.2. The graph of f(x, y) = sin(x) sin(y)
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FIGURE 26.1.3. The contour plot of f(x, y) = sin(x) sin(y). For c > 0, it meets y = cx
with a local minimum at the origin and meets y = −cx with a local maximum at the origin.

■
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The analysis in Example 26.1.2 inspires the terminology below (recalled from Section 10.2), but it will
be the geometry of the contour plot and not of the surface graph that is the key to everything we will do in
Rn for general n > 1.

Definition 26.1.3. For n > 1 and a function f : Rn → R, a critical point a ∈ Rn is called a saddle
point of f if there are different lines L,L′ in Rn through a so that f evaluated just on the line L has a
local maximum at a and f evaluated just on the line L′ has a local minimum at a.

More explicitly, if we write L in a parametric form {a+ tv} and L′ in a parametric form {a+ tv′}
for nonzero vectors v and v′ (these are not scalar multiples of each other, since L and L′ are different
lines through the common point a) then the functions

g(t) = f(a+ tv), h(t) = f(a+ tv′)

encode the respective behavior of f on points of L and L′. The saddle-point condition is saying that g
has a local maximum at t = 0 and h has a local minimum at t = 0.

Example 26.1.2 illustrates tremendous flexibility for lines L and L′ through a that can work in Defini-
tion 26.1.3. However, the geometry of contour plot near a saddle point has a special feature illustrated for
n = 2 in Figure 26.1.4: among pairs of lines through a with opposite local extrema behavior for f , there
is a special pair (L and L′ in Figure 26.1.4): the “lines of symmetry” for the contour plot near a (reflecting
the plot across either line yields the original plot again, to good approximation). In Section 26.3 we’ll see
such lines are {a+ tw} and {a+ tw′} for orthogonal eigenvectors w,w′ of (Hf)(a) (see Figure 26.3.1).
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FIGURE 26.1.4. A saddle point at a, along with a very special pair of lines L,L′ through it.
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FIGURE 26.1.5. At a saddle point, a local minimum over y = 0 and local maximum over x = 0.
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Remark 26.1.4. Beware that some lines through a saddle point a may fail to work either way for a local
extremum. Consider f(x, y) = x3 + x2 − y2 as in Figure 26.1.5. This has a saddle point at (0, 0) because
its restrictions to the x-axis and y-axis are the respective functions x3 + x2 and −y2 which respectively
have a local minimum and a local maximum at the origin. But the restriction of f to the line x = y through
(0, 0) is y3 + y2 − y2 = y3, which does not have a local extremum at y = 0.

Let’s come back to the multivariable considerations immediately following the discussion for n = 1
in Example 26.1.1. By (26.1.1), if a ∈ Rn is a critical point of f then for small h we have

f(a+ h) ≈ f(a) +
1

2
h⊤(Hf)(a)h = f(a) +

1

2
q(Hf)(a)(h) (26.1.2)

(see (20.3.1) with A = (Hf)(a)), so for small h if q(Hf)(a)(h) > 0 then f(a + h) > f(a) whereas if
q(Hf)(a)(h) < 0 then f(a + h) < f(a). Using how we defined the notions of positive-definite, negative-
definite, and indefinite for symmetric matrices A (in terms of qA(x)) in Definition 24.2.2, this yields:

Theorem 26.1.5 (Second Derivative Test, Version I). Let f : Rn → R be a function, and a ∈ Rn a
critical point of f .

(i) If the Hessian (Hf)(a) is positive-definite then a is a local minimum of f .
(ii) If the Hessian (Hf)(a) is negative-definite then a is a local maximum of f .

(iii) If the Hessian (Hf)(a) is indefinite then a is a saddle point of f and is neither a local minimum
nor a local maximum of f .

If the Hessian (Hf)(a) is in none of these cases (i.e., positive-semidefinite or negative-semidefinite
but not definite) then we need more information, just as the single-variable second derivative test is
inconclusive when the second derivative vanishes.

(For n = 1, so a corresponds to a scalar a ∈ R, (i) and (ii) together recover the single-variable
second derivative test since h⊤(Hf)(a)h = f ′′(a)h2 with h ∈ R the unique entry in the 1-vector h).

To apply Theorem 26.1.5 we need to figure out the definiteness properties of the Hessian at a. (Is it
positive-definite? Negative-definite? Indefinite? Something else?) How is this done? For n = 1, this is
the question in single-variable calculus as to whether f ′′(a) is positive or negative (or 0). For n > 1, this
task is much more challenging. We will figure out definiteness via eigenvalues (in Section 26.3). Also,
the indefinite case has practical applications: see Appendix J for an application to molecular structure.

Remark 26.1.6. In Theorem 26.1.5, a is a critical point! It can be shown that (Hf)(a) is positive-
definite for all a ∈ Rn precisely when f is “strictly convex”: f((1−t)v+tw) < (1−t)f(v)+tf(w)
for all v ̸= w and 0 < t < 1. (The key is that h(t) = f((1 − t)v + tw) satisfies h′′(t) =
q(Hf)((1−t)v+tw)(w − v), and functions g(t) are strictly convex precisely when g′′(t) is positive ev-
erywhere.) Such functions are relevant in economics and thermodynamics, because a critical point is
then a unique global extremum! The 2nd Law of Thermodynamics ensures that entropy on the “state
space” of a molecular system has negative-definite Hessian at all reasonable equilibrium states.

If the symmetric n× n matrix (Hf)(a) is diagonal then we can read off its definiteness properties by
inspection of the signs of its diagonal entries, as the following examples show.

Example 26.1.7. Consider H =



11 0 0
0 3 0
0 0 4


 . The diagonal entries are the coefficients in the associated

quadratic form: qH(x, y, z) =



x
y
z




⊤

H



x
y
z


 = 11x2 + 3y2 + 4z2. This is positive when (x, y, z) ̸= 0. ■
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For a general diagonal H =



a1 0 0
0 a2 0
0 0 a3


 we have qH(x, y, z) =



x
y
z




⊤

H



x
y
z


 = a1x

2+a2y
2+a3z

2.

If all aj’s are positive then qH(x, y, z) > 0 whenever (x, y, z) ̸= 0 (i.e., at least one of x, y, z is nonzero),
so H is positive-definite if a1 > 0, a2 > 0, a3 > 0. Likewise, H is indefinite if one of the ai’s is positive
and another is negative, as in the third case of the following example.

Example 26.1.8.

11 0 0
0 3 0
0 0 2


 is positive-definite,



−3 0 0
0 −1 0
0 0 −3


 is negative-definite, and



3 0 0
0 −4 0
0 0 −11


 is indefinite.

■

The lesson is that it is easy to check definiteness or indefiniteness of any diagonal n× n matrix D by
inspection (corresponding to evaluating qD(x) on the coordinate axes). This is applied to some Hessians
in Section 26.2. There are two special non-diagonal cases whose definiteness also can be understood “by
inspection”, as we illustrate with the next two examples.

Example 26.1.9. Suppose that H is a 2 × 2 matrix that is “anti-diagonal”, meaning that it looks like this:

H =

[
0 5
5 0

]
. This is indefinite because

[
x
y

]⊤
H

[
x
y

]
= 10xy has positive and negative values (plug in

(x, y) with various signs to see why). The same happens for any nonzero symmetric 2 × 2 anti-diagonal
matrix (corresponding to q(x, y) = cxy with c ̸= 0). ■

Example 26.1.10. If M is any m × n matrix, the n × n matrix B = M⊤M (called a Gram matrix) is
symmetric (see Theorem 20.3.8 and especially Remark 20.3.9) and rarely diagonal. Some matrix algebra
yields more: for any v ∈ Rn we have

qB(v) = v⊤(M⊤M)v = (v⊤M⊤)(Mv) = (Mv)⊤(Mv) = (Mv) · (Mv) = ∥Mv∥2 ≥ 0.

Therefore B is positive-semidefinite, and if the null space of M is {0} then B is positive-definite. (In Ex-
amples 20.3.14 and 24.2.7 we mentioned some square matrices from materials science that are symmetric
and positive-semidefinite. These properties can also be explained by physical arguments which show that
those matrices have the form M⊤M .) Among the many contexts where Gram matrices arise are statistical
modeling, quantum chemistry, computational biology, and kernel methods in machine learning. The killer
app of Gram matrices is that for any rectangular matrix M of data, to apply any modern data science to
M the first step is to compute the “singular value decomposition” (SVD) of M (to be explained in Section
27.3) that is just a re-interpretation of the Spectral Theorem for the Gram matrix M⊤M .

Amazingly, a reverse result holds: every positive-semidefinite symmetric n×n matrix B is M⊤M for
an n × n matrix M (so sometimes “positive-semidefinite symmetric” – called “Mercer’s condition”
in machine learning – is taken as the definition of Gram matrix). Indeed, by Theorem 24.4.1 we have
B = WDW⊤ for orthogonal W and diagonal D whose entries are the eigenvalues λi of B, and all
λi ≥ 0 since B is positive-semidefinite (this is a variant of Proposition 24.2.10(i), with the same
proof). Thus, if D′ is the diagonal matrix with ii-entry

√
λi ≥ 0 then D = (D′)2 = D′D′⊤, so

B = WD′D′⊤W⊤ = (WD′)(WD′)⊤. Hence, B = M⊤M for M = (WD′)⊤. We can do better
(when B is nonzero, so M is nonzero)! The QR-decomposition (as in Section 22.5) for the possibly
non-invertible M is QR where Q is an n×k matrix with orthonormal columns (with k = dimC(M))
and R is a k × n upper triangular matrix with positive diagonal. Since Q⊤Q = Ik, we have B =
M⊤M = (QR)⊤(QR) = (R⊤Q⊤)QR = R⊤(Q⊤Q)R = R⊤IkR = R⊤R.
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This special LU -decomposition (L = U⊤, with U = R having positive diagonal) is called the
Cholesky decomposition, discovered 14 years before the general LU -decomposition. It is useful for:
inverting both covariance matrices in least squares and Hessians in Newton’s method for optimization
(Appendix I), simulations of correlated returns in quantitative finance [Al, I.5.7.4-I.5.7.5], and “square
root filtering” to efficiently overcome noise in computer-based navigation (for GPS, space travel, etc.)

■

26.2. Worked examples of Version I of the Second Derivative Test (Theorem 26.1.5).
Example 26.2.1. Consider h(x, y) = x sinx− cos y. We encountered h in Example 10.2.9, where we saw
hx = sinx + x cosx and hy = sin y, so (0, 0) is a critical point. The restrictions h(x, 0) = x sinx − 1
and h(0, y) = − cos y of h to the coordinate axes have a local minimum at the origin of the axes, but that
doesn’t ensure that h(x, y) has a local minimum at (0, 0): being a local extremum at a point in R2 is much
stronger than being a local extremum on two lines passing through the point.

But with the multivariable second derivative test now in our toolkit, we can analyze the question of
whether (0, 0) is a local minimum for h. The Hessian matrix for h is diagonal everywhere: it is

[
hxx hyx
hxy hyy

]
=

[
2 cosx− x sinx 0

0 cos y

]
.

At (0, 0) this is
[
2 0
0 1

]
, which is positive-definite since its associated quadratic form is 2x2 + y2. Hence,

by Theorem 26.1.5, the critical point (0, 0) for h is a local minimum for h (illustrated in Figure 26.2.1).

−1

3

0

−4 0 4

0

2

−2

FIGURE 26.2.1. The surface graph of h(x, y) = x sinx− cos y

■

Remark 26.2.2. We shall carry out most examples below with 2-variable functions so you can see that
the Hessian is encoding the geometry of both the contour plot and surface graph at each critical point.
But the real significance is for applications beyond the 2-variable case, where the contour plot and surface
graph are no longer available yet we need a mechanism to identify local maxima and local minima. The
application of the Hessian in chemistry in Appendix J is an n-variable situation with n > 3.

Example 26.2.3. Let’s find all the critical points of g(x, y) = 3x2y + 2y3 − xy and classify each as a
local maximum, local minimum, or a saddle point. This example will have the “lucky” feature that the
definiteness properties of the symmetric 2 × 2 Hessian matrix at every critical point can be read off by
inspection – it turns out to be diagonal or anti-diagonal at each such point – even though its Hessian at
most points is neither diagonal nor anti-diagonal. Generally one can’t expect to be so lucky.

First of all, (∇g)(x, y) = (6xy − y, 3x2 + 6y2 − x). For this to be 0, we must have

6xy − y = 0, 3x2 + 6y2 = x.
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The first condition says y(6x− 1) = 0, so either y = 0 (in which case 3x2 = x, so x = 0 or x = 1/3) or
x = 1/6 (in which case 6y2 = 1/12, so y = ±1/(6

√
2)). Hence, the critical points are

P = (0, 0), Q = (1/3, 0), R = (1/6, 1/(6
√
2)), S = (1/6,−1/(6

√
2)),

all shown in the contour plot in Figure 26.2.2.
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FIGURE 26.2.2. Contour plot of g(x, y) = 3x2y+2y3−xy. The contour labels have been
rescaled by a factor of 103 (e.g., the contour labeled 5 is the level set g(x, y) = 5× 10−3).

We now compute the Hessian: gxx = 6y, gxy = 6x−1, gyy = 12y, so (Hg)(x, y) =

[
6y 6x− 1

6x− 1 12y

]
.

Next, we plug the coordinates of each critical point into this formula for the Hessian, and can read off the
desired conclusions because each Hessian turns out to be simple enough that we can eyeball the answer as
in Examples 26.1.7 and 26.1.9.

• At P = (0, 0) the Hessian is
[
0 −1
−1 0

]
. This is indefinite by the same reasoning as in Example

26.1.9, so (0, 0) is a saddle point.

• At Q = (1/3, 0) the Hessian is
[
0 1
1 0

]
. This is again indefinite, so (1/3, 0) is a saddle point.

• At R = (1/6, 1/6
√
2) the Hessian is

[
1/
√
2 0

0 2/
√
2

]
. This is a diagonal matrix with positive entries,

so positive-definite; thus (1/6, 1/(6
√
2)) is a local minimum.

• At S = (1/6,−1/6
√
2) the Hessian is

[
−1/

√
2 0

0 −2/
√
2

]
. This is a diagonal matrix with negative

entries, so negative-definite; thus (1/6,−1/(6
√
2)) is a local maximum.

In Figure 26.2.2, at each critical point the definiteness property we read off from the Hessian matches
the expected geometry of the contour plot as discussed in Remark 26.3.6. We could use the contour plot
to read off the location and behavior of the critical points, but the linear algebra of the Hessian tells us
everything about critical points without needing to look at a contour plot; the importance of this was
discussed in Remark 26.2.2. ■

Example 26.2.4. In Example 12.4.1 we studied a constrained optimization problem typically arising out
of thermodynamics which came down to seeking critical points of

F (p, q, r) = (−p ln(p)− q ln(q)− r ln(r))− λ(p+ q + r − 1)− λ′(2p+ 3q + 5r − 4)
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on the region p, q, r > 0. We found that there was exactly one such point, depending on λ and λ′, and
it satisfied the constraint for only one choice of (λ, λ′). But we did not address how to know that the
point we found (approximately) is actually a maximum rather than a minimum, or maybe a saddle point
or something worse. The physical motivation in thermodynamics had us seeking a maximum, so that
provides some reassurance. As a systematic mathematical method which can be used even in contexts
where one doesn’t have guidance from other considerations, we now apply the Second Derivative Test
from Theorem 26.1.5.

The second partials of F (p, q, r) work out very nicely: the first partials were found in Example 12.4.1,
and taking partial derivatives of those gives the Hessian as a diagonal matrix

(HF )(p, q, r) =



−1/p 0 0
0 −1/q 0
0 0 −1/r




(not involving λ or λ′ because the original constraints were linear in p, q, r). The diagonal entries are
visibly always negative (since p, q, r > 0), so this is negative-definite for any (p, q, r). In particular, at the
point we found in (12.4.3) the Hessian is negative-definite, so that point must be a local maximum.

To justify mathematically that this local maximum (subject to the given constraint) is a global maxi-
mum (subject to the given constraint), one needs to carry out an additional argument involving the behavior
of F near the “boundary” given by the coordinate planes p = 0, q = 0, and r = 0. We omit this additional
argument since it goes beyond the level of the course. ■

Example 26.2.5. In Example 12.3.1 (which was a setting typical for certain optimization problems in
economics) we saw that for a constant λ > 0 the function P (x, y) = x1/4y1/2 − λ(x + y − 3/4) (with
x, y > 0) has exactly one critical point:

(a, b) = (1/(64λ4), 1/(32λ4)).

Is this a local maximum, a local minimum, a saddle point, or perhaps something worse? And if a local
extremum, is it a global extremum?

To figure out what is going on near this point, let’s analyze the Hessian. First, we work out the first
partial derivatives:

∂P

∂x
=

1

4
x−3/4y1/2 − λ,

∂P

∂y
=

1

2
x1/4y−1/2 − λ.

Passing to the second partials, the constant λ conveniently disappears and we obtain
∂2P

∂x2
= − 3

16
x−7/4y1/2,

∂2P

∂x∂y
=

∂2P

∂y∂x
=

1

8
x−3/4y−1/2,

∂2P

∂y2
= −1

4
x1/4y−3/2.

Hence, the Hessian matrix for P at any point is

(HP )(x, y) =

[
− 3

16
x−7/4y1/2 1

8
x−3/4y−1/2

1
8
x−3/4y−1/2 −1

4
x1/4y−3/2

]
.

With a bit of care in the algebra, plugging in the coordinates of the unique critical point (a, b) yields

(HP )(a, b) =

[
−48λ5 16λ5

16λ5 −16λ5

]
= 16λ5

[
−3 1
1 −1

]
. (26.2.1)

This is not diagonal, so we don’t see its definiteness properties so easily. The way out of this conundrum
will be to use information in the eigenvalues of this matrix; we will come back to it in Example 26.4.3. ■

Typically the Hessian is not diagonal, and in Section 26.3 we will handle such cases by invoking the
full power of the Spectral Theorem via the diagonalization formula (24.2.2) using eigenvectors (yielding a
reformulation of Theorem 26.1.5, given in Theorem 26.3.1, that is better-suited to applications). In other
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words, we apply Proposition 24.2.10 to the symmetric n × n matrix A = (Hf)(a). This will lead to a
satisfactory way of classifying critical points, to be illustrated in Section 26.4.

In this course (and in particular on exams) we are not going to dwell on critical points whose Hessian
is in none of the cases of being positive-definite, negative-definite, or indefinite. However, such “degen-
erate” Hessians are very useful in computer vision (as we’ll discuss in Remark 26.4.6). For the sake of
completeness, here is an explicit example of one of these other possibilities.

Example 26.2.6. Let f(x, y) = (x2+y2−3x)2+4x2(x−2). For a = (0, 0), the gradient (∇f)(a) vanishes,

so a is a critical point of f . The Hessian at this point is (Hf)(a) =
[
2 0
0 0

]
, so q(Hf)(a)(t1, t2) = 2t21. This

is positive-semidefinite, but it is not positive-definite since for any nonzero t2 its value at (0, t2) ̸= (0, 0)
vanishes. The contour plot of f(x, y) near such a “degenerate” critical point, as well as the level curve
f = 0 through this point, are rather complicated: see Figure 26.2.3. ■
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FIGURE 26.2.3. The function f(x, y) = (x2 + y2 − 3x)2 +4x2(x− 2) has a “degenerate”
critical point at a = (0, 0). Its surface graph is on the left, and its contour plot in the middle
is zoomed in 10-fold on the right showing the blue level curve f = 0 through a with a
“tacnode” singularity there.

26.3. Eigenvectors and Hessians. For f : R2 → R, suppose the Hessian (Hf)(a) at a critical point
a has orthogonal eigenvectors w1 and w2 with respective eigenvalues 5 and −3. For scalars h1, h2 near 0,
the quadratic approximation (26.1.1) applied to the vector h = h1w1 + h2w2 near 0 yields

f(a+ h1w1 + h2w2) ≈ f(a) +
1

2
q(Hf)(a)(h1w1 + h2w2) = f(a) +

5

2
(w1 ·w1)h

2
1 −

3

2
(w2 ·w2)h

2
2,

the final equality using the diagonalization formula (24.2.2). Thus, on the line L = {a + h1w1} (i.e.,
setting h2 to be 0), the deviation of f(a + h1w1) from f(a) is (5/2)(w1 · w1)h

2
1 > 0 for small h1 ̸= 0,

so a is a local minimum along L. On the line L′ = {a + h2w2} (i.e., setting h1 to be 0), the deviation of
f(a+ h2w2) from f(a) is −(3/2)(w2 ·w2)h

2
2 < 0 for small h2 ̸= 0, so a is a local maximum along L′.

If instead the eigenvalues are both positive, say 5 and 3, then the behavior of f near a would be

governed by the quadratic approximation f(a+ h1w1 + h2w2) ≈ f(a) +
5

2
(w1 ·w1)h

2
1 +

3

2
(w2 ·w2)h

2
2

for small h1, h2, so the value of f at nearby points is strictly bigger than f(a) and hence f has a local
minimum at a. Likewise, if the eigenvalues are both negative, say −5 and −3, then for similar reasons f
has a local maximum at a. More generally, if wi is an eigenvector for (Hf)(a) with eigenvalue λi ̸= 0
then (for h near 0) f(a+hwi) ≈ f(a)+(λi/2)(wi ·wi)h

2. Thus, on the line through a in the directions of
±wi the function f deviates from f(a) in a manner controlled entirely by the sign of λi (since wi ·wi > 0).
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So if (Hf)(a) has eigenvalues λ > 0 and λ′ < 0 (i.e., opposite signs) then the corresponding eigenlines
tell us a is a saddle point! In Figure 26.1.4, showing the contour plot of x2 − y2, the eigenlines for the
Hessian at its critical point (0, 0) are the lines of symmetry L and L′ shown there. In general, reasoning
as above (i.e., applying Proposition 24.2.10 and the Spectral Theorem to the symmetric Hessian, and
applying the diagonalization formula (24.2.2) to its associated quadratic form) yields the very applicable:

Theorem 26.3.1 (Second Derivative Test, Version II). Let f : Rn → R be a function, and a ∈ Rn a
critical point of f .

(i) If the Hessian (Hf)(a) has all eigenvalues positive then a is a local minimum of f .
(ii) If the Hessian (Hf)(a) has all eigenvalues negative then a is a local maximum of f .

(iii) If the Hessian (Hf)(a) has both a positive eigenvalue and a negative eigenvalue (some other
eigenvalue may be 0) then a is a saddle point of f and so it is not a local extremum of f .

(For n = 1, so the n-vector a is just a scalar a ∈ R, (i) and (ii) together recover the second derivative
test in single-variable calculus since (Hf)(a) is then a 1× 1 matrix with entry f ′′(a).)

Remark 26.3.2. It may seem that Version II is a mere reformulation of Version I (as the diagonalization
formula (24.2.2) directly relates (in)definiteness to signs of the eigenvalues), but that is wrong. Version
I expresses the quadratic approximation with (Hf)(a) at a critical point a, but to arrive at Version II we
need the existence of an orthogonal basis of eigenvectors for (Hf)(a) (in order to apply the diagonalization
formula!). The existence of such eigenvectors is the Spectral Theorem, so that is the bridge to Version II.

Remark 26.3.3. Although Theorem 26.3.1 focuses on Hessians at critical points, and particularly when
the Hessian eigenvalues have a common sign, indefinite Hessians away from critical points are of interest
too: they arise in sequential quadratic programming, an important non-linear optimization technique.

For instance, to minimize a non-linear f : Rn → R we generate points a0, a1, a2, . . . that we hope
converge to a minimizer as follows. Here a0 is an initial guess, and ak+1 := ak + hk where hk minimizes

fk(h) = f(ak) + (∇f)(ak) · h+
1

2
q(Hf)(ak)+(h)

using the quadratic form associated to the positive-semidefinite part (Hf)(ak)+ of the symmetric Hessian
at ak. Here, the positive-semidefinite part M+ of a symmetric n × n matrix M is made via the Spec-
tral Theorem: there is an orthogonal basis w1, . . . ,wn of M -eigenvectors with Mwj = λjwj , and by
definition the effect of M+ on wj is multiplication by λj when λj > 0 and is 0 when λj ≤ 0.

To apply Version II of the Second Derivative Test, we need a way to compute eigenvalues or at least
their signs (without computing eigenvalues explicitly). For n > 2 there are ways to do this quickly on
a computer (when n isn’t too huge), but for n = 2 there is a simple procedure to find the signs of the
eigenvalues by hand (using that the roots r, s of x2 + ux+ v satisfy r + s = −u and rs = v):

Theorem 26.3.4. Consider a symmetric 2 × 2 matrix A =

[
a b
b d

]
, so the eigenvalues are the roots

of the characteristic polynomial (from Theorem 23.3.1) PA(λ) = λ2 − tr(A)λ + det(A), where (as
defined in Theorem 23.3.1) tr(A) = a+ d and det(A) = ad− b2. For its two roots λ1, λ2 ∈ R:
(i) λ1, λ2 have opposite signs precisely when the product det(A) = λ1λ2 is negative, so the indefinite

case occurs exactly when ad− b2 = det(A) < 0;
(ii) λ1, λ2 are either both positive or both negative precisely when their product det(A) = λ1λ2 is

positive, so A is positive-definite or negative-definite precisely when ad− b2 = det(A) > 0;
(iii) in case (ii), the common sign of λ1 and λ2 is the same as that of their sum λ1+λ2 = tr(A) = a+d.
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Example 26.3.5. Let’s return to the examples in (24.2.1). The quadratic form 10x21 − 14x1x2 + 5x22 is

qA(x1, x2) for A =

[
10 −7
−7 5

]
, with det(A) = 50 − 49 = 1 > 0 and tr(A) = 15 > 0, so A and qA

are positive-definite. The quadratic form 8x21 − 10x1x2 + 3x22 is qB(x1, x2) for B =

[
8 −5
−5 3

]
, with

det(B) = 24−25 = −1 < 0, so B and qB are indefinite (e.g., qB(1, 1) = 1 > 0, qB(2, 3) = −1 < 0). ■

Remark 26.3.6. Now we can finally explain the observation in Example 10.2.13 that contour plots near
critical points look like approximate nested tilted ellipses near local extrema (with the behavior of the
numerical labels on the level curves as we approach the critical point – increasing or decreasing – telling
us whether it is a local maximum or local minimum) and look like approximate tilted hyperbolas near
saddle points (with the level curve through the saddle point approximately an “X” shape). Both cases are
in Figure 26.1.3 and in Figure 26.3.1 below, and arise in Section 26.4 (e.g., Figures 26.4.1 and 26.4.2).
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FIGURE 26.3.1. The level sets x2 +4xy− 2y2 = 5 (blue) and x2 +4xy− 2y2 = −4 (red)
on the left are tilted versions of 2x2 − 3y2 = 5 and 2x2 − 3y2 = −4 respectively. The level
curves of 13x2 − 6xy + 5y2 on the right are tilted versions of level curves of 14x2 + 4y2.

For a critical point a of f(x, y), we know that (Hf)(a) admits an orthogonal basis of eigenvectors
{w1,w2}. Let w′

i = wi/∥wi∥, so {w′
1,w

′
2} is an orthonormal basis of eigenvectors. Assume the cor-

responding eigenvalues λ1, λ2 are nonzero (this is the typical case, and avoids degenerate situations as
in Figure 26.2.3). Combining the quadratic approximation for f near a with the diagonalization formula
(24.2.2) applied to q(Hf)(a)(x), for h1, h2 near 0 we have

f(a+ h1w
′
1 + h2w

′
2) ≈ f(a) +

λ1(w
′
1 ·w′

1)

2
h21 +

λ2(w
′
2 ·w′

2)

2
h22 = f(a) +

λ1
2
h21 +

λ2
2
h22.

Using the right side in place of f near a, level curves f = c are well-approximated near a by level curves

f(a)+
λ1
2
h21+

λ2
2
h22 = c for (h1, h2) near (0, 0) and c near f(a). By subtracting f(a) from both sides and

multiplying by 2 throughout, we get an approximate description of level curves of f near a:

λ1h
2
1 + λ2h

2
2 = 2(c− f(a)) (26.3.1)

for h1, h2 near 0. This changes the numerical label on a level curve (c is replaced with 2(c − f(a))) but
not the actual level curves.

[Note that ∥hwi∥ = |h|∥wi∥ whereas ∥hw′
i∥ = |h|. Thus, to encode the precise geometry of the level

curves for f near a (i.e., avoiding a distortion factor of ∥wi∥ in distance) and not merely the qualitative
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aspects of being approximate ellipses or hyperbolas centered at a with specific lines of symmetry through
a, we use the unit eigenvectors w′

i = wi/∥wi∥ for work with (Hf)(a) as done above.]
The shape of (26.3.1) depends on the signs of the λi’s, as we now discuss. For any A,B ̸= 0 the

level curves of Ah21 + Bh22 are ellipses centered at (0,0) when A,B > 0 or A,B < 0 and are hyperbolas
centered at (0,0) when A and B have opposite signs, with the level curve through the origin in the latter
case given by a pair of crossing lines (an “X” shape). We arrived at the left side of (26.3.1) by working
with f(a + h1w

′
1 + h2w

′
2), so hi keeps track of motion through a in the direction of w′

i (or equivalently
of wi). Hence, the ellipses and hyperbolas in (26.3.1) approximating level curves of f near a are centered
at a (corresponding to (h1, h2) = (0, 0)) and are aligned with the perpendicular eigenline directions
(for (Hf)(a)) through a (generally not the coordinate-axis directions through a). These are illustrated in
Figure 26.3.1 for two specific quadratic forms that were addressed in detail in Examples 25.4.2 and 25.4.3.

Remark 26.3.7. There is a third way to formulate the Second Derivative Test when n = 2, given in
most multivariable calculus books. Version II above is often the most useful formulation, since the
eigenvalues usually contain valuable information (e.g., see Appendix J for applications in chemistry),
so it is Version II that you are expected to know for homework and exams. The statement of a “Version
III” for the 2-variable case can be given without any linear algebra (which is why other multivariable
calculus books use it), but we don’t give it since that would not promote any real understanding.

The formulation of Version III for n = 2 without linear algebra is cryptic, but its analogue for
general n – called Sylvester’s Criterion for (semi-)definiteness of symmetric n×nmatrices – involves
k × k determinants for all k ≤ n. This criterion arises in economics (e.g., to ensure “positivity” of
the solution to certain linear systems [KMS]), in thermodynamics (e.g., to analyze convexity of an
energy function [Hor, pp. 200-201]), in other areas of math, etc. The proof of Sylvester’s Criterion
in Wikipedia is dreadful, but [Gilb] gives an elegant treatment in general (any n). It is impossible to
sensibly explain where Version III for n = 2 comes from without linear algebra, and its equivalence
with the n = 2 case of Version I in Theorem 26.1.5 (which is crucial) uses Version II above.

26.4. Using definiteness and eigenvalues to analyze critical points. We now use Theorem 26.3.4
to understand the behavior of some 2-variable functions near critical points, and also apply the eigenvalue
method to a 3-variable function with non-diagonal Hessian at two critical points.
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FIGURE 26.4.1. Contour plot and graph of f(x, y) = x3 − 3x2 − 6xy + 9x+ 3y2
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Example 26.4.1. Let’s work out the behavior of f(x, y) = x3−3x2−6xy+9x+3y2 at each of its critical
points. The partial derivatives are

fx = 3x2 − 6x− 6y + 9, fy = −6x+ 6y,

so the vanishing of fy forces x = y, in which case the vanishing of fx amounts to the quadratic condition
3x2 − 12x + 9 = 0, or in other words 3(x2 − 4x + 3) = 0. This factors as 3(x − 1)(x − 3) = 0, so the
critical points are (1, 1) and (3, 3), which are marked as black dots in both the contour plot and surface
graph for f(x, y) in Figure 26.4.1 above.

The general Hessian for f is

(Hf)(x, y) =

[
fxx fxy
fxy fyy

]
=

[
6x− 6 −6
−6 6

]
,

so

(Hf)(1, 1) =

[
0 −6
−6 6

]
, (Hf)(3, 3) =

[
12 −6
−6 6

]
.

These are not diagonal, so we will use Theorem 26.3.4. We compute

det(Hf)(1, 1) = 0− 36 = −36 < 0, det(Hf)(3, 3) = 72− 36 = 36 > 0,

so by Theorem 26.3.4(ii) the Hessian (Hf)(1, 1) is indefinite (making (1, 1) a saddle point of f ) and the
Hessian (Hf)(3, 3) is definite: either positive-definite or negative-definite.

To determine the common sign of the eigenvalues of (Hf)(3, 3) (and hence the type of definiteness),
we compute its trace to be 12 + 6 = 18 > 0, so by Theorem 26.3.4(iii) the eigenvalues are positive and
hence this Hessian is positive-definite. This shows that (3, 3) is a local minimum for f . Observe that
the geometry of the contour plot near both critical points exactly matches what we expect from Remark
26.3.6. (We could also compute the eigenvalues of each Hessian, but it isn’t necessary here.) ■

Example 26.4.2. In Example 11.3.5 we ran gradient descent for the function

f(x, y) = x2 − 3xy + 3y2 + 5y + 2x,

seeking a local minimum. We eventually arrived at a (numerical approximation to a) critical point. We
want to justify that this point is a local minimum (and not, say, a saddle point) by analyzing definiteness
properties of the Hessian there.

In this case we get “lucky” insofar as the Hessian winds up being a constant matrix (i.e., the same at all
points (x, y)), ultimately because f is a polynomial in x and y each of whose terms xiyj has total degree
(i.e., sum i+ j of exponents of x and y) at most 2. This implies that the definiteness properties of this are
the same everywhere. To compute the Hessian, we need to compute the second partial derivatives of f .
We begin by computing (as we already did in Example 11.3.5) the first partial derivatives, which is to say
the gradient:

(∇f)(x, y) =
[
2x− 3y + 2
−3x+ 6y + 5

]
.

Now differentiating these vector entries with respect to x and y yields

(Hf)(x, y) =

[
2 −3
−3 6

]

(independent of (x, y) for this f , as promised).
This Hessian has determinant 12− 9 = 3 > 0, so by Theorem 26.3.4(ii) it is definite: either positive-

definite or negative-definite. To determine the common sign of the eigenvalues of this Hessian, we compute
the trace to be 2+6 = 8 > 0, so by Theorem 26.3.4(iii) the eigenvalues are positive and hence the Hessian
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is positive-definite. This shows that the (approximate) critical point we found in Example 11.3.5 is a local
minimum, as desired. ■

Always remember, as in Example 26.4.2, that only at a critical point does definiteness of the Hessian
imply the point is a local extremum; elsewhere definiteness implies nothing about extrema (just like
the single-variable second derivative test). The approximation (26.1.2) is only for critical points.

Example 26.4.3. As an application of Theorem 26.3.4(ii),(iii), we can finish off the analysis of definiteness
in Example 26.2.5 (a setting that arises in economics). For λ > 0 we saw that the function P (x, y) =
x1/4y1/2 − λ(x+ y − 3/4) (with x, y > 0) has

(a, b) = (1/(64λ4), 1/(32λ4))

as its only critical point, and we worked out the Hessian:

(HP )(x, y) =

[
− 3

16
x−7/4y1/2 1

8
x−3/4y−1/2

1
8
x−3/4y−1/2 −1

4
x1/4y−3/2

]
. (26.4.1)

Our task is to figure out if (HP )(a, b) is positive-definite, negative-definite, indefinite, or “none of the
above”, with the aim of determining if (a, b) is a maximum or minimum (or something else). We do
this in two ways: working directly at (a, b) and computing the eigenvalues of (HP )(a, b) explicitly, and
working at a general (x, y) using just sign information for the determinant and trace of (HP )(x, y). In
both approaches, we will see that (HP )(a, b) is negative-definite, so (a, b) is a local maximum for P .

Method I. For the explicit method working at (a, b), we compute the eigenvalues of A = (HP )(a, b).
The characteristic polynomial is t2 − tr(A)t + det(A), and from the explicit description of A found in
(26.2.1) we compute det(A) = 2(16λ5)2 and tr(A) = −4(16λ5). Hence, by the quadratic formula the
eigenvalues are 16λ5(−2±

√
2). These are both negative since λ > 0, so (HP )(a, b) is negative-definite.

Method II. For the alternative, less explicit, method that focuses just on the sign information of the
determinant and trace of the Hessian, we will work at all (x, y) with x, y > 0. First, we compute the
determinant of the Hessian in (26.4.1) at a general point (x, y). It might seem as if this will become a
mess, but if you look at the diagonal and off-diagonal pairs in (26.4.1) then you’ll see that the product
of each such pair has the same exponent for each of x and y, so it won’t be such a mess after all. More
explicitly, the determinant is (3/64)x−3/2y−1−(1/64)x−3/2y−1 = (1/32)x−3/2y−1. This is always positive
on the region of interest, so we know that the eigenvalues are nonzero with the same sign; correspondingly
the Hessian is either positive-definite or negative-definite.

To figure out if the common sign is positive or negative, in accordance with Theorem 26.3.4(iii) we
compute the trace (sum of diagonal entries): this is negative since both diagonal entries of the Hessian are
negative, so the eigenvalues are negative and hence the Hessian is negative-definite.

Here is a proof that (a, b) is a global maximum. First, P (a, b) = 1/(64λ3) + (3/4)λ > (3/4)λ
and along the “boundary” (the non-negative coordinate axes), we have P (x, 0) = −λx + (3/4)λ <
(3/4)λ < P (a, b) and P (0, y) = −λy + (3/4)λ < (3/4)λ < P (a, b). Finally, on each line y = cx
(c > 0), we have P (x, cx) =

√
c x3/4 − λ(1 + c)x + (3/4)λ is ≤ (3/4)λ < P (a, b) whenever

x ≥ c2/(λ(1 + c))4, so if P (x, cx) ≥ P (a, b) then x < c2/(λ(1 + c))4 < 1/λ4 (so y = cx =
c3/(λ(1 + c))4 < 1/λ4). Hence, any (x0, y0) with P (x0, y0) ≥ P (a, b) is inside the curve of points
(c2/(λ(1 + c))4, c3/(λ(1 + c))4) in the interior of the rectangle R = {(x, y) : 0 ≤ x, y ≤ 1/λ4}.
A continuous function on a rectangle attains a maximum (an R2-analogue of the Extreme Value
Theorem), so P attains a global maximum in the interior of R. This is a critical point, so it is (a, b).

■
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Example 26.4.4. We now treat a 3-variable function. This is absolutely impossible to analyze via the 2-
variable methods of staring at contour plots or surface graphs, so it illustrates the full glory of eigenvalue
analysis of Hessians.

For f(x, y, z) = xy+ yz + xz + xyz, we seek the critical points of f and the behavior of f near each.
We compute the first partial derivatives to be

fx = y + z + yz, fy = x+ z + xz, fz = x+ y + xy,

so the vanishing of these can be expressed as the combined conditions

y(1 + z) = −z, z(1 + x) = −x, y(1 + x) = −x. (26.4.2)

We can’t have 1 + x = 0 since this says x = −1 yet either the second or third equations in (26.4.2) would
then say 0 = 1, an absurdity. Thus, we can divide by 1 + x to get z = −x/(1 + x) = y. Plugging z = y
into the first equation gives y(1 + y) = −y, so either y = 0 or we can cancel y to obtain 1 + y = −1,
which is to say y = −2.

If y = 0 then also z = y = 0, and x = 0 by the third equation in (26.4.2). In this case we obtain
(0, 0, 0), at which all three partials vanish, so this is a critical point. If instead y = −2 then also z = y =
−2, so the second or third equation in (26.4.2) gives −2(1 + x) = −x, which has as its only solution
x = −2. So we arrive at the only other option (−2,−2,−2) that is indeed checked to be a critical point.

From the first partials of f we compute the second partials, filling in the entries of the general Hessian:

(Hf)(x, y, z) =




0 1 + z 1 + y
1 + z 0 1 + x
1 + y 1 + x 0


 .

At the two critical points we obtain the Hessian matrices

(Hf)(0, 0, 0) =



0 1 1
1 0 1
1 1 0


 , (Hf)(−2,−2,−2) =




0 −1 −1
−1 0 −1
−1 −1 0


 .

The first of these was encountered near the start of Section 24.3, where we saw an orthogonal basis of
eigenvectors v,v′,v′′ whose respective eigenvalues are −1,−1, 2. These eigenvalues have mixed signs,
so this Hessian is indefinite (even though its entries are ≥ 0!), so the critical point is a saddle point.

At the other critical point (−2,−2,−2) the Hessian is the negative of the one obtained at (0, 0, 0), so
it has the same eigenvectors but with eigenvalues 1, 1,−2 that have been multiplied by −1. This is still
mixed signs, so again the critical point is a saddle point. Hence, f has no local extrema! ■
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FIGURE 26.4.2. Contour plot of f(x, y) = 2x2 − 5xy+2y3 +3x2y+2y2 with two rather
close critical points, one a local minimum and one a saddle point, along with 25-fold zoom
at each critical point to reveal the familiar type of contour plot (very!) nearby.
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Example 26.4.5. We finish our tour of examples by revisiting our old friend 2x2−5xy+2y3+3x2y+2y2

from Example 25.3.4, which had two nearby critical points: P = (0, 0) and Q. In the middle picture in
Figure 26.4.2 above we provide a contour plot on the scale of the same square as seen in Example 25.3.4,
namely the square of points (x, y) with |x|, |y| ≤ 2. A glance at that plot suggests that something a bit
peculiar may be happening near the origin, but it is hard to see.

On the left and right sides in Figure 26.4.2, we see a 25-fold zoom on P = (0, 0) (red dot for the left
picture) and the nearby critical point Q (red dot for the right picture) that reveals what is going on: part
of the elliptic level sets near Q (as expected from Remark 26.3.6) is also part of the hyperbolic level sets
near P ! That explains the unusual-looking shape of the contour plot in the surrounding vicinity.

Let’s now apply our systematic eigenvalue techniques to this function f(x, y), to see that it detects the
microscopic local behavior illustrated so strikingly in Figure 26.4.2. The gradient of f is

∇f =

[
4x− (5− 6x)y

3x2 − 5x+ (6y2 + 4y)

]
,

so any critical point (x, y) must satisfy the two equations

4x = (5− 6x)y, 3x2 − 5x+ (6y2 + 4y) = 0.

The first equation shows that if x = 0 then y = 0, and clearly P = (0, 0) satisfies both equations, so P is
a critical point. For x ̸= 0, the first equation forces 5 − 6x ̸= 0 and y = 4x/(5 − 6x). Plugging this into
the second equation and doing some algebra (and cancelling a factor of 3x ̸= 0 that appears throughout)
yields the cubic condition on x mentioned in Example 25.3.4. That cubic has only one real root a (which
can be approximated on a computer); this gives the other critical point Q = (a, b) with b = 4a/(5− 6a).

To understand the local behavior of f near these points, we differentiate the components of ∇f to

obtain the Hessian (Hf)(x, y) =

[
4 + 6y −5 + 6x
−5 + 6x 4 + 12y

]
. Thus, (Hf)(0, 0) =

[
4 −5
−5 4

]
has determinant

16− 25 = −9 < 0, so its eigenvalues have opposite signs and hence the Hessian is indefinite. This shows
(0,0) is a saddle point, with level sets that are approximately hyperbolas very nearby (as seen in the 25-fold
zoom on the left in Figure 26.4.2). For Q = (a, b) we have

(Hf)(Q) =

[
4 + 6b −5 + 6a
−5 + 6a 4 + 12b

]
,

and det(Hf)(Q) is approximated using numerical approximations to a and b = 4a/(5 − 6a). This deter-
minant is positive, so the eigenvalues are nonzero with the same sign and (Hf)(Q) is definite. Thus, the
level sets very nearby Q are approximated by ellipses, as seen in the 25-fold zoom on the right in Figure
26.4.2. The trace is 8+18b > 0, so the eigenvalues are both positive and hence Q is a local minimum. ■

Remark 26.4.6. In this chapter we have seen the close relationship between the behavior of a function
f : Rn → R near a critical point a and the eigenvalues and eigenvectors of the Hessian (Hf)(a), especially
when all eigenvalues are nonzero. Using the same mathematical input, it turns out that the nearly opposite
extreme of a Hessian having only one nonzero eigenvalue which moreover has large absolute value with
n = 2, 3 underlies the computer vision technique called ridge detection. This is broadly useful in areas
such as: facial recognition with wrinkles, detecting blood vessels in brain imaging, and digital humanities
to reconstruct (via scanning techniques) a virtual unfolded version of ancient documents that are too fragile
to open up!

26.5. Your mathematical journey, and future course advice. After all of the hard work you put in
during this course, you are now aware of a vast array of mathematical concepts and techniques that you
didn’t know before (some of which may require further practice and experience to fully internalize). Even
if you have previously seen some concepts in this course (possibly in special cases), we hope that now
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you more deeply understand them and their relation to broader contexts. And you have seen that solving a
mathematical problem can require the development of new ways of thinking, not only plugging something
into a new formula. For example:

(i) When you hear a physicist talk about 4-dimensional geometry, a computer scientist speak about a
million-dimensional data structure, or an economist refer to high-dimensional statistics, you now
know that there is absolutely nothing mysterious or “purely theoretical” going on. The real world
abounds in problems involving n unknowns with large n, and you are now familiar with the algebraic
and geometric framework for seriously discussing such problems and even solving them.
Humans invented both linear algebra in Rn (for all n) and associated concepts such as distance, angle,
subspace, and especially dimension that provide a powerful visual language to discuss a vast array
of real-world questions involving many unknowns. This language works so well that it enables us to
develop visual expectations (which can often be proved as theorems) far beyond the cases n = 2, 3 of
everyday experience.

(ii) You are now aware that solutions to practical mathematical problems can rely upon a surprising syn-
thesis of concepts that were invented for other purposes. For instance, the story of the multivariable
second derivative test for optimization of scalar-valued functions involved many algebraic and geo-
metric ideas (quadratic forms, orthogonality, equality of mixed partials, and eigenvalues) which were
each useful in their own way and seemed to have nothing to do with each other at first sight. Those
ideas unexpectedly came together via a deep mathematical result (the Spectral Theorem).

If you look back over the table of contents, we hope you’re pleased at how much you’ve grown math-
ematically in one quarter in terms of both knowledge and maturity of mathematical thinking. Learning is
a process of successive approximation, and as you see the ideas and methods of this course arise in other
areas of study you will solidify and deepen your command of them. In the final (optional) Chapter 27, we
provide a taste of a few of the many additional ways in which the linear algebra ideas you have learned
can be put to good use.

This course provides the background for many other Math classes that are useful in future studies either
within mathematics or in other fields (e.g., natural sciences, engineering, economics, computer science,
etc.). We’d like to offer some advice on choosing between two courses that are natural follow-ups: Math
104 and Math 113 (both offered every autumn, winter, and spring), each of which develops linear algebra
in new but quite different directions.

Both Math 104 and Math 113 will give you a broader understanding of how to work with matrices and
much more about the fundamental concepts of eigenvalues and eigenvectors than there is time to cover in
Math 51 (e.g., generalized eigenspaces and Jordan form). The role of eigenvalues is so central in so many
applications of linear algebra in the natural sciences, economics, statistics, and computer science that the
utility of further study of linear algebra is likely to be closely linked to the extent to which it broadens your
knowledge about eigenvalues (e.g., the workhorse of data science called “principal component analysis”
is ultimately a statistical reinterpretation of the Spectral Theorem).

Math 104: One theme in Math 51 is that modern techniques for analyzing data, no matter the discipline
in which they arise, rely on large-scale linear algebra computations. You now know that understanding the
basic principles of linear algebra in R2 or R3 is not so different from Rn for possibly very large values of
n when one has set up an appropriate language.

However, when it comes to doing actual computations, there is a big difference between smaller and
larger dimensions. When doing calculations in Rn, say when n ≤ 5, it is not laborious for a computer
to solve linear systems by the process of eliminating variables (called Gaussian elimination, expressed in
more modern terms as an LU -decomposition), or to compute determinants to check whether matrices are
invertible, etc. These techniques are less feasible on a computer when n is large. In real-world problems,
n can be in the millions or billions, and then computer calculations must be done with great forethought.
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There is an entirely different side to applied linear algebra: finding efficient and quick (and numerically
stable) algorithms for work in very large dimensions. Math 51 has sometimes mentioned the importance
of numerical stability (e.g., when talking about the QR-decomposition), but there is a lot more to the
story. The emphasis in Math 104 is on acquiring practical and conceptual fluency with some of the most
important techniques and algorithms in applied linear algebra.

For example, in practice it is sometimes important to be able to estimate “how long” a given compu-
tation takes. This is the beginning of the study of computational complexity. If you are solving a problem
involving an n × n matrix, then does the computation need only around n steps (this is regarded as very
good), or n3 steps (less good, but still quite tolerable), or 10n steps (an utter disaster)?

Also, many problems simply cannot be handled “exactly”. For example, the computation of the eigen-
values of an n×nmatrix involves finding the roots of a specific polynomial of degree n (the “characteristic
polynomial”), and not only is there no exact formula for those roots (for n ≥ 5), but once n is even of mod-
erate size it is not numerically feasible to use that polynomial to find the eigenvalues. Instead, one employs
efficient and clever algorithms for numerically approximating the eigenvalues (as sketched in Appendix
H, using matrix factorizations): a sequence of matrices is devised that allows one to create sequences of
numbers converging to the eigenvalues of the original matrix.

Such material and much more (such as a broader mastery of eigenvalues and the related fundamental
“singular value decomposition” introduced in Section 27.3) is covered in Math 104 and is essential for
applications of linear algebra throughout data science, natural sciences, and engineering. There is a lot of
excellent software to implement such algorithms, but the best scientists and engineers have a good sense
of what is going on inside these software tools because in any real-life situation it is only a matter of time
before one needs to make a computation or solve a problem for which the software tools in hand are not
good enough and one needs to dig deeper to make things work. This is one among many reasons for
learning the computational theory of linear algebra with the breadth and depth developed in Math 104.

Math 113: Further coursework in pure as well as many parts of applied mathematics involves proofs.
Math 51 has given you a flavor of how the conceptual side of math (such as the importance of precise
definitions and the utility of thinking in terms of properties rather than explicit numbers) can involve ways
of thinking that are rather different from how you probably encountered math before now.

Gaining familiarity and facility with proof-writing and reading is best done in the context of using those
skills to understand a substantive subject (just as learning how to cook is best done by preparing actual
meals). Math 113 provides an introduction to proof-writing in the context of linear algebra developed in a
manner that focuses on the logical structure of the subject, using the broader setting of vector spaces (with
complete proofs throughout) and going much further. You will also deepen your knowledge about linear
algebra, including a lot more about the “conceptual perspective” (building on notions and results that are
already familiar to you from Math 51), and see how to push these ideas in many new directions.

The types of reasoning involved in doing this are tremendously useful in parts of other disciplines
too (e.g, theoretical computer science, quantum computation, quantitative finance, theoretical physics,
computer graphics). For example, in applications of linear algebra throughout other quantitative fields
as well as in computer science and in more advanced mathematics it is useful to work with scalars from
number systems other than R (e.g., complex numbers, or “finite fields”), and the conceptual approach
in Math 113 provides linear algebra in this broader setting. Another context is investigating the question
“What are the theoretical limits of anonymity when I am making queries on a large data set”? For example,
can one get useful data out of large collections of genomic information, or even just health records, without
compromising the anonymity of the people from whom this data was collected? (This is a field called
“differential privacy”.)

Everyone on the Math 51 course staff is happy to discuss these or other course options in more detail.
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Chapter 26 highlights (link to highlights in previous chapter)

Notation Meaning Location in text
nothing new!

Concept Meaning Location in text
saddle point for f : Rn → R,
with n ≥ 2

a critical point a at which f has a local max-
imum on one line through a and a local mini-
mum on another line through a

Definition 26.1.3

Result Meaning Location in text
second derivative test via definiteness a critical point a of f is a local maximum,

local minimum, or saddle point if (Hf)(a)
is negative-definite, positive-definite, or
indefinite respectively

Theorem 26.1.5

second derivative test via eigenvalues a critical point a of f is a local maxi-
mum, local minimum, or saddle point if
the eigenvalues of (Hf)(a) are all nega-
tive, all positive, or at least one positive
and one negative respectively

Theorem 26.3.1

for n = 2, determine signs of eigenvalues
without computing the actual eigenvalues

sign of determinant indicates when eigen-
values have same or opposite signs, and
when same sign then that sign is the same
as the sign of the trace

Theorem 26.3.4

for n = 2, eigenvector information for
Hessian controls contour plot near critical
point a

if eigenvalues have same sign then plot
near a is approximate nested ellipses
aligned with the eigenvector directions; if
eigenvalues have opposite signs then plot
near a is approximate nested hyperbolas
aligned with the eigenvector directions

Remark 26.3.6

Skill Location in text
for n = 2, be aware of how geometry of contour plot near a critical
point indicates if it is a local extremum or a saddle point

Figures 26.1.3, 26.1.4, 26.3.1, 26.4.1

apply second derivative test via definiteness for diagonal Hessian at
critical points

Example 26.2.4

recognize definiteness of diagonal matrices by inspection Example 26.1.8

apply second derivative test via eigenvalues, especially for n = 2
(and when given orthogonal basis of eigenvectors or their eigenvalues
for n > 2)

Examples 26.4.1, 26.4.2, 26.4.3, 26.4.1

for n = 2, use eigenvectors and eigenvalues for Hessian at critical
point to sketch qualitatively correct contour plot nearby (nested el-
lipses or hyperbolas aligned with eigenvector lines)

(26.3.1), Figure 26.3.1
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26.6. Exercises. (link to exercises in previous chapter)

Exercise 26.1.

(a) Show that the function f(x, y) = −17

2
x2 + 4xy − y2 + 5x+ 2y + 1 has exactly one critical point by

finding it. (The coordinates of the critical point are positive integers.)
(b) Determine the eigenvectors and eigenvalues for the symmetric Hessian matrix at the critical point in

(a) (as a safety check, make sure the eigenvectors you find are perpendicular to each other), and use
this information to determine if f has a local maximum, local minimum or a saddle point there.

(c) Sketch a contour plot of f near the critical point by computing eigenvalues and corresponding eigen-
vectors for the Hessian there. (It only matters to sketch approximate ellipses or hyperbolas aligned
with the appropriate perpendicular lines through the critical point, indicating the longer axis direction
in the ellipse case and the eigenline to which the asymptotes are “closer” in the hyperbola case.)

Exercise 26.2. Consider the most general quadratic function of two variables

f(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F

where A, . . . , F are scalars (and at least one of A,B,C is nonzero).
(a) Show that finding the critical points of f amounts to solving a system of two linear equations in x and

y (depending on A, . . . , F ). By writing this in matrix form, describe in terms of A, . . . , F when this
has a unique solution. (Hint: you want a non-vanishing determinant).

(b) For the cases where there is a unique critical point, characterize in terms ofA, . . . , F when this critical
point is a local maximum, when it is a local minimum, and when it is a saddle point.

(c) Give an example for which there is no critical point, and an example in which there is an entire line
of critical points. (Hint: allow some but not all of A,B,C to be 0.)

Exercise 26.3. The function f(x, y) = 8x2+6xy+4x3+3xy2 appears in Example I.2.3, where its critical
points are found: (0, 0), (0,−2), (−3/2,−1), (1/6,−1).
(a) Compute the Hessian matrix at each of these points and for each determine if it is a local maximum,

local minimum, or a saddle point.
(b) Sketch an approximation to the contour plot of f near each of the points (−3/2,−1) and (1/6,−1)

by computing eigenvalues and corresponding eigenvectors for the Hessian there (indicating the longer
axis direction in the ellipse case and the eigenline to which the asymptotes are “closer” in the hyper-
bola case.)

Exercise 26.4. For the same function f(x, y) = 8x2 + 6xy + 4x3 + 3xy2 as in Exercise 26.3, do the
following:
(a) Determine the eigenvalues of the Hessian of f at each of the critical points (0, 0) and (0,−2), and

compute an eigenvector for each eigenvalue.
(b) Use the information from part (a) to sketch an approximation to contour plot of f near each of these

points by computing eigenvalues and corresponding eigenvectors for the Hessian there (indicating the
longer axis direction in the ellipse case and the eigenline to which the asymptotes are “closer” in the
hyperbola case.)

Exercise 26.5. Let f(x, y) = 2x3 + xy2 + 5x2 + y2.
(a) Find all the critical points of f(x, y).
(b) Compute the Hessian matrix at each of these points, and for each determine if it is a local maximum,

local minimum, or a saddle point.
(c) Sketch the contour plot of f near each critical point that is a local extremum, by computing eigen-

values and corresponding eigenvectors for the Hessian there. (It only matters to sketch approximate
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ellipses aligned with the appropriate perpendicular lines through the critical point, indicating the
longer axis direction.)

Exercise 26.6. Let f(x, y) = sin x+ sin y + cos(x+ y).
(a) Find all the critical points of f(x, y) in the region 0 ≤ x < 2π and 0 ≤ y < 2π. (There are 6 such

points. You may find it useful to use the identity sin(2x) = 2 sin(x) cos(x) and the fact, seen by
inspecting the graph of cos(x), that cos(b) = cos(a) precisely when b = ±a+ 2πk for an integer k.)

(b) Compute the Hessian matrix at each of the 6 points found in (a), and for each determine if the critical
point is a local maximum, local minimum, or a saddle point for f .

Exercise 26.7. Consider the function f(x, y) = x3 + x2 − y2 from Remark 26.1.4. We saw there that
(0, 0) is a critical point for f .
(a) Show that f has exactly one other critical point, which occurs at (−2/3, 0).
(b) By analyzing a Hessian, show that f has a local maximum at this critical point (so this is the only

point in R2 where f has a local maximum.)
If you look closely at the picture of the graph of f(x, y) in Figure 26.1.5, you can see the local maxi-

mum in (b) as the peak of a small hill on the graph of f a bit to the left of the black dot over (0, 0). If you
look along the right side of the graph there, you’ll see that there are many points in R2 at which the value
of f very much exceeds the value at the only local maximum for f . Hence it can happen that all local
maxima fail to be global maxima when working with functions on all of Rn (so when one is seeking global
extrema on Rn, one really needs to do more than find local extrema). This phenomenon is encountered
for functions of one variable too: look at the graph of x3 +x2 given in the middle picture in Figure 26.1.5.

Exercise 26.8. Optimization often takes place on bounded regions, and one must apply a mixture of ideas
to identify critical points and determine their nature in the presence of boundary points. This exercise
illustrates the type of calculation and reasoning that often must be used.

Let f(x, y) = x2 − y2 and consider the problem of understanding the nature of each critical point of
f in the region (x − 1)2 + y2 ≤ 4, i.e., the disk D of radius 2 centered at the point (1, 0). As will be
explained below, the notion of critical point will be expanded slightly here.
(a) First find all critical points of f inside this diskD, i.e., away from its boundary, and determine whether

they are local maxima, local minima or saddle points.
(b) Now consider the values of f on the boundary (x − 1)2 + y2 = 4 of D. One way to do this is to

consider this boundary as the image of the parametrized curve c(t) = (1 + 2 cos t, 2 sin t). You can
check this yourself, that as t ranges between 0 and 2π, the image of c(t) traces around this circle. The
composite function h(t) = (f ◦ c)(t) encodes all the values of the function f as one moves around
the circle. Find the critical points of this function of one variable. Your answer may be in terms of the
value of sin or cos at such angles t (in radians).

(c) What is the maximum value of f on the disk D and where is it attained?
(d) What is the minimum value of f on the disk D and where is it attained? You should have one point

found in (a) and (b) at which f does not have a global extreme value onD; show it is a local maximum
(this only requires some basic algebra, no calculus).

Exercise 26.9. Sometimes the second derivative test using the Hessian does not provide enough informa-
tion about a function to determine the nature of a given critical point (much as the second derivative test
at a critical point in single-variable calculus is inconclusive when the second derivative vanishes; e.g., x3

and ±x4 at x = 0). In such cases there is no systematic and completely general method, so one must rely
instead on techniques specific to the case at hand (which often may involve just “experimenting”).

For each function f below, determine the critical point(s) of f and check when the second derivative
test determines the local situation near the critical point (in which case you should say what it tells us)
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or is inconclusive. In the latter cases, use whatever method you can come up with for each situation to
determine if the critical point is a local maximum, a local minimum, or an inflection point. (In cases where
the second derivative test does not give a conclusion, we say that a critical point p is an “inflection point”
– a less informative condition than “saddle point” – if there are points arbitrarily near p at which f has
value less than f(p) and other points arbitrarily near p at which f has value greater than f(p).)
(a) f(x, y) = x3 − 3xy2;
(b) f(x, y, z) = 3

4
x4 + y4 + z4 + x3;

(c) f(x, y) = x3 − 2x2 + xy2.

Exercise 26.10. Let f(x, y) be a harmonic function in two variables: this means f satisfies Laplace’s
equation fxx + fyy = 0. Let (a, b) be a critical point of f . Use Laplace’s equation to show that either
(Hf)(a, b) is the 2 × 2 zero matrix or (a, b) is a saddle point for f (so f never has a local extremum at
a point with nonzero Hessian). Hint: think about the characteristic polynomial of the Hessian, using the
information about the diagonal terms due to Laplace’s equation.

With more work (beyond the level of this course), the non-vanishing condition on the Hessian can be
dropped: a non-constant harmonic function f(x, y) on R2 has no local extrema (no local maxima and no
local minima). This is called the “Maximum Principle” for harmonic functions.

Exercise 26.11. This exercise illustrates that the gradient descent method described in Section 11.3 does
not look at all promising if one is trying to find critical points that are saddle points. Let f(x, y) = xy, so
the origin (0, 0) is its only critical point and this is a saddle point. For any point p ∈ R2, define g(p) to be
the output of one step of the gradient descent method starting at p using step size t = .25.

Compute g(p) for each of the following choices of p: (1, 0), (1/2, 1/2), (0, 1), (−1/2, 1/2), (−1, 0),
(−1/2,−1/2), (0,−1), and (1/2,−1/2). Draw this information on a contour plot for f (which is a
collection of hyperbolas, corresponding to level sets f(x, y) = c for c < 0 as well as for c > 0).

Exercise 26.12. This exercise explores strict convexity from Remark 26.1.6. Suppose that f(x, y) is
a function defined on the plane which has the property that (Hf)(x, y) is positive definite at every point
(x, y). Take any two points, say (3, 4) and (−1, 2) to be specific, and suppose that f(3, 4) = 6, f(−1, 2) =
8, again to be specific. Let c(t) be the vector-valued function which parametrizes the line through these
two points:

c(t) = (1− t)

[
3
4

]
+ t

[
−1
2

]
=

[
3
4

]
+ t

[
−4
−2

]
=

[
3− 4t
4− 2t

]
.

Consider vector-valued function

v(t) = (1− t)



3
4
6


+ t



−1
2
8


 =



3
4
6


+ t



−4
−2
2


 =



3− 4t
4− 2t
6 + 2t




which parametrizes the line connecting the two points



3
4
6


 and



−1
2
8


 on the graph of f . We want to show

that for every t with 0 < t < 1 we have (f ◦ c)(t) = f(3− 4t, 4− 2t) < 6 + 2t.

The function 6 + 2t here the z-coordinate of v(t) (i.e, the height of the line above the xy-plane at

c(t)), so the inequality means that the segment connecting the points



3
4
6


 and



−1
2
8


 on the graph of f

lies completely above the graph of f , except of course at its two endpoints that lie on the graph. The
interpretation of this is that if the Hessian of f is positive-definite at every point, then the graph of f is
bowl-shaped upward as shown in Figure 26.6.1.
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• •

•

FIGURE 26.6.1. If Hf is always positive-definite then the line segment joining points on
the graph of f always lies above the graph of f .

The picture in Figure 26.6.1 shows a piece of the graph of one function; we would like to show that the
techniques we have learned provide a systematic way to understand that this bowl-shaped property holds
in all cases with a positive-definite Hessian (justifying Remark 26.1.6). The method outlined below is in
the context of the above special case just to keep the notation under control; it is a completely general
technique.

To show f(3−4t, 4−2t) < 6+2t is the same as to show the difference k(t) = 6+2t−f(3−4t, 4−2t)
is > 0 for every t in the interval (0, 1). This difference vanishes at t = 0 and t = 1, so we want to rule out
the possibility k(t0) ≤ 0 for 0 < t0 < 1. We’ll do this via calculus.
(a) Calculate k′(t) and k′′(t) using the (multivariable) Chain Rule, and use this to deduce from the

positive-definiteness assumption on the Hessian everywhere that k′′(t) < 0 for every t.
(b) Explain why a function h : [a, b] → R that vanishes at the two endpoints of an interval and has

negative second derivative at all a < x < b must be > 0 on the interval away from the endpoints.
(Hint: suppose h attains a minimum away from the endpoints, noting the minimum is ≤ 0 since
h(a) = 0 = h(b). Also keep in mind the second derivative test from single-variable calculus.)
Deduce that k(t) > 0 for 0 < t < 1, establishing the desired behavior of f as above.

Exercise 26.13. Briefly justify whether each of the following statements is either true (i.e., always true)
or false (i.e., sometimes not true):
(a) The function f(x, y) = x+ y + x2 + y2 has a local minimum at (0,0).
(b) If f has a critical point at a, and v is an eigenvector for A = (Hf)(a) with eigenvalue 7, then f has

a local minimum at a on the line through it along the direction of v.
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27. More eigenvalue applications: ODE systems, population dynamics, SVD (optional)

In this final (optional!) chapter we discuss more applications of eigenvalues and eigenvectors. We
begin in Section 27.1 by using eigenvalues to transform linked systems of differential equations (as arise
in the study of structures consisting of many moving parts in physics, economics, etc.). This leads to a
systematic method for explicitly solving such differential equations, as you will explore in Math 53.

Next, returning in Section 27.2 to the topic of Markov chains that we introduced in Chapter 16, we
explore more deeply how eigenvalues illuminate the behavior of matrix powers for large exponents that
we initially considered in Section 24.4 for population dynamics. The key lesson is that the eigenvalues
that are largest and second largest (in the sense of absolute value) control the long-term dynamics.

Finally, as an introduction to central concepts in machine learning and applications of data analysis
throughout many scientific fields, in Section 27.3 we discuss the singular value decomposition of general
matrices (possibly not symmetric, nor even square). This is a computationally powerful replacement for
the notion of eigenvalues, though its development ultimately rests on a solid understanding of eigenvalues
(and particularly the Spectral Theorem from Section 24.1). We discuss a variety of applications of the
singular value decomposition, including principal component analysis (whose underlying mathematical
structure amounts to a statistical perspective on the singular value decomposition).

By the end of this chapter, you should be able to:
• use eigenvalues and eigenvectors to transform a pair of coupled (linear) differential equations into

a pair of decoupled ones, at least when the governing 2× 2 matrix is symmetric;
• use the largest eigenvalue and an associated eigenvector to approximate the long-term behavior

of a discrete dynamical system, at least when the governing matrix is symmetric;
• define the singular value decomposition of a matrix, and relate this to rank-reduction and principal

component analysis.

27.1. Coupled oscillators. In physics one often studies oscillating systems. For example, the oscilla-
tion of a pendulum whose initial angle is not too big can be (approximately) described by the differential
equation

d2θ

dt2
+
g

ℓ
θ = 0, (27.1.1)

where g ≈ 9.8ms−2 is the gravitational acceleration, ℓ is the length of a pendulum, and θ is the angle that
the pendulum makes with the vertical direction.

Other examples of oscillators include a mass on a spring (for which the role of θ is played by a variable
representing the position of the mass) and electrical current through a circuit that contains capacitors and
inductors (for which the role of θ is played by the current through the circuit).

θ

System A: Simple pendulum. System B: Mass and spring. System C: An electrical circuit.
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When two such systems are coupled together – a simple example is the double pendulum – the result
is still described by a differential equation, but now involving multiple variables.

θ1

θ2

System D: Double pendulum.

Namely, if θ1, θ2 are the angles describing the double pendulum, they will satisfy (approximately) a
system of differential equations linking θ1 and θ2 that may look something like this:





d2θ1
dt2

+ 3θ1 − 2θ2 = 0

d2θ2
dt2

− 2θ1 + 3θ2 = 0.

(27.1.2)

This expresses how the second derivative of each θj depends on both θ1 and θ2; it is a linked system of
differential equations. The specific coefficients in (27.1.2) depend on the ratios of the lengths and of the
masses of the pendulums (though their signs match what is in (27.1.2)). We are not going to solve this
system, but rather will explain how to reduce it to a pair of unlinked simpler equations like (27.1.1).

First of all, we are going to solve this directly, using a magical substitution. Then we will see that the
substitution really came from eigenvectors (and so can be found in a much wider range of settings without
any recourse to magic). As a magical substitution, consider the new variables u1, u2 given by

u1 = θ1 + θ2, u2 = θ2 − θ1.

The values u1, u2 determine the angles θ1, θ2 since θ1 = (u1 − u2)/2 and θ2 = (u1 + u2)/2, so these new
variables are just another way of encoding the angles of the pendulum (but they lack the direct physical
significance of θ1, θ2). However, mathematically they will be very convenient.

To reveal the useful feature of these new variables, we compute their second derivatives:

d2u1
dt2

=
d2θ1
dt2

+
d2θ2
dt2

= −(3θ1 − 2θ2)− (−2θ1 + 3θ2) = −(θ1 + θ2) = −u1, (27.1.3)

d2u2
dt2

=
d2θ2
dt2

− d2θ1
dt2

= −(−2θ1 + 3θ2)− (−3θ1 + 2θ2) = −5(θ2 − θ1) = −5u2. (27.1.4)

In other words, u1, u2 satisfy the equations u′′1 + u1 = 0, u′′2 + 5u2 = 0. These equations are much simpler
because u1 and u2 do not interact. They each look like the equation for a single pendulum. In other words,
by making a clever substitution, we were able (from the mathematical point of view) to “decouple” the
two oscillators. The utility of such decoupling is that one can find general solutions u1 and u2 to each of
these decoupled equations (this is studied from a wider perspective in Math 53), so then we can determine
the general solutions for θ1 = (u1 − u2)/2 and θ2 = (u1 + u2)/2. (Up to a scaling factor, the same clever
substitution arises in the quantum mechanical study of ammonia [Feyn1, Vol. III, Sec. 8.6, (8.46)-(8.53)].)

Now let us explain where this change of variables comes from, so we can see that it underlies a
completely systematic method (not requiring clever tricks). Since the key theme of this book is always
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to use vectors and matrices to encode (systems of) equations, we first observe that the pair of differential
equations (27.1.2) is the same as the single vector equation

d2

dt2

[
θ1(t)
θ2(t)

]
+

[
3 −2
−2 3

]

︸ ︷︷ ︸
M

[
θ1(t)
θ2(t)

]
=

[
0
0

]
, (27.1.5)

where we have used a shorthand: we write
d2

dt2

[
θ1(t)
θ2(t)

]
to mean

[
θ′′1(t)
θ′′2(t)

]
(i.e., we differentiate a vector of

functions entrywise). The key is to apply some serious linear algebra to the 2×2 matrixM of coefficients.

The matrix M =

[
3 −2
−2 3

]
is symmetric (this happens for the double pendulum in special circum-

stances) with eigenvalues λ1 = 1 and λ2 = 5. Corresponding unit eigenvectors are

w1 =
1√
2

[
1
1

]
, w2 =

1√
2

[
−1
1

]

(i.e., Mw1 = w1 and Mw2 = 5w2, as can be checked directly); the factor 1/
√
2 in each wj is there solely

to make wj a unit vector (i.e., ∥wj∥ = 1). As we have explained in Section 24.4, since the eigenvectors
wj are unit vectors, we have a matrix decomposition

M =
1√
2

[
1 −1
1 1

]

︸ ︷︷ ︸
W

[
1 0
0 5

]

︸ ︷︷ ︸
D

1√
2

[
1 1
−1 1

]

︸ ︷︷ ︸
W−1=W⊤

where W is the matrix whose jth column is wj .

Remark 27.1.1. Note that W is an orthogonal matrix (i.e., W⊤W = I2) because the wj are pairwise
orthogonal unit vectors (as can be checked by hand). This is not a coincidence, but rather holds by design:
if eigenvectors v,v′ of a symmetric matrix M have different eigenvalues then v and v′ must be orthogonal
(Theorem 24.1.1(ii)).

The vector differential equation (27.1.5) becomes:
d2

dt2

[
θ1
θ2

]
+WDW−1

[
θ1
θ2

]
=

[
0
0

]
.

Now if we multiply on the left by the “constant matrix” W−1 (this has entries that are fixed numbers, hav-
ing nothing to do with t) then it passes straight through the differentiation (by virtue of being a “constant
matrix”) to yield:

d2

dt2
(W−1

[
θ1
θ2

]
) +D(W−1

[
θ1
θ2

]
) =

[
0
0

]
. (27.1.6)

But what is W−1

[
θ1
θ2

]
? Writing it out, we have

W−1

[
θ1
θ2

]
=

1√
2

[
1 1
−1 1

] [
θ1
θ2

]
=

1√
2

[
θ1 + θ2
θ2 − θ1

]
.

Therefore – except for the scalar factor 1/
√
2 – the matrix-vector productW−1

[
θ1
θ2

]
precisely recovers the

variables u1 and u2 that we used above. Hence, upon multiplying through by
√
2 (to get rid of the factor

1/
√
2 everywhere), (27.1.6) says exactly:

d2

dt2

[
u1
u2

]
+

[
1 0
0 5

] [
u1
u2

]
=

[
0
0

]
.
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Unraveling the matrix notation, this is precisely the simplified system (27.1.3) and (27.1.4) that we
found earlier! The fact that D is diagonal corresponds to the decoupling with the non-interaction of u1
and u2. So the viewpoint of eigenvectors and eigenvalues indeed explains the original magical substitution
u1, u2 in place of θ1, θ2 (apart from the scalar factor 1/

√
2 which has no impact on the differential equation

satisfied by each uj).
The advantage of the approach via eigenvalues is that it is systematic and moreover works perfectly

well even if we had 50 variables θ1, . . . , θ50 instead of 2 variables, provided of course that one knows how
to find eigenvalues of a 50× 50 matrix (which can be done on a computer with a high degree of accuracy
in many circumstances). The moral remains the same:

Using eigenvalues and eigenvectors, systems of many linked oscillators can be turned into a
collection of independent oscillators (at least mathematically). The same happens for many
other situations with lots of moving parts that influence each other as they evolve in time.

Example 27.1.2. To give another worked example, let’s use the same technique to reduce the pair of linked
differential equations

d2x

dt2
= 2x+ 6y,

d2y

dt2
= 6x+ 7y (27.1.7)

to a pair of differential equations that are decoupled (i.e., each can be analyzed and solved separately). The
method is sketched here, and we leave it to the reader to fill in the details of the omitted computational
steps that proceed exactly as what we did for the system (27.1.2).

The system (27.1.7) can be written in vector form as

d2

dt2

[
x(t)
y(t)

]
+

[
−2 −6
−6 −7

] [
x(t)
y(t)

]
=

[
0
0

]
,

and the (symmetric) matrix

M =

[
−2 −6
−6 −7

]

that appears has as its eigenvalues λ1 = −11 and λ2 = 2. These have respective unit eigenvectors

w1 =
1√
13

[
2
3

]
, w2 =

1√
13

[
−3
2

]

which are readily checked to be orthogonal to each other (as we know they must be since they correspond
to different eigenvalues of a symmetric matrix); these are unit vectors due to the factor 1/

√
13 in each.

The 2× 2 matrix W with jth column wj is therefore orthogonal; explicitly it is

W =
1√
13

[
2 −3
3 2

]
,

and W−1 = W⊤ by orthogonality. Hence, the magical change of variables which will decouple the pair
of differential equations is given by

W−1

[
x
y

]
= W⊤

[
x
y

]
=

1√
13

[
2 3
−3 2

] [
x
y

]
=

1√
13

[
2x+ 3y
−3x+ 2y

]
.

As in our analysis of (27.1.2), the overall scaling factor 1/
√
13 is irrelevant for the purpose of decoupling

the differential equations, so we are led to introduce the new functions

u1(t) = 2x(t) + 3y(t), u2(t) = −3x(t) + 2y(t)

(from which we can recover the original functions: x = (2u1 − 3u2)/13 and y = (3u1 + 2u2)/13).
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Sure enough, when we compute second derivatives we get the desired decoupling:

d2u1
dt2

= 2
d2x

dt2
+ 3

d2y

dt2
= 2(2x+ 6y) + 3(6x+ 7y) = 22x+ 33y = 11(2x+ 3y) = 11u1,

d2u2
dt2

= −3
d2x

dt2
+ 2

d2y

dt2
= −3(2x+ 6y) + 2(6x+ 7y) = 6x− 4y = −2(−3x+ 2y) = −2u2.

In other words, the original linked pair of differential equations for x and y is equivalent to the pair of
unlinked differential equations

d2u1
dt2

− 11u1 = 0,
d2u2
dt2

+ 2u2 = 0

for u1 and u2 (where the coefficients −11 and 2 are the eigenvalues of M ). ■

Remark 27.1.3. You may wonder how significant it is that in each of the two previous examples we
arrived at 2 × 2 matrices that are symmetric. Our focus on examples with a symmetric matrix above
was for expository simplicity (since the Spectral Theorem then ensured we could find an orthonormal
basis of eigenvectors), to focus on the main point that eigenvalues are a powerful tool in the study of
systems of differential equations. Many coupled systems of n “linear” differential equations have a
governing n× n matrix that is not symmetric; does the above technique then break down?

The good news is that the mathematical technique based on eigenvalues works perfectly well
beyond the symmetric case. However, the behavior can become considerably more subtle to analyze
because beyond the symmetric case typically one has to account for the possibility of complex numbers
as eigenvalues, and also the analogue of the matrix W will no longer be orthogonal (and there are
some further issues related to the possibility of a repeated root of a characteristic polynomial). In
the non-symmetric case discussed in Example 24.4.3 there was a full set of real eigenvalues but the
orthogonality of W breaks down. You will learn how to handle such matters in Math 53.

27.2. Population dynamics. In Chapter 16 we saw that raising matrices to high powers often occurs
when modeling what happens to a system over a long period of time. In Proposition 24.4.2 we stated a
precise sense in which the eigenvalue that is largest (in the sense of absolute value) controls the behavior of
high powers of a square matrix in the symmetric case, and in Example 24.4.3 we illustrated that the ideas
carry over to the non-symmetric case. This application of eigenvalues is so important that we now use it
to analyze yet another example, and then discuss a refined lesson concerning how a dominant eigenvalue
controls high powers of a square matrix.

Example 27.2.1. Suppose there are several colonies of ants, one at each corner of a square. Initially, there
are 10000 ants at one corner, and 1000 ants at each of the other three corners.

Corner 1 Corner 2

Corner 3Corner 4

Each colony grows by 10% each week and at each corner there is also “diffusion”: 20% of the original
ant population (from the start of the week) leaves and moves clockwise to the next corner; another 20% of
that original population leaves and moves counterclockwise to the next corner.
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How many ants are there at each corner after 10 weeks? You might write a computer program to
do this. However, the method we present below is, in general situations, much more efficient (and more
illuminating). We encode the ant population at the end of week n as a vector giving the population at each
corner of the square:

v(n) =




population at corner 1 at the end of week n
population at corner 2 at the end of week n
population at corner 3 at the end of week n
population at corner 4 at the end of week n


 ,

so the initial population (“end of week 0”) is encoded in the vector

P = v(0) =




10000
1000
1000
1000


 .

The description of what happens each week translates into the following matrix equation:

v(n+ 1) =




0.7 0.2 0 0.2
0.2 0.7 0.2 0
0 0.2 0.7 0.2
0.2 0 0.2 0.7




︸ ︷︷ ︸
B

v(n) = B v(n) (27.2.1)

with B denoting the indicated 4× 4 matrix. To explain this, let’s consider what the first row is saying: the
population at corner 1 at the end of week n + 1 is equal to the sum of: 20% of population at corner 2 at
the end of week n, 20% of the population at corner 4 at the end of week n, and (1 − 0.2 − 0.2 + 0.1) =
0.7 = 70% of the population at corner 1 at the end of week n. The 70% figure arises because 20% of the
population at corner 1 at the end of week n is lost to diffusion into each of the two adjacent corners (so
−0.2 twice) and there is also a 10% growth of the population at corner 1 at the end of week n (so +0.1).

Arguing as in Sections 16.1 and 16.2, feeding (27.2.1) into itself repeatedly yields v(n) = Bnv(0) =
BnP for all n ≥ 1, so we want to compute v(10) = B10P. We will exploit eigenvectors to compute
this. The diffusion rates were chosen to make B symmetric, so the Spectral Theorem applies and hence
there is an orthonormal basis of eigenvectors for B. (General diffusion problems involve high powers of
a non-symmetric matrix, so then one has to grapple with issues as in Remark 27.1.3.) The matrix B has
(exact) eigenvalues λ1 = 0.3, λ2 = λ3 = 0.7, λ4 = 1.1, with corresponding (unit) eigenvectors

w1 =
1

2




−1
1
−1
1


 ,w2 =

1

2




−1
−1
1
1


 ,w3 =

1

2




1
−1
−1
1


 ,w4 =

1

2




1
1
1
1


 .

(That is, Bwj = λjwj with ∥wj∥ = 1.) These nonzero vectors in R4 are pairwise orthogonal (check) and
so constitute a basis of R4. This is an orthonormal basis since we arranged each wj to be a unit vector.

Now write P as a linear combination of the members of the orthonormal basis {w1,w2,w3,w4} of
R4 using the Fourier formula from Theorem 5.3.6 (with v = P and vi = wi there):

P =
4∑

j=1

(P ·wi)wi = −4500w1 − 4500w2 + 4500w3 + 6500w4. (27.2.2)
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The utility of this is that we can now easily compute what happens when we apply B ten times:

B10P = −4500B10w1 − 4500B10w2 + 4500B10w3 + 6500B10w4

= −4500(0.3)10w1 − 4500(0.7)10w2 + 4500(0.7)10w3 + 6500(1.1)10w4,

where the final equality expresses the fact that B10wj = λ10j wj for every j (a general feature of powers of
a square matrix applied to an eigenvector of the matrix, as we saw in (24.3.1)).

This final expression forB10P may look like a mess, but the key point is that the first three coefficients
involve the 10th powers of the positive numbers 0.3 and 0.7 that are less than 1, and if we raise a number
strictly between −1 and 1 to a high power then the output is very close to 0. Consequently, the first three
coefficients in our final expression for B10P are negligible, and we arrive at the good approximation

B10P ≈ 6500(1.1)10w4. (27.2.3)

If we work everything out exactly on a computer, it turns out that

B10P =




8556
8430
8303
8430


 ,

and the curious feature is that the numbers are all rather close to each other. In other words, after 10 weeks
the number of ants in the various corners has roughly equalized (in contrast with the substantial discrep-
ancy in favor of corner 1 at the outset). To understand conceptually why this equalizing has occurred,

the crucial point is that the entries of the eigenvector w4 =
1

2




1
1
1
1


 (with λ4 = 1.1) are all equal to each

other by inspection, so the same holds for any scalar multiple cw4, such as the right side of (27.2.3). The
approximation gets even better as the number of weeks grows beyond 10, and the equalizing becomes
even stronger. After a long time, all corners of the square have approximately the same number of ants.

In terms that apply beyond this setting (e.g., one might have several eigenvalues larger than 1), what
matters is that |λ4| is larger than |λ1|, |λ2|, |λ3|, so the ratios λ1/λ4, λ2/λ4, λ3/λ4 have absolute value less
than 1. This is expressed by an important lesson in Proposition 24.4.2 that we repeat again:

In situations involving raising a matrix to a power, the eigenvalue that is largest (in the sense
of absolute value) and a corresponding unit eigenvector control the long-term behavior.

Eigenvalues tell us even more! If the second largest eigenvalue 0.7 had been very close to the largest
eigenvalue λ4 then we would have needed to pass to even larger n before the approximation BnP ≈
(P ·w4)λ

n
4w4 (replacing (27.2.3)) became valid. Stated more generally (but still informally):

In situations involving raising a matrix to a power, the eigenvalue µ that is second largest (in
absolute value) controls how long it takes before the eigenvalue λ that is largest (in absolute
value) “takes over.” The closer |µ| is to |λ|, the longer it takes for the behavior of λ and a
corresponding unit eigenvector to dominate.

For further examples, go back to Chapter 16. Both Section 16.1 and Section 16.2 involve situations
where, after many repetitions of a certain process (a bird migration and a coin flip respectively), the
situation approached a “steady state”. By a refinement of the statement of Theorem D.1.1, 1 is a dominant
eigenvalue for each. If you compute (say on a computer) the eigenvalue µ whose absolute value is second
largest, it is instructive to compare the ratio 1/|µ| in each case with how quickly the system approaches its
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“steady state” in each case: for Section 16.1 we have µ = −1/2 (so 1/|µ| = 2) and for Section 16.2 we
have µ = (1 +

√
5)/4 ≈ 0.8090 (so 1/|µ| = 1/µ ≈ 1.2361). For the PageRank algorithm in Appendix D,

1/|µ| is controlled by the parameter α; the choice α ≈ 0.85 thereby underlies why PageRank calculations
finish in a matter of days and do not need vastly longer (if one tries α close to 1). ■

27.3. Singular value decomposition and principal component analysis. In Chapter 23, we dis-
cussed the fundamental Spectral Theorem, which says that for any symmetric n × n matrix A, there is
an orthonormal basis {v1, . . . ,vn} of Rn in terms of which the effect of A looks very simple: A simply
“stretches” each vi by a real number called the corresponding eigenvalue, which is to say Avi = λivi for
some scalar λi (we called vi an eigenvector of A, and λi the corresponding eigenvalue). Applications of
eigenvalues and eigenvectors are pervasive throughout the natural sciences, data science, computer sci-
ence, economics, statistics, and so on. These concepts are truly one of the most important things you learn
in this course.

There are efficient and stable algorithms that compute the λi’s and vi’s for a given symmetric matrix
A, and we can use this to easily describe how A acts on any vector v: writing v = c1v1 + · · · + cnvn for
scalars ci given by the Fourier formula (5.3.5), we have

Av = c1Av1 + · · ·+ cnAvn = c1λ1v1 + · · ·+ cnλnvn.

If Q is the matrix whose columns are the vi’s then Q is orthogonal and Theorem 24.4.1 (the matrix
interpretation of the Spectral Theorem) gives that

A = QDQ⊤ = QDQ−1 (27.3.1)

where D is the diagonal matrix whose ith diagonal entry is the eigenvalue λi for A on vi.
Unfortunately, an orthogonal eigenvector decomposition of Rn to describe the effect of A (or equiv-

alently a matrix factorization (27.3.1) with orthogonal Q and diagonal D) is only available when A is
symmetric. It turns out that for a typical non-symmetric n × n matrix A, there is no basis of Rn con-
sisting of eigenvectors. Moreover, even when such a basis exists, the algorithms for finding eigenvectors
(for non-symmetric A) are numerically unstable. Furthermore, this circle of ideas only applies to square
matrices, and in many applications one is confronted with m× n matrices with m ̸= n.

There is a remarkable, and closely related, idea called the singular value decomposition (SVD). This
makes up for all the pitfalls mentioned above: it works for all matrices A of any size and shape, and there
are good stable algorithms to compute it. Furthermore, when A is a (square) symmetric matrix, the SVD
literally is the matrix decomposition (27.3.1) up to some sign issues when there are negative eigenvalues.
For this reason, SVD is regarded by almost everyone who uses applied linear algebra as the primary
method for doing computations with a matrix of interest, and its importance in applications cannot be
overstated (see [MP]). In this section we introduce the singular value decomposition and describe a few
applications (especially “principal component analysis”).

The basic idea is a remarkably simple tweak of what we have already done. If A is an m × n matrix,
so the corresponding linear transformation TA : Rn → Rm carries vectors v ∈ Rn to vectors Av ∈ Rm,
unless m = n it is impossible to find a common basis in the source and target spaces (as the dimensions
are not the same). Once we realize this, it is not a huge leap to wonder if we might find potentially quite
different orthonormal bases for the input and output in terms of which the effect of A looks nice; even
when m = n, this is a new idea!

To be precise, the main idea behind the SVD of a matrix A is that we look for an orthonormal basis
v1, . . . ,vn of Rn and an orthonormal basis w1, . . . ,wm of Rm (which may be rather different from the
vi’s when m = n!) so that for each 1 ≤ i ≤ n

Avi = σiwi (27.3.2)
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for some scalar σi ≥ 0. (This doesn’t quite make sense if m < n, since wi has no meaning when
i > m, so in such cases we make the convention that wi = 0 for i > m.) In particular, {v1, . . . ,vn}
and {Av1, . . . , Avn} would both be orthogonal collections of vectors, which would be rather astounding
to find for a general A; see Figure B.4.1 for why it is so surprising. The scalars σi are called the singular
values of A; it is traditional to denote these by σ’s, whereas eigenvalues are traditionally denoted by λ’s.

Note that we require the vi’s and wj’s to be orthonormal bases, just like the basis of eigenvectors for a
symmetric matrix in the Spectral Theorem (so ifm = n andA is not symmetric then this is a very different
idea from an eigenvector basis for Rn: if an n × n matrix A has eigenvectors giving a basis of Rn, there
never exists a basis of Rn consisting of pairwise orthogonal eigenvectors when A is not symmetric).

Remark 27.3.1. The reason for the notation σ for singular values is probably because this is the Greek
version of “s”, the initial letter in “singular value”. In a special case of SVD called principal component
analysis that will be discussed in Example 27.3.11, such σ’s have a statistical interpretation as standard
deviations. Hence, it is very convenient that standard deviations are denoted as σ in statistics, no doubt
due to the coincidence that “standard deviation” also begins with the letter “s”.

There are various ways to express the data in (27.3.2) (when it exists, as will turn out to always be the
case). One common way is similar in spirit to the QR- and LU -decompositions in Chapter 22. To explain
that, first we recall terminology from Definition 15.1.1 for general matrices (not assumed to be square).

Definition 27.3.2. An m× n matrix D = (dij) is called diagonal if the entries dij vanish whenever i ̸= j;
in other words, all “off-diagonal” entries vanish.

Here are two examples of diagonal m× n matrices with m ̸= n:



σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4
0 0 0 0




and



σ1 0 0 0
0 σ2 0 0
0 0 σ3 0


 . (27.3.3)

The first of these is a 5× 4 matrix, and the second of these is a 3× 4 matrix.
Here is the main result (proved in Section 27.4 using the Spectral Theorem):

Theorem 27.3.3 (Singular Value Decomposition (SVD)). For every m× n matrix A we can find:
• an m× n diagonal matrix D which has diagonal entries dii = σi, where σ1 ≥ σ2 ≥ · · · ≥ 0;
• an m×m orthogonal matrix Q and an n× n orthogonal matrix Q′

for which
A = QDQ′⊤ (27.3.4)

The diagonal matrix D is uniquely determined; the numbers σi are called the singular values of A.

Remark 27.3.4. In many references, one sees the right side of (27.3.4) written with different notation:
UΣV ⊤ where U and V are orthogonal and Σ is diagonal with non-negative entries (arranged in decreasing
order). The diagonal matrix is called Σ (Greek version of “S”) rather than D because its diagonal entries
(the “singular values”) are denoted as σi. The reason Q is denoted as U (hence Q′ is denoted by the next
English letter V ) in many references is not as easy to guess, so we now briefly explain the rationale.

If one permits the generality of matrices A with entries that are complex numbers (not necessarily real
numbers) then in the analogue of the Spectral Theorem using complex numbers the role of orthogonal
matrices is replaced by a wider class of square matrices called unitary (which coincides with “orthogonal”
for matrices with entries in R). This leads to the notation “U” if one wants to state the SVD result in
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a form that works for matrices with entries that are complex numbers. We have no reason to leave the
familiar setting of real numbers, so we stick to the notation Q and Q′ as above.

Remark 27.3.5. In the special case m = n and A symmetric, the singular value decomposition is a
formulation of the Spectral Theorem (Theorem 24.1.4) as given in (27.3.1). In that case, the orthogonal
matrix Q has columns w1, . . . ,wn which are an orthonormal basis of eigenvectors for A, Q′ is essentially
the matrix Q except that its ith row is multiplied by −1 when the ith eigenvalue is negative, and the σi’s
are the absolute values of the eigenvalues λi of A. (The relevance of the negation in the definition of Q′ is
that if Aw = λw with λ < 0 then Aw = (−λ)(−w) with −λ > 0.)

In general, if m = n but A is not symmetric then the singular values σi are not eigenvalues of A (or
even their negatives). Of course, if m ̸= n then the notion of eigenvalue for A doesn’t even make any
sense, since an equation such asAv = λv has no meaning ifm ̸= n (the left side is a vector in Rm and the
right side is a vector in Rn, since A is applied to input from Rn and yields output in Rm). However, the
SVD is still intimately intertwined with eigenvalues, and the proof of the Theorem 27.3.3 deduces SVD
for any A from the Spectral Theorem for the symmetric n×n matrix A⊤A (a positive-semidefinite matrix,
as discussed in Example 26.1.10).

Let us now give a couple of examples of SVD’s and then turn to a few applications.

Example 27.3.6. We first consider an example where m < n. Let

A =

[
2 1 1
−2 1 3

]
.

Here m = 2 and n = 3. The singular value decomposition A = QDQ′⊤ takes the form
[
2 1 1
−2 1 3

]
=

[
0 1
1 0

] [√
14 0 0

0
√
6 0

]

−
√
2/7 1/

√
14 3/

√
14√

2/3 1/
√
6 1/

√
6

1/
√
21 −4/

√
21 2/

√
21


 .

Following the discussion above, this SVD means that if we define the vectors w1, w2 to be the columns of
Q and v1, v2, v3 to be the columns of Q′ (so the rows of Q′⊤!), then

Av1 =
√
14w1, Av2 =

√
6w2, Av3 = 0.

■

Example 27.3.7. Next we consider an example where m > n; now we will take m = 3 and n = 2 and set

A =




2 −1
−1 3
−1 1


 .

This has singular value decomposition



2 −1
−1 3
−1 1


 =



−7/

√
195 2

√
2/13

√
2/15

11/
√
195 3/

√
26 −1/

√
30√

5/39 −1/
√
26

√
5/6





√
15 0

0
√
2

0 0



[
−2/

√
13 3/

√
13

3/
√
13 2/

√
13

]
.

Denoting the columns of Q as w1,w2,w3 and the columns of Q′ (so the rows of Q′⊤!) as v1,v2, we have
Av1 =

√
15w1, Av2 =

√
2w2 (and w3 is orthogonal to span(w1,w2) = image(A)). ■

You may wonder how these SVD computations were done. There is a lot of software to compute
such decompositions. For matrices of moderate size, WolframAlpha can compute them using the com-
mand “SingularValueDecomposition”. Much as the SVD for a symmetric matrix is closely related to its
eigenvector decomposition, SVD for a general matrix A (possibly not symmetric, nor even square) is
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also related to eigenvectors. Indeed, from the proof of Theorem 27.3.3 the vi’s are eigenvectors of the
symmetric A⊤A and the wi’s are eigenvectors of the symmetric AA⊤, and the squares σ2

i of the nonzero
singular values σi > 0 of A are eigenvalues of these symmetric matrices! Thus, computing eigenvalues
and eigenvectors for symmetric square matrices is nearly enough to compute SVD’s in general.

To be precise, if m ≤ n then AA⊤ is an m × m matrix and A⊤A is an n × n matrix. But every
matrix of the form M⊤M (e.g., using M = A or M = A⊤) is not only symmetric but also positive-
semidefinite since x⊤M⊤Mx = (Mx)⊤(Mx) = (Mx) · (Mx) = ∥Mx∥2 ≥ 0. The Spectral Theorem
(and Proposition 24.2.10) applied to anyM⊤M thereby yields eigenvalues that are non-negative and hence
squares in R. The eigenvalues ofAA⊤ can therefore be written as σ2

1, . . . , σ
2
m, and the eigenvalues ofA⊤A

consist of the same list augmented by n − m additional 0’s. (When m ≥ n, the situation is analogous.)
Here we have invoked the remarkable fact that the nonzero eigenvalues of AA⊤ and A⊤A are always the
same. More generally, if A is an m×n matrix and B is an n×m matrix with m ≤ n then the eigenvalues
BA are exactly those of AB along with n−m additional occurrences of 0 as an eigenvalue; we omit the
proof (which amounts to an elegant application of the notion of characteristic polynomial introduced for
2× 2 matrices in Theorem 23.3.1 and in general in Theorem E.5.1 and Remark E.5.2).

We now turn to some fundamental practical applications of SVD.

Example 27.3.8 (Rank reduction). The following problem is highly relevant for data compression.

Suppose that you have anm×nmatrix A wherem and n are on the order of 106, where the individual
entries aij of A correspond to some data that you have collected. For example, these entries might
encode light intensity and/or color at the points of anm×n grid which can be reassembled into a digital
approximation of an image. It takes a lot of memory to store and possibly manipulate mn ≈ 1012

numbers. Is there a way to avoid such storage problems?
The basic idea of data compression is that it would be very nice to somehow reduce this informa-

tion to a much smaller set of numbers which still captures almost all of the features of the original
data set (which itself is perhaps only a sampling of the true image). This sounds like a fantasy, but
remarkably there are a number of very ingenious ideas which actually do it very effectively. Variants
of these ideas are behind the jpg and mpg formats, and are responsible for some of the most dramatic
advances in medical imaging (e.g. MRI). We now explain the key underlying mathematical idea.

To motivate this, let us examine another way of interpreting the singular value decomposition QDQ′⊤

of an m × n matrix A. Suppose we write the columns of the “prefactor” orthogonal m ×m matrix Q as
w1, . . . ,wm and the columns of the “postfactor” orthogonal n× n matrix Q′ as v1, . . . ,vn. Then we can
multiply out the terms in

A = QDQ′⊤ =




| |
w1 w2 · · · wm

| |







σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

...
0 · · · σm 0







v⊤
1

v⊤
2
...
v⊤
n




(here we are illustrating the case m ≤ n to be specific) as

A = σ1w1v
⊤
1 + · · ·+ σmwmv

⊤
m. (27.3.5)

Note that the vectors vm+1, . . . ,vn ∈ Rn do not appear here. For similar reasons, if m > n then this sum
has n terms and the vectors wn+1, . . . ,wm ∈ Rm do not appear.

What are these funny products wiv
⊤
i that appear here, which are m× n matrices? These are instances

of what are called rank-1 matrices. You might try to understand them by writing out the entries: again
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supposing m ≤ n, we have

wi =



a1
...
am


 , vi =



b1
...
bn


 implies wiv

⊤
i =




a1b1 a1b2 . . . a1bn
a2b1 a2b2 . . . a2bn

...
...

...
...

amb1 amb2 . . . ambn


 .

That matrix might not be particularly illuminating at first sight. The special feature it has is that every
column is a multiple of the same vector wi (the jth column is bjwi). More concretely, let’s calculate the
effect of this matrix on any vector x via the matrix-vector product: it is simply (wiv

⊤
i )x = wi(v

⊤
i x), but

v⊤x is a 1× 1 matrix, which is to say a scalar. This scalar is just the dot product vi · x, so

(wiv
⊤
i )x = (vi · x)wi.

(The fact that the linear transformation arising from the m× n matrix wiv
⊤
i has all output contained in a

1-dimensional subspace of Rm is the reason it is called a “rank-1 matrix”.) Thus,

Ax =
(
σ1w1v

⊤
1 + · · ·+ σmwmv

⊤
m

)
x = (σ1v1 · x)w1 + · · ·+ (σmvm · x)wm.

Since the scalar vi · x is the length of the orthogonal projection of x onto the unit vector vi, we
are simply taking the lengths of the orthogonal projections of x along the m orthonormal unit vectors
v1, . . . ,vm in Rn (these can be thought of as “coordinates” of the n-vector x in those m directions),
multiplying these lengths by the scalars σi, and then using these as coefficients of an expansion in terms
of the orthonormal basis w1, . . . ,wm of Rm.

Suppose that only one of these terms appears in the SVD of A, or in other words, suppose that
σ2 = . . . = σm = 0 (again assuming m ≤ n for simplicity). Then we are writing

A = σ1w1v
⊤
1 .

How much “data” , or in other words how many numbers, are on the right side? There are only
m + n + 1 numbers: the coordinates of w1 and v1 and the number σ1. In other words, in such cases
we have encoded themn entries of A using onlym+n+1 numbers. So if m and n are approximately
109, this is a huge gain: we only need to store around 109 numbers rather than 1018.

It might seem absurdly special to consider situations in which all but the first singular value vanish.
But the miracle of the technique called rank reduction is that something not too far off from this often
happens: for many matrices A which arise in practice, most of the singular values are relatively or
very small! For example, if the singular values σk+1, . . . , σm which appear in (27.3.5) are all quite
small then (since vi and wi are unit vectors, so their entries cannot be too large) it is reasonable to just
drop these to get a good approximation:

A = σ1w1v
⊤
1 + · · ·+ σmwmv

⊤
m ≈ σ1w1v

⊤
1 + · · ·+ σkwkv

⊤
k . (27.3.6)

We are taking advantage of the convention we imposed that we list the singular values in decreasing
order, σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0; we only need to look at the later part of this list to see which are the
small singular values.

This can lead to a very good approximation of A by a sum of a possibly much smaller number
of rank-1 matrices. For example, suppose that k = 3 (i.e., all singular values past the third one
are negligible) and (once again) m,n ≈ 109. Then we are finding a good approximation to all the
mn = 1018 entries ofA using only around 3×109 numbers. (See Remark 27.3.9 for an actual situation
in genetics with k = 3 and m on the order of 1000’s.)

How good of an approximation is this? If σk+1, . . . , σm are all less than some very small number
ε, then in a certain very good sense we are approximating every entry of A to within ε. This type of
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quantitative information is very useful: we have a good approximation of A and an explicit numerical
estimate of just how good an approximation it is! ■

Remark 27.3.9 (Eigengenes). In the paper [ABB], SVD was applied to a 5981 × 14 matrix and a
4579 × 22 matrix (respectively encoding the outcomes of measurements of 5981 genes under 14
different experimental conditions and of 4579 genes under 22 different experimental conditions, each
in the context of yeast genetics). In both cases, the singular values dropped off dramatically after the
first few. This work introduced the concept of “eigengene” as a mathematical tool for studying gene
expression with useful biological meaning. For such m × n matrices A encoding genetic expression
measurements, the eigengenes correspond to v1,v2, · · · ∈ Rm in the SVD for A. Orthogonality
among the vi’s provides a sense in which different eigengenes are “uncorrelated” with each other.

Remark 27.3.10. There is a practical issue relating back to our work with optimization techniques (and
so going far beyond linear algebra): does identifying the biggest among the singular values σj (and corre-
sponding wj’s) require computing all singular values and then selecting the biggest? If so, that would be
a computationally hopeless task (for big m and n) which would render rank-reduction useless.

Amazingly, finding the biggest singular value σ1 (and corresponding v1 and w1) does not require
computing any of the other singular values! One can use the Spectral Theorem to formulate the problem
of finding the biggest singular value as an optimization problem that can be efficiently solved by ideas
related to the technique of gradient descent which we explored at a basic level in Chapter 11 and study
a bit more deeply via Newton’s method based on second derivatives in Appendix I. The optimization
problem even appears in the proof of the Spectral Theorem; see Remark B.3.4 and then Remark B.3.3.

Example 27.3.11 (Principal component analysis). A famous application of the SVD method is called prin-
cipal component analysis, which is often referred to by the shorthand label “PCA”. This is a fundamental
tool in statistics, and one could write an entire book about this topic alone. When A is a matrix whose
columns are labeled by members of a population and rows are categories in which they’re measured (these
categories could encode genetic information, movie ratings, etc.), the wj’s are called the principal com-
ponents of the data. For any data m-vector x, we call the coefficient wj · x of the projection of x along
the line spanned by wj a “principal component” of x; the standard coordinates of x are what we initially
measure when collecting data, but their linear combinations given by the principal components wj · x are
regarded as deeper structure in the data (which may or may not have a tangible meaning).

The idea that most singular values are negligible, yielding an approximation to A as in (27.3.6) for
some small k, corresponds to saying that the column space C(A) is “close” to a subspace W of Rm

spanned by the vectors w1, . . . ,wk corresponding to the non-negligible singular values. This underlies
how one can make predictions about any person’s entire m-vector x of measurements upon making a
small number of measurements (around k = dimW ), as is discussed below in some real-world situations.

We shall now briefly convey the point that PCA is fundamentally just a reinterpretation of SVD, and
more specifically of the ideas behind rank reduction discussed in Example 27.3.8. This may not be so
obvious if you read many treatments of PCA, since the method and ideas are usually couched in the
language of statistics (which is relevant for many applications, but can sometimes make it hard to see
that the mathematical input is really SVD). In quantitative finance, PCA is used for purposes such as
risk management, option pricing, and filling in missing data (see [Al, I.2.6] for an introduction).

You should regard PCA and SVD as a great illustration of how the same mathematical idea can
have two rather different interpretations and applications (such as: one related to data compression
and the other to statistical correlation). This is a manifestation of the unifying power of mathematics.

Here are some typical situations where PCA arises:
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(i) Data compression, especially with images, is a dramatic illustration of the power of PCA. This
also underlies facial and handwriting recognition software, and is increasingly used for both effi-
ciency and fraud detection in the insurance industry (see [Shang, pp. 13-17] and this). Consider
a digital photo that is a 300 × 300 pixel array, suppose in black-and-white (for convenience of
discussion). The intensity of darkness at each pixel is a number from 0 (white) to 1 (black). In
a real-world image, adjacent pixels are rather highly correlated: an image is far from a totally
random assignment of pixel intensities. To exploit this feature of a real-world image, we break
up the 300×300 array of numbers into smaller patches of 10×10 pixel arrays (for example). The
part of the image in each patch is recorded by 100 pixel intensities, so a vector in R100. There are
900 of these vectors, so they can be arranged as the columns in a 100× 900 matrix A.
The SVD of A has singular values σi that become negligible by around σ50; i.e., we can usu-
ally take k as in (27.3.6) to be around 40 to 50. Thus, by recording the principal components
σ1w1, . . . , σ50w50 ∈ R100 and the vectors v1, . . . ,v50 ∈ R900 we can reconstruct an excellent
approximation to A (as

∑50
i=1(σiwi)v

⊤
i ). This amounts to 50 vectors in R100 and 50 vectors in

R900, which is 50(100) + 50(900) = 50, 000 numbers, whereas the original image has 90, 000
pixel intensities. So we have compressed the data to 5/9 ≈ 55% of its original size! If you
search on Google for “image compression, PCA” then you’ll find many dramatic examples of the
accuracy of considering 30, 40, and 50 principal components for digital images.

(ii) The idea that applying PCA techniques to human DNA could lead to new insights in population
genetics goes back to the 1970’s, as documented in the landmark book [CMP]. But in more
recent years, thanks to advances in computer power and genotyping technology, there has been an
explosion in applications of PCA to human genetics (see [N] for an especially famous example).
When analyzing the genome of a person (such as to make predictions about susceptibility to
a specific genetic disease, or the likely response to a potential treatment), scientists measure a
large collection of what are called single nucleotide polymorphisms (abbreviated as: SNP’s).
This refers to looking at specific locations in the DNA of each person, and recording which
of various possibilities (“polymorphisms”) occur at each location for the molecular structure of
the DNA (“single nucleotide”). The ability to make such precise measurements is a remarkable
accomplishment of modern biological engineering.
The possible variants found for the genetic code at each location may be labeled by one of a
collection of numbers, say 1, 2, 3, 4, 5 (if there are up to 5 possible genetic variants at each loca-
tion). If a study records the SNP’s at m locations in the DNA molecule for n people (e.g., 1000
sites in the genome for each of 10000 people), then all the data are encoded as the entries of an
m × n matrix. Here the jth column records the genetic information of the jth person’s DNA at
the locations that have been measured.
One can ask if there is a significant correlation between the SNP found at one location in the DNA
molecule and the SNP found at another location. For example: is a specific genetic expression
found at one location in the DNA correlated well with what is found at another location (in which
case one might arrive at a new way of testing for a genetic disease)? Even though the n column
vectors (each of which is the genetic information of a single person) all live in Rm for m ≈ 1000,
it might be the case that those vectors all lie very close to a very low-dimensional subspace of
Rm. In that case each vector is well-approximated by its orthogonal projection into that low-
dimensional subspace, and the low-dimensionality tells us that knowledge of a moderate amount
of DNA information can make accurate predictions about the rest!

(iii) Another situation arises in the sneaky ways that companies keep track of consumer behavior. For
example, a company might record the purchasing habits of n people among m items, and record
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the number of times that consumer j purchased item i. That number is then recorded as the ij-
entry in an m × n matrix (so the jth column records the purchasing habits of the jth person, at
least for the collection of m items of interest to the company).
If the company is Amazon and the items are all books sold by Amazon,m could be truly gigantic.
Likewise, the Netflix and Spotify recommendation systems have to grapple with rather huge m.
If the company is a home furnishing store and the items are its entire inventory then m won’t be
as large as Amazon’s collection of books or Netflix’s library of movies and TV shows or Spotify’s
list of songs, but it can still be pretty big.
The value in understanding the correlations between the matrix entries is to create predictive tar-
geted advertising. As with the DNA example, each column lives in Rm for some large m, but the
columns may all be close to a lower-dimensional subspace V ⊂ Rm. In the context of consumer
behavior, this low-rank behavior reflects the fact that there don’t tend to be a huge number of
ways in which personal preferences vary. The significance is that it enables knowledge about
a small set of purchases (on the order of dimV ) to accurately predict a customer’s preferences
related to other items that they might purchase. (See Example 21.6.3 for more on this.)

Here is how such problems are analyzed. Given anm×nmatrixA, let us call the columns of this matrix
X1, . . . ,Xn, so each Xj is a vector in Rm. In both of the above examples, Xj records the information
about the jth person. For instance, in the DNA example above, each entry of Xj might be one of the
numbers 1, 2, 3, 4, 5; the actual entries don’t matter too much, as long as they are numbers. The first step
is to compute the mean (or average) M = (X1 + · · · + Xn)/n of the vectors Xj ∈ Rm and to replace
each Xj by Yj = Xj − M; this has the effect of “recentering” all of the data much as in our study of
correlation coefficients in Chapter 2. Let us call by the name B the m× n matrix with these new columns
Y1, . . . ,Yn.

Now perform the SVD decomposition B = QDQ′⊤, and write this as before:

B = σ1w1v
⊤
1 + σ2w2v

⊤
2 + . . .

with σ1 ≥ σ2 ≥ . . . and pairwise orthogonal unit vectors w1,w2, · · · ∈ Rm and v1,v2, · · · ∈ Rn. It is
very often the case in real-world data that one or a few of the σj are significantly larger than all of the
others; this is the same phenomenon encountered in the rank-reduction discussion in Example 27.3.8.

Suppose for example that the biggest singular value σ1 is much larger than all the other singular values.
This means that a good approximation to B is the rank-1 matrix σ1w1v

⊤
1 . As we saw in Example 27.3.8,

this means that every column is approximately a scalar multiple of the same vector w1. Tracing back
through the steps, the conclusion is that each of the original vectors Xj is very well-approximated by
M + cjw1 for some scalar multiplier cj against a single unit vector w1. This is precisely what it means,
at least informally, for the entries of Xj to be correlated! The direction w1 is then called the principal
component of this collection of vectors, and once we recenter the vectors by subtracting off their collective
mean vector, each becomes approximately positioned along this axis.

In concrete terms, to say that the m-vector Yj is approximately cjw1 for some (nonzero) scalar cj and
a fixed unit vector w1 is to say that for any 1 ≤ i < i′ ≤ m the ratio of the ith and i′th entries in Yj is
approximately independent of j. Indeed, if we write wk to denote the kth entry in w1 (and we assume wk’s
are all nonzero) and we write ajk to denote the kth entry in Yj then ajk ≈ cjwk, so

aji
aji′

≈ cjwi

cjwi′
=
wi

wi′

with the right side independent of j. This ratio is an approximate “slope” that tells us how to pass between
the i′th and ith entries of every Yj .

As we said at the outset, this is only the barest introduction to the idea behind PCA; this method for
analyzing data sets has many subtleties, and to use it effectively one really has to do much more study to
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come to grips with the subtleties. For example: how should we interpret the outcome of the SVD for B
if two or three of the singular values σj (rather than just one of them) are much larger than the others?
A proper answer involves a careful discussion of what correlation means in statistics, a topic that would
take us too far afield in this course. Hopefully when you encounter this set of ideas again, the preceding
orientation will help you to see how PCA relies in an essential way on core concepts and results you have
learned about in linear algebra (in order to define and work with singular values) and optimization (in
order to actually compute the biggest singular values). ■

27.4. Where does SVD come from? We are going to use the Spectral Theorem (Theorem 24.1.4),
a serious result about eigenvectors, to explain where the singular value decomposition comes from by
sketching a proof of Theorem 27.3.3. The argument below is an approach via matrix algebra, for
which we will gloss over some technical points. An alternative and more complete geometric argu-
ment is given in Section B.4. The interested reader is welcome to study whichever approach fits more
to their mathematical taste. Here is a proof based on matrix algebra:

PROOF. For purposes of motivation, let us first suppose that we already had a decomposition
A = QDQ′⊤ with a diagonal m × n matrix D and orthogonal Q and Q′. How would we go about
finding Q and Q′ from A? The trick is to consider A⊤A. We have A⊤ = Q′D⊤Q⊤, and since
Q⊤Q = Im (as Q is orthogonal) we obtain

A⊤A = Q′(D⊤D)Q′⊤ (27.4.1)

If the diagonal m × n matrix D has ii-entry λi then D⊤D is a diagonal n × n matrix with ii-entry
λ2i for i ≤ min(m,n) (and vanishing otherwise): this is familiar from matrix algebra when m = n,
and the cases m > n and m < n can be checked directly in the specific cases (m,n) = (5, 4) and
(m,n) = (3, 4) for D as in (27.3.3), with the general cases for m < n and m > n going exactly the
same way.

In other words, for the n×n matrix A⊤A that is always symmetric (see Theorem 20.3.8), (27.4.1)
expresses the conclusion of the Spectral Theorem with the orthogonal Q′ and the diagonal n × n
matrix D⊤D whose entries are the eigenvalues of A⊤A.

With the preceding considerations as motivation (since they relied on assuming the existence of
the D,Q,Q′ we seek to find), we are now motivated to know where to look to find D, Q, and Q′.
Apply the Spectral Theorem to the symmetric n × n matrix A⊤A to get an orthogonal n × n matrix
Q′ (this has as its columns an orthonormal basis of eigenvectors w1, . . . ,wn of A⊤A) and a diagonal
n× n matrix D′ (whose ith diagonal entry is the A⊤A-eigenvalue for wi) satisfying

A⊤A = Q′D′Q′⊤.

We want to write D′ = D⊤D for a diagonal m × n matrix D. Getting such a D requires choosing
square roots of the entries of D′, so there is something to be careful about here: picking such square
roots requires knowing that every eigenvalue of A⊤A (that is, the diagonal entries of D′) is ≥ 0. But
this is indeed the case, by Example 26.1.10 and Proposition 24.2.10 (applied to the symmetric A⊤A).

Some care is required to choose the signs of the square roots appropriately; we will gloss over
that issue here, and now focus on the special case m = n with A invertible (so its eigenvalues are
all nonzero, hence D′ is also invertible and thus its “square root” D is invertible). In such cases we
can find the remaining matrix Q using inverses: starting from the desired relation A = QDQ′⊤ we
are motivated to define the m × m matrix Q = AQ′D−1. By design QDQ′⊤ = AQ′D−1DQ′⊤ =
AQ′Q′⊤ = AIn = A, so we just have to check that Q is orthogonal; i.e., to show Q⊤Q = Im.
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Using the interaction of transpose with matrix multiplication and matrix inversion (Section 20.1
and Example 20.3.7), by definition of Q we have

Q⊤ = (AQ′D−1)⊤ = (D−1)⊤Q′⊤A⊤ = (D⊤)−1Q′⊤A⊤ = D−1Q′⊤A⊤,

the final step using that D⊤ = D (as we are in the special case n = m). Thus,

Q⊤Q = D−1Q′⊤A⊤(AQ′D−1) = D−1Q′⊤(A⊤A)Q′D−1 = D−1Q′⊤(Q′D′Q′⊤)Q′D−1

= D−1(Q′⊤Q′)D′(Q′⊤Q′)D−1.

But Q′ and Q′⊤ are inverse to each other since Q′ is orthogonal, so Q⊤Q = D−1D′D−1. But D−1 and
D′ are diagonal m × m matrices, and multiplication of such diagonal matrices is commutative (i.e.,
the order of multiplication doesn’t matter), so since D′ = D2 we can rearrange to get

Q⊤Q = D′(D−1)2 = D2(D−1)2 = DDD−1D−1 = DD−1 = Im.

This establishes the orthogonality of Q as desired (assuming m = n and A is invertible).
In the general case (allowing A not to be invertible and even m ̸= n) one can still solve for

Q by a variant of the preceding method, but it’s a little more complicated to explain, so we stop
the discussion of the matrix-algebra proof of SVD here. (Once again, Section B.4 provides a more
complete argument based on geometric ideas.) □
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Appendices



“The trigonometric functions secx and cscx do not exist in France, so I will not use them.”
H. Cohen [Coh, p. ix]

A. Review of functions

This appendix discusses some general topics concerning functions, as a convenient resource. Some
of this material may have arisen in your earlier math courses; we discuss it here to ensure that we are all
using the same terminology and notation for basic concepts.

A.1. Several basic examples. Functions are mathematical tools for describing the world around us.
A wide variety of functions arise in calculus and in real-world problems. Here are some examples.

Example A.1.1. In calculus courses you probably saw examples of functions such as f(x) = 3x/(x− 1).
Here the variable x is a real number input, and the expression on the right side gives us a formula or rule
for finding the output of the function corresponding to the input x. The output is denoted f(x).

Calculus is described as the study of change. When analyzing the function above in a calculus course,
we might ask questions such as:

(i) How do small changes in x affect f(x)?
(ii) How is f(x) changing near some point x = a? Is it increasing? Decreasing?
In calculus one learns how to compute and use derivatives to analyze such questions (and do much more).

■

Example A.1.2. A microbiologist is working with a previously undescribed bacterial organism. Via ex-
perimentation, she discovers that the population of the bacterium doubles every 13.4 hours, assuming
unlimited resources (such as food and space). Under these idealized assumptions, she proposes a first-
guess estimate for the population function of the bacteria: P (t) = P (0) · 2t/13.4, where P (0) is the initial
population and t is time elapsed (in hours).

In this mathematical model for population growth, the only dependence is on P (0) and t. But as her
experiments progress, the microbiologist may use her data to refine the model by taking into account other
variables upon which the population growth is discovered to depend. Other than the initial population in
the sample and the time elapsed, some variables that might affect the bacteria’s population growth could
include the salinity of the water in which the bacteria live, the temperature of the room, and so on. ■

Example A.1.3. Isaac Newton’s theory of gravitation asserts that the force of gravity between two objects
(with masses m1 and m2) is given by F (m1,m2, r) = (Gm1m2)/r

2, where G is a constant and r > 0
is the distance between the two objects. This function has three pieces of information as its input: the
masses of the two objects and the distance between them. We can therefore think of the inputs to F as
being points (m1,m2, r) in R3 (ordered triples of real numbers) with r > 0.

In this mathematical model, if we holdm1 andm2 constant but increase r then F (m1,m2, r) decreases;
more specifically, if we double (or triple) the distance then F drops by a factor of 4 (or a factor of 9
respectively). Informally, one hears it said that “F is proportional to the inverse square of the distance”,
but the mathematical formula is a more precise way of conveying the nature of F (encoding that the
constant of proportionality is Gm1m2, which the verbal description does not provide). Likewise, if we
hold m2 and r constant but increase m1 then F (m1,m2, r) increases proportionally (with constant of
proportionality Gm2/r

2). ■

Example A.1.4. A meteorologist is studying wind patterns in some region R at a particular point in time.
He models wind as a function w where, for a given point x in R one defined

w(x) = (wind direction at x,wind speed at x).



The output w(x) consists of two components: wind direction (as an angle in degrees, say in the interval
[0, 360)) and wind speed (in miles per hour). Thus, we may think of w as a function taking inputs in the
set R and giving outputs in the set R2 (ordered pairs of real numbers).

x

y

FIGURE A.1.1. Wind in some region R, as a function w over the region.

Figure A.1.1 is a visual representation of the meteorologist’s data. The direction of the arrow at x is
determined by the first component of w(x), and the length of each arrow is the speed of the wind at x (i.e.,
the second component of w(x)). Strictly speaking, it is more natural to think about the output of the wind
function in terms of vectors as in the main text (see Example 8.1.9). ■

There are many situations that require the use of functions with multiple numerical inputs (as in Ex-
ample A.1.3) and/or multiple numerical outputs (as in Example A.1.4). Such functions are called multi-
variable functions; functions in your previous study of calculus are not of this type.

A.2. Functions in general, domain, target. At the most basic level, here is how general functions
work. For sets X and Y , a function f from X to Y is a rule that assigns to each element x in X a single
element, called f(x), in Y . Figure A.2.1 below is a way to visualize what goes on with a function f from
X to Y : to find f(x), follow the arrow from the dot labeled x in X to the dot labeled f(x) in Y .

X Y

f
x f(x)

FIGURE A.2.1. Cartoon illustration of a typical function, from a set X to a set Y

To indicate that f is a function from X to Y , we write

f : X → Y
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(see Table 0.0.1). You might think of f as a device or a computer program that takes inputs from the set
X (called the domain of f ) and returns outputs in the set Y (the target of f ).

When you first learned about functions, you probably saw examples like Example A.1.1 that define a
function f in terms of an algebraic rule or formula it uses to assign outputs to inputs. For f(x) = 3x/(x−1)
as in that example, the picture as in Figure A.2.1 could have some explicit numbers, such as:

−1

0

2

0

3/2

6

FIGURE A.2.2. Numerical data for the specific function f(x) = 3x/(x− 1)

The reason there is an arrow in Figure A.2.2 pointing from the label −1 to the label 3/2 is that we plug
x = −1 into the rule and obtain f(−1) = 3/2. The method of defining a function in terms of a rule is
convenient but it does not always make clear what the function’s domain and target are.

Convention. If a single-variable function f is defined by a formula and no other indication is given,
assume the domain X is the set of all real numbers x for which the formula f(x) makes sense, and
that the target Y is R. This choice of domain is sometimes called the largest possible domain for f .

Example A.2.1. Here are some more functions:

f(x) = x2 − 3x− 1 g(x) = tan x h(x) = ln

∣∣∣∣
x− 1

x+ 1

∣∣∣∣ s(x) =
√
1− x2

These formulas define functions as rules for assigning outputs to inputs.
Their largest possible domains work out as follows: for f it is R, for g it is all x not of the form

(k + 1/2)π for integers k (we need cos(x) ̸= 0), for h is it all x ̸= ±1 (we need the denominator x + 1
to be nonzero, which is to say x ̸= −1; also the non-negative |(x− 1)/(x + 1)| must be nonzero because
ln(t) only makes sense when t > 0, forcing x ̸= 1 from the numerator), and for s it is −1 ≤ x ≤ 1 (we
need 1− x2 ≥ 0 so that the square root make sense, and that says |x| ≤ 1). ■

There are contexts in which we may be more judicious in defining the domain and target for a function:
(i) In Example A.1.2, the population function was given as P (t) = P (0) · 2t/13.4. Even though the func-

tion P (t) as written makes sense for negative values of t, it may not make practical sense to include
these in the domain of P because prior to the beginning of the experiment there was no population.
(However, if the “initial time” refers to when the biologist began to make her measurements and the
bacteria were present earlier then “negative time” could refer to time prior to the measurements.)
Likewise, we may want to restrict the target to consist only of non-negative numbers since the popu-
lation cannot be negative. In general, the way a mathematical model is being applied may determine
our judgment for what to consider as a reasonable domain and target for a function.

(ii) For the gravitational force function F in Example A.1.3, a reasonable domain consists of those
(m1,m2, r) in R3 whose coordinates are all > 0. Of course, we can work mathematically with
the formula for F allowing m1,m2 ≤ 0 too and also r < 0, though that wouldn’t have any physical
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meaning in terms of the context of the mathematical model. However, the same formula shows up in
Coulomb’s Law for electrical forces, where the role of masses m1,m2 is replaced by charges q1, q2:

F = ke
q1q2
r2

.

(here ke is Coulomb’s constant). In this latter context it does make physical sense to have q1, q2 of
either sign (charge occurs in both positive and negative senses, unlike mass). Likewise the electrical
force can be either positive or negative (since electrical forces can be both attractive or repulsive,
whereas gravity is only attractive).
Whether for gravity or electrical forces, the mathematical formula is the same (even though the phys-
ical meaning of the variables is not). So it is useful to distinguish between the mathematics of a given
formula and the context of a specific application to determine an appropriate domain (and target).

(iii) The target of the wind function in Example A.1.4 is a subset of R2. Because speed is ≥ 0, it is
reasonable to view the second component of the output inside [0,∞). The first component (direction)
is an angle. If the meteorologist represents angles in degrees, a reasonable choice for the target is the
set of pairs (θ, s) with 0 ≤ θ < 360 and s ≥ 0.

A.3. Function facts, image, level sets. Here is a summary of some general facts:
(i) Any function X → Y must give an output in Y for every input x in X . Since f(x) = 3x/(x − 1)

makes no sense when x = 1, for this function we must exclude x = 1 from the domain because there
is no corresponding output in the target (which is R), as indicated in Figure A.3.1.

−1

0

2

1

0

3/2

6

?

FIGURE A.3.1. The domain excludes points where the function makes no sense.

The largest possible domain for this example is the set S of all real numbers except 1. Since f(x) is
defined for all points x in S, we have a function f : S → R.

(ii) For a function f with a given domain X , it is necessary that every input x from X yield only one
output f(x) in Y . A situation as in Figure A.3.2 below does not depict a function because there is a
point on the left that has two corresponding “outputs” on the right. This is forbidden!
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X Y

x

FIGURE A.3.2. A “rule” that is not a function

You may have learned about the “vertical line test” for single-variable functions I → R on an interval
I in the real number line. This expresses exactly the same requirement: if f : X → R is an R-valued
function on some some subset X of R then any vertical line (i.e., a line parallel to the y-axis) may
intersect the graph of y = f(x) at most once (possibly not at all; e.g., the function f(x) =

√
x on the

domain of values x ≥ 0 does not touch the vertical line x = −2). The curve in Figure A.3.3 is not the
graph of a function because the dotted vertical line x = 3 passes through it at two points:

x

y

•

•

3 4210

FIGURE A.3.3. Failure of the vertical line test

(iii) On the other hand, it is certainly fine for two different inputs to a function to result in the same output:
there may be x1, x2 in X for which x1 ̸= x2 but f(x1) = f(x2). This is illustrated in Figure A.3.4.

X Y

x1

x2

f(x1) = f(x2)

FIGURE A.3.4. A function f that carries two different inputs to the same output

As an example, consider f(x) = x2, whose graph is shown in Figure A.3.5.
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x

y

3−3

9 = f(3) = f(−3)

FIGURE A.3.5. There is no “horizontal line test” for functions!

We have −3 ̸= 3, but (−3)2 = 9 = 32. Graphically, this means that the parabola y = x2 intersects
the horizontal line y = 9 above x = −3 and above x = 3.

(iv) Finally, it is not necessary that every y in Y is an output of f . Using notation from Table 0.0.1, the set

{y ∈ Y : y = f(x) for some x ∈ X}
is called the image of f (and is sometimes denoted f(X)). It is a subset of Y , but it doesn’t have
to be equal to the entire target Y . In the cartoon version in Figure A.3.6, the image of a function
f : X → Y is expressed as the region inside the dashed outline. The target Y contains a marked point
y that lies outside the image of f .

X Y

y

FIGURE A.3.6. The image of a function f : X → Y might not fill up Y .

Example A.3.1. In the case of the function f(x) = 3x/(x − 1) from Example A.2.1 that has domain
consisting of all real numbers x ̸= 1 and has target R, the image consists of all y for which the equation
3x/(x− 1) = y has a solution.

Carrying out the algebra to “solve for x in terms of y”, we have

3x = (x− 1)y = xy − y,

so x(3− y) = −y and hence

x =
−y
3− y

=
y

y − 3

as long as we avoid division by 0, and all steps are reversible. Thus, as long as y ̸= 3 we can always find
a suitable x. On the other hand, when y = 3 there is no possible x since the equation x(3− y) = −y with
y = 3 becomes x · 0 = −3 that is impossible. Hence, the image consists of all real numbers y ̸= 3.
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Another way to see what is going on in this example is to observe that

3x

x− 1
=

3((x− 1) + 1)

x− 1
= 3 +

1

x− 1
,

so its graph is a hyperbola with vertical asymptote at x = 1 and shifted up 3 units. Hence, the horizontal
asymptote on the x-axis for the hyperbola graph of y = 1/(x − 1) shifts up 3 units, corresponding to the
omission of y = 3 from the image. Of course, this is all rather specific to the function 3x/(x− 1) and one
cannot expect the determination of the image of very complicated functions to be feasible; this is usually
an extremely difficult or hopeless (and fortunately often totally unnecessary) task. ■

Example A.3.2. For another example that distinguishes between the target and the image, consider again
f(x) = x2 as a function R → R. The target here is given as R (which makes sense because the square
of a real number is always a real number), but the image of f is [0,∞), so they are not equal (because the
target contains negative numbers whereas the image does not). This is fine!

For a more complicated function, such as f(x) = 3x4 − 5x3 + 7x − 10, it may be hard to explicitly
describe the image. This is why it is often convenient to work with a target that is “big enough” (such as
R in single-variable calculus) and not worry too much about determining the image exactly. ■

Example A.3.3. A real-world example where the target and image do not coincide can be found in Exam-
ple A.1.4: even though the second component (wind speed) takes values in the unbounded interval [0,∞),
there (hopefully) aren’t any points at which the wind is faster than 300 mph, say. That is, even though the
target of w,

{(θ, s) : 0 ≤ θ < 360, s ≥ 0}
contains the point (30, 1000000), presumably this point lies outside the image of w because its second
coordinate is unreasonably large. And since it would be artificial to specify a definite upper bound on any
possible wind speed, it is convenient to simply allow all s ≥ 0 as second components in the target for the
purposes of working with the mathematical model. ■

If f : X → Y is a function and y belongs to Y , the level set of f at level y is the set of all x in X for
which f(x) = y. Once again using notation from Table 0.0.1, this is denoted as follows:

{x ∈ X : f(x) = y}.
In the cartoon version shown in Figure A.3.7, the level set at level y is the region inside the dashed outline.

X Y

x1

x2

y

FIGURE A.3.7. Illustration of level set at level y, for a point y in Y .

Example A.3.4. For the function f : R → R given by squaring (i.e., f(x) = x2), the level set of f at level
3 is the set {

√
3,−

√
3}. ■
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It can happen that a level set is empty! Namely, the level set of f at some level y is empty precisely
when the equation f(x) = y has no solution x in X . Consideration of this possibility is important in more
advanced mathematics and arises in the following example.

Example A.3.5. For f(x) = x2 as a function R → R, the level set of f at level y = 0 is {0}, at y = 4 it
is {−2, 2}, and at y = −5 it is empty. Note that if instead we consider f as a function [0,∞) → R then
the level set at level y = 4 shrinks to just be {2}.

A nice way to visualize the level sets in this case is to graph the parabola y = f(x) across the domain
of f (such as X = R or X = [0,∞), the latter corresponding to the right half of the parabola graph)
and find the x-coordinates of the points where the graph meets the horizontal lines y = 0, y = 4, and
y = −5. ■
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“People don’t understand how I can visualize four or five dimensions. Five-dimensional shapes are
hard to visualize, but it doesn’t mean you can’t think about them. Thinking is really the same as seeing.”

W. Thurston, 1982 Fields Medalist

“In the higher dimensions you cannot see everything, so you must have something, some tool, to guess
or formulate things. And the tool was algebra, unquestionably algebra.”

H. Hironaka, 1970 Fields Medalist

B. Further details on linear algebra results (optional)

In this appendix, we provide some proofs omitted from the main text. Using ideas related to the
Gram–Schmidt process, in Section B.1 we prove certain properties of bases and dimension upon which
our development depends: Theorem 4.2.8, Theorem 5.2.2, and Theorem 19.2.3, as well as the Gram–
Schmidt process itself. Then in Section B.2 we show that two perspectives on the concept of “subspace”
coincide, thereby unifying the geometric concept of span and the algebraic concept of null space. The
final two sections are of a more advanced nature: in Section B.3 we give a proof of the Spectral Theorem
(Theorem 24.1.4), and in Section B.4 we use the Spectral Theorem (or rather its consequence (24.2.2)) to
give a geometric proof of the singular value decomposition (Theorem 27.3.3), complementing the matrix-
algebra proof sketched in Section 27.4.

B.1. Dimension. The first step in the development of dimension in linear algebra is to show that the
span V of a collection of k vectors in Rn has an orthogonal spanning set consisting of at most k nonzero
vectors:

Proposition B.1.1. Let v1, . . . ,vk be a collection of vectors spanning a nonzero linear subspace V of Rn.
Then V is spanned by an orthogonal collection of at most k nonzero vectors.

PROOF. It is harmless to drop any vi’s that are equal to 0 (that only makes k become smaller without
affecting the span V ), so we may and do assume now that all vi’s are nonzero. If k = 1 then there is
nothing to do: v1 is an orthogonal spanning set for V . Now we will work our way up, by increasing k one
step at a time. This type of proof is called “mathematical induction.”

Let’s consider k > 1 and suppose we have already established the result we want for all collections of
fewer than k nonzero vectors; that is, suppose that for any h < k and vectors w1, . . . ,wh in Rn, their span
is also spanned by an orthogonal collection of at most h nonzero vectors. Note that this supposition is
satisfied for k = 2 since the only h < 2 is h = 1 and we have treated the general case of a single nonzero
vector. Such a supposition is called an “inductive hypothesis”. We claim that under such a hypothesis,
the desired result holds for any collection of k nonzero vectors. Once this is shown, we would obtain our
desired result for k = 2 (since the inductive hypothesis does hold for k = 2). But with the desired result
for k = 2 thereby established in general, we obtain the validity of the inductive hypothesis for k = 3,
so we could run the same reasoning to bootstrap to establish the desired result for k = 3. That in turn
establishes the validity of the inductive hypothesis for k = 4, and so on to handle all possible values of k.

If any among v2, . . . ,vk are scalar multiples of v1 then such a vj can be dropped from the collection
without affecting the span V , so V would be the span of k − 1 vectors. Since k − 1 < k, the inductive
hypothesis would then ensure that V is the span of an orthogonal collection of at most k − 1 nonzero
vectors; this is also a collection of at most k vectors, so we would be done. Hence, we can assume that
each of v2, . . . ,vk is not a scalar multiple of v1, so by Theorem 7.1.1 applied to the pair of vectors v1 and
vj for each 2 ≤ j ≤ k we have

span(vj,v1) = span(v′
j,v1)

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 630



with v′
j = vj − Projv1

(vj) ̸= 0 (non-vanishing since any projection Projv1
(x) is a scalar multiple of

v1, yet we have arranged that vj is not a scalar multiple of v1). In particular,

vj = v′
j +Projv1

(vj) = v′
j + cjv1

for some scalar cj , so any linear combination
∑k

i=1 aivi (i.e., anything in V ) can be rewritten as

a1v1 +
k∑

j=2

ajvj = a1v1 +
k∑

j=2

aj(v
′
j + cjv1) = (a1 +

k∑

j=2

ajcj)v1 +
k∑

j=2

ajv
′
j

(where the second equality involves collecting together all v1-terms).
In other words, everything in V is linear combination of v1,v

′
2, . . . ,v

′
k. But by definition each v′

j

is a linear combination of vj and v1, so by a similar substitution calculation as above we obtain that
span(v1,v

′
2, . . . ,v

′
k) ⊂ V . Since we already saw above that V ⊂ span(v1,v

′
2, . . . ,v

′
k), we conclude that

V = span(v1,v
′
2, . . . ,v

′
k).

This says that V is also the span of the k nonzero vectors v1,v
′
2, . . . ,v

′
k. What have we gained? The point

is that the vectors v′
2, . . . ,v

′
k are all orthogonal to v1 by design, so everything in their span

V ′ = span(v′
2, . . . ,v

′
k)

is also orthogonal to v1. But V ′ is the span of k − 1 nonzero vectors, so by the inductive hypothesis it is
the span of an orthogonal collection of nonzero vectors w1, . . . ,wd for some d ≤ k − 1.

Since v1 is orthogonal to everything in V ′, and everything in V has the form c1v1 + v′ for some scalar
c1 and some v′ ∈ V ′ (this is just separating off the v1-term in a linear combination of v1,v

′
2, . . . ,v

′
k), it

follows that span(v1,w1, . . . ,wd) = V . This spanning set for V consists of 1 + d ≤ k nonzero vectors
and it is a pairwise orthogonal collection (because everything in V ′ is orthogonal to v1). We have achieved
the desired goal of building an orthogonal spanning set for V consisting of at most k nonzero vectors. □

Next, we prove a result on orthogonal complements that will be helpful in some subsequent arguments.

Proposition B.1.2. Suppose v1, . . . ,vk is an orthogonal collection of nonzero vectors in Rn spanning a
linear subspace V ⊂ Rn, with k > 1. For any nonzero v ∈ V , the collection v⊥ of vectors in V that are
perpendicular to v is a linear subspace, moreover spanned by k − 1 vectors.

PROOF. We will adapt the calculation given in Example 4.1.6 to a more general setting. We have
v = c1v1 + · · ·+ ckvk for some scalar coefficients ci at least one of which is nonzero since v is nonzero.
Any vector x ∈ V can be written as x = x1v1 + · · · + xkvk for scalars x1, . . . , xk. Since the vi’s are
pairwise orthogonal, to show that x is perpendicular to v means showing the vanishing of

v · x =
k∑

j=1

cj(vj · x) =
k∑

j=1

cj(vj ·
k∑

i=1

xivi) =
k∑

j=1

cj(
k∑

i=1

vj · (xivi)).

But vj · (xivi) = xi(vj · vi) vanishes if i ̸= j by orthogonality, so all terms in each inner sum vanish
except possibly when i = j, leaving us with

v · x =
k∑

j=1

cjxj(vj · vj).

At least one of the coefficients c1, . . . , ck is nonzero, say ci ̸= 0, so the vanishing of v · x is encoded by
solving the equation

k∑

j=1

cjxj(vj · vj) = 0
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for xi in terms of the other xj’s as we did in Example 4.1.6: in the present generality it comes out as

xi =
∑

j ̸=i

−cj(vj · vj)

ci(vi · vi)
xj.

Thus, separating the term xivi from the rest in the expression x =
∑k

j=1 xjvj and defining c′j =

cj(vj · vj) for ease of notation yields

x = xivi +
∑

j ̸=i

xjvj =
∑

j ̸=i

−(c′j/c
′
i)xjvi +

∑

j ̸=i

xjvj =
∑

j ̸=i

xj(−(c′j/c
′
i)vi + vj).

This shows that every x perpendicular to v is contained in the span of the k−1 vectors wj = −(c′j/c
′
i)vi+

vj for j ̸= i. We claim that v⊥ coincides with the span W of those k − 1 vectors (and so in particular v⊥

is a linear subspace of Rn). Having shown that v⊥ is contained inside the span W of the k − 1 vectors
wj = −(c′j/c

′
i)vi + vj for j ̸= i, it remains to show that everything in W belongs to v⊥.

Provided that each wj belongs to v⊥, so does everything in their span since any linear combination of
vectors in v⊥ is also contained in v⊥. Indeed, if x1, . . . ,xm ∈ v⊥ then c1x1 + · · · + cmxm ∈ v⊥ for any
scalars c1, . . . , cm since

v · (c1x1 + · · ·+ cmxm) = c1(v · x1) + · · ·+ cm(v · xm) = c1(0) + · · ·+ cm(0) = 0.

Thus, we just have to check that wj ∈ v⊥ for each j ̸= i, and this is a direct calculation: orthogonality of
v1, . . . ,vk implies v · vh =

∑k
r=1(cr(vr · vh)) = ch(vh · vh), so

v ·wj = v ·
(
−c

′
j

c′i
vi + vj

)
= −c

′
j

c′i
(v · vi) + v · vj = −c

′
j

c′i
(ci(vi · vi)) + cj(vj · vj).

But c′i = ci(vi · vi) and c′j = cj(vj · vj) by definition, so we have shown v · wj = −(c′j/c
′
i)c

′
i + c′j =

−c′j + c′j = 0 as desired. □

Next, we show that for any nonzero linear subspace W ⊂ Rn, any two orthogonal spanning sets of
nonzero vectors for W have the same size. That is:

Proposition B.1.3. Let W ⊂ Rn be a nonzero subspace. Any two sets of nonzero orthogonal vectors that
span W have the same size.

PROOF. Letting m be the size of one such spanning set for W , we want to show that all such for
W have size m. First suppose m = 1. Then W = span(w) is the span of a single vector, and so any
two nonzero vectors in W have the form cw and c′w for some nonzero scalars c, c′. Such vectors cannot
be orthogonal to each other: (cw) · (c′w) = (cc′)(w · w) = (cc′)∥w∥2 is nonzero since w ̸= 0 and
c, c′ ̸= 0. Hence, no two nonzero vectors w1,w2 ∈ W are ever orthogonal to one another, so when m = 1
a collection of orthogonal nonzero vectors spanning W must consist of exactly one vector.

Now we will work our way up, by increasing m one step at a time. Let’s consider m > 1 and make
the “inductive hypothesis” that we have already established the statement of Proposition B.1.3 for any
nonzero subspace of Rn that is the span of an orthogonal collection of fewer than m nonzero vectors (e.g.,
this is satisfied for m = 2 since we have treated the case of the span of a single nonzero vector). We
claim that under such a hypothesis, the desired result holds for the span of any orthogonal collection of
m nonzero vectors. Once this is shown then we would obtain our desired result for m = 2 (since the
inductive hypothesis does hold for m = 2), but the established result for m = 2 thereby establishes the
validity of the inductive hypothesis for m = 3, so we could run the same reasoning to obtain the desired
result for m = 3. That in turn establishes the validity of the inductive hypothesis for m = 4, and so on to
handle all possibilities.
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Suppose that for any span of a (non-empty) orthogonal collection of fewer than m nonzero vectors it is
known that all spanning sets consisting of pairwise orthogonal nonzero vectors have the same size. We aim
to prove the same for the span W of m pairwise orthogonal nonzero vectors w1, . . . ,wm. In other words,
if {x1, . . . ,xk} is an orthogonal collection of nonzero vectors spanning W then we claim that k = m.
The possibility k < m cannot happen. Indeed, if k < m then we could apply the inductive hypothesis to
conclude that all spanning sets of W consisting of pairwise orthogonal nonzero vectors have size k. This
contradicts the fact that {w1, . . . ,wm} is a spanning set for W containing m nonzero orthogonal vectors
with m > k. So indeed we cannot have k < m, so necessarily k ≥ m.

The key idea to rule out the possibility k > m is to consider the collection W ′ = x⊥
1 of the vectors in

W orthogonal to x1. On the one hand, since W is the span of the collection w1, . . . ,wm of m pairwise
orthogonal nonzero vectors, by Proposition B.1.2 we know that W ′ is spanned by m − 1 vectors. By
Proposition B.1.1, it follows that W ′ has an orthogonal spanning set of nonzero vectors consisting of at
most m − 1 vectors. If the size of the spanning set thereby obtained is denoted d ≤ m − 1 then by the
“inductive hypothesis” all spanning sets of pairwise orthogonal nonzero vectors for W ′ consist of exactly
d vectors.

On the other hand, we claim that W ′ is the span of the orthogonal collection of k − 1 nonzero vectors
x2, . . . ,xk. Indeed, a general vector w ∈ W has the form

w = c1x1 + c2x2 + · · ·+ ckxk,

so
w · x1 = c1(x1 · x1) + c2(x2 · x1) + · · ·+ ck(xk · x1) = c1(x1 · x1)

since xj ·x1 = 0 for all j ̸= 1 (as the collection of xi’s is orthogonal). But x1 ·x1 = ∥x1∥2 is nonzero since
x1 ̸= 0, so w · x1 = 0 precisely when c1 = 0, which is to say that w belongs to the span of {x2, . . . ,xk}.
So indeed W ′ is the span of an orthogonal collection of k − 1 nonzero vectors. But we have already
seen that every orthogonal collection of nonzero vectors spanning W ′ consists of d ≤ m − 1 vectors, so
k − 1 = d ≤ m − 1 and hence k ≤ m. It was already shown that k ≥ m, so we conclude that k = m as
desired. □

We have shown in Propositions B.1.1 and B.1.3 that for each nonzero linear subspace V of Rn, there
is a spanning set of nonzero orthogonal vectors and every spanning set of nonzero orthogonal vectors for
V has the same number of vectors. We call this common number the ortho-dimension of V and denote
it asodim(V ). We have dim(V ) ≤ odim(V ) since (i) V has a spanning containing odim(V ) nonzero
(orthogonal) vectors and (ii) dim(V ) is (by definition) the smallest number of nonzero vectors in any
possible spanning set for V . Now we can prove Theorem 5.2.2.

PROOF OF THEOREM 5.2.2. Our task is to prove odim(V ) = dim(V ) for all nonzero subspaces
V ⊂ Rn. Since V is spanned by dim(V ) vectors, Proposition B.1.1 provides a spanning set consisting
of at most dim(V ) pairwise orthogonal nonzero vectors! Any such spanning set has size odim(V ) by
Proposition B.1.3, so we get the reverse inequality odim(V ) ≤ dim(V ), forcing odim(V ) = dim(V ).
This completes the proof. □

With the equality of dimension and ortho-dimension now proved, we finally know that “orthogonal
basis” for a nonzero subspace V ⊂ Rn is the same thing is “spanning set of pairwise orthogonal nonzero
vectors”. Finally, we can prove Theorem 4.2.8.

PROOF OF THEOREM 4.2.8. Let W,V be linear subspaces of Rn with W ⊂ V . We want to show
that dim(W ) ≤ dim(V ) with equality precisely when W = V . If W = {0} (so dim(W ) = 0) then
everything is clear, so we may assume W is nonzero (so also V is nonzero). By the equality of dimension
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and ortho-dimension, we may pick an orthogonal basis {w1, . . . ,wm} of W , with m = dim(W ). If this
extends to an orthogonal basis {w1, . . . ,wm,v1, . . . ,vr} of V , then

dim(V ) = odim(V ) = m+ r ≥ m = odim(W ) = dim(W )

and equality is exactly the case r = 0, which is to say that the wi’s constitute an orthogonal basis of V .
But the span of the wi’s is equal to W by design, so they form an orthogonal basis of V precisely when
W = V . Hence, it remains to show that any orthogonal collection of nonzero vectors v1, . . . ,vm in a
linear subspace V ⊂ Rn may always be enlarged to an orthogonal basis v1, . . . ,vm, . . . ,vd of V . This
will be an argument via mathematical induction, where we shall now work up one step at a time based on
the dimension of V .

If dim(V ) = 1 then V is the span of a single nonzero vector, so (as we saw near the start of the proof of
Proposition B.1.3) there aren’t even two orthogonal nonzero vectors to be found in V . This forces m = 1
in such cases, so there is nothing to do. Now suppose d = dim(V ) > 1 and that the desired result (to
extend any collection of pairwise orthogonal nonzero vectors in a linear subspace to an orthogonal basis
of the subspace) holds for all linear subspaces of Rn with dimension < d. We shall show the same holds
for the d-dimensional V .

If v1, . . . ,vm spans V then this collection of vectors is an orthogonal basis of V and there is nothing
to do. So now suppose its span does not exhaust V , and pick v ∈ V outside its span. (In particular, v is
not a scalar multiple of any vj .) Define v′ = v − ProjV (v). This is nonzero (since v ̸∈ V ) and belongs
to V ⊥. Hence, v′ is orthogonal to every vi.

Now apply Proposition B.1.2 to the nonzero vector v′ ∈ V , noting since V has an orthogonal basis of
size d (as odim(V ) = dim(V )) it follows that the linear subspace v′⊥ ⊂ V containing all vi’s is spanned
by at most d − 1 vectors. Then Proposition B.1.1 tells us that dim(v′⊥) = odim(v′⊥) ≤ d − 1, so the
inductive hypothesis is applicable to the linear subspace v′⊥! Hence, the collection {v1, . . . ,vm} inside
v′⊥ extends to an orthogonal basis of v′⊥. But Theorem 7.1.1 tells us that every vector x ∈ V that is not
a scalar multiple of v′ is the sum of the scalar multiple Projv′(x) of v′ and a vector belonging to v′⊥, so
any spanning set of v′⊥ combined with v′ is a spanning set for V ! In particular, if {v1, . . . ,vm, . . . ,vk}
is an orthogonal basis of v′⊥ extending {v1, . . . ,vm} then

B = {v1, . . . ,vm, . . . ,vk,v
′}

is a spanning set for V consisting of nonzero vectors. But v′ is orthogonal to everything else in this
collection (as each of v1, . . . ,vk belongs to v′⊥), and the collection {v1, . . . ,vk} is pairwise orthogonal by
design. Hence,B is a collection of pairwise orthogonal nonzero vectors that spans V , so it is an orthogonal
basis. This is an orthogonal basis of V that contains the initial orthogonal collection {v1, . . . ,vm}, and so
completes the inductive argument and so also the proof of Theorem 4.2.8. □

Before we can prove Theorem 19.2.3, whose formulation involves the Gram–Schmidt process, we
need to show that the Gram–Schmidt process actually works. So let us now carry out that argument. The
first step of the Gram–Schmidt process works as claimed, due to the definitions. There are k steps overall,
and to check that everything works as claimed we proceed from each step to the next in an “inductive”
manner. That is, for an integer j satisfying 1 ≤ j < k we suppose everything has worked up through the
end of the jth step, so we have an orthogonal basis Bj of Vj = span(v1, . . . ,vj) consisting of the nonzero
wi’s obtained so far. We want to show that everything works at the end of the next step. For that purpose,
we define

wj+1 = vj+1 −ProjVj
(vj+1)

and need to show two things: if wj+1 = 0 then Vj+1 = Vj , and if wj+1 ̸= 0 then combining Bj and wj+1

gives an orthogonal basis of Vj+1. (That would allow us to carry out the inductive argument, and upon
reaching the end of the kth step we would have an orthogonal basis Bk of Vk = V as claimed.)
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From the definitions of Vj and Vj+1 as spans, we see via the equality

j+1∑

i=1

civi = (

j∑

i=1

civi) + cj+1vj+1

that the vectors in Vj+1 are precisely the sums v′+cvj+1 for vectors v′ ∈ Vj and scalars c. When wj+1 = 0
we have vj+1 = ProjVj

(vj+1) ∈ Vj , so for any v′ ∈ Vj and scalar c certainly v′ + cvj+1 ∈ Vj (as a linear
combination of vectors in a linear subspace belongs to that linear subspace). Hence, Vj+1 = Vj as desired
when wj+1 = 0.

Now suppose wj+1 is nonzero. By Theorem 6.2.1, the difference vector wj+1 between vj+1 and its
projection into Vj is orthogonal to everything in Vj . But the expression v′ + cvj+1 for general elements of
Vj+1 can be rewritten as

v′ + c(wj+1 +ProjVj
(vj+1)) = (v′ +ProjVj

(vj+1)) + cwj+1,

which is the sum of a vector in Vj and a scalar multiple of wj+1. Since we have written everything in
Vj+1 as the sum of a vector in Vj and a scalar multiple of wj+1, and Bj is an orthogonal basis of Vj , it
follows that Bj together with the nonzero vector wj+1 is a spanning set for Vj+1 consisting of nonzero
vectors. This collection is also orthogonal: we have seen that wj+1 is orthogonal to everything in Vj
(hence to everything in Bj), and by the inductive hypothesis Bj is a collection of pairwise orthogonal
vectors. Hence, Bj together with wj+1 is an orthogonal basis of Vj+1. This completes the proof that the
Gram–Schmidt process always works. Using this, we can prove Theorem 19.2.3:

PROOF OF THEOREM 19.2.3. By the design of the Gram–Schmidt process, the nonzero wi’s are ex-
actly the members of the collection Bk that is an orthogonal basis of V , so the number of such wi’s is
equal to odim(V ) = dim(V ) as claimed at the start of Theorem 19.2.3.

Since there are k steps in the Gram–Schmidt process, to say that there are no nonzero wi’s is exactly
to say that there are k nonzero wi’s. But the number of nonzero wi’s is known to always be equal to
dim(V ) (since we have shown above that the Gram–Schmidt process always works), so the equivalence of
the conditions (i) and (ii) in Theorem 19.2.3 is established. When these equivalent conditions hold, so the
spanning set {v1, . . . ,vk} of nonzero vectors in V has minimal size, we have to show that this collection
of vectors must be linearly independent. If k = 1 then there is nothing to do. Now suppose k > 1. We
have to rule out the possibility that vi is a linear combination of the rest. When the latter happens, vi is
redundant in the span: the collection of vj’s without vi has the same span (since the contribution of vi can
always be absorbed into the span of the rest). But that is impossible: it would provide a collection of k− 1
vectors whose span is equal to the linear subspace V , yet dim(V ) = k (so all spanning sets of V have size
at least k). We have shown that when the equivalent conditions (i) and (ii) in Theorem 19.2.3 hold, then
(iii) also holds.

Finally, we have to show that when condition (iii) in Theorem 19.2.3 holds, then the equivalent condi-
tions (i) and (ii) hold. It is enough to show that (ii) holds: all wi’s are nonzero. We suppose to the contrary
that some wi vanishes and seek a contradiction (so such a situation couldn’t have arisen after all). Always
w1 = v1 is nonzero, so necessarily i ≥ 2. By definition,

wi = vi −ProjVi−1
(vi),

so the vanishing of some wi forces

vi = ProjVi−1
(vi) ∈ Vi−1 = span(v1, . . . ,vi−1).

This implies linear dependence for {v1, . . . ,vk} (in fact, even linear dependence of the first i vectors in
this collection), contradicting the assumption that (iii) holds. □
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As an application of Theorem 19.2.3, we can finally establish Theorem 18.1.8 (which played no role
in the proof of Theorem 19.2.3, so there is no circular reasoning involved).

Proposition B.1.4. Let A be an m× n matrix.
(i) If there exists an n×m matrix B for which AB = Im and BA = In then n = m.

(ii) If n = m and B is an n× n matrix for which AB = In then BA = In (so A is invertible with inverse
B).

PROOF. By Theorem 19.2.3, a basis of any RN is the same as a linearly independent spanning set (so
in particular any linearly independent spanning set has the same size, which is the dimension). Hence,
dimRn = n and dimRm = m (as can also be seen by the established equality of dimension and ortho-
dimension), so to prove (i) it suffices to show that if such a B exists as there then Rn and Rm have the
same dimension.

For the standard basis e1, . . . , en of Rn, define vj = Aej ∈ Rm. We shall prove that v1, . . . ,vn is
a basis of Rm, so dimRm = n, forcing m = n as desired. It is equivalent to show that v1, . . . ,vn is a
linearly independent spanning set for Rm.

We are assuming in (i) that there is an n × m matrix B for which AB = Im and BA = In. Every
v ∈ Rm has the form Aw for some w ∈ Rn since v = (AB)v = A(Bv) (so take w to be Bv). Writing
w =

∑n
j=1 cjej , we obtain

v = Aw =
n∑

j=1

cjAej =
n∑

j=1

cjvj,

so the vj’s span Rm. By the same calculation, they must be linearly independent: if
∑n

j=1 cjvj = 0 then

0 =
n∑

j=1

cjvj = A(
n∑

j=1

cjej),

so multiplying on the left by B and using that BA = In yields that
∑n

j=1 cjej vanishes. Such vanishing as
an n-vector forces all cj to vanish, as desired. This completes the proof of (i).

Turning to (ii), suppose A,B are n × n matrices for which AB = In. We need to prove BA = In.
Letting vj = Bej , we claim that the vectors v1, . . . ,vn ∈ Rn are linearly independent. Once this is shown,
then this collection of n vectors has n-dimensional span (by Theorem 19.2.3), so its span coincides with
Rn (by Theorem 4.2.8). In other words, if the vj’s are linearly independent then they constitute a basis of
Rn. This is the key fact from which (ii) will be deduced.

To show that the vj’s are linearly independent, suppose c1, . . . , cn are scalars for which
n∑

j=1

cjvj = 0.

We want to show that the cj’s all vanish. Forming the matrix-vector product against A on both sides of
this vector equality and using that AB = In, we get

0 = A0 = A(
n∑

j=1

cjvj) =
n∑

j=1

cjAvj =
n∑

j=1

cjA(Bej) =
n∑

j=1

cjej.

The equality of outer terms forces the cj’s to vanish, in view of how the ej’s are defined. This completes
the proof that the vj’s are a basis of Rn.

Now we are ready to prove that BA is the identity transformation. We will show that (BA)v = v
for all v ∈ Rn; applying this to v = ej would then imply that each column of BA agrees with the
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corresponding column of In, so we’d have BA = In as desired. Since the vj’s are a basis of Rn, we can
write v =

∑n
j=1 cjvj for some scalars c1, . . . , cn. Hence,

(BA)v = B(Av) = B(
n∑

j=1

cjAvj) =
n∑

j=1

cjB(Avj).

We want this to be equal to v =
∑n

j=1 cjvj , so it is enough to show that B(Avj) = vj for all j. By
definition vj = B(ej), and AB = In by hypothesis, so Avj = A(Bej) = ej . Hence, B(Avj) = Bej =
vj , as desired. □

B.2. Equivalence among various perspectives on linear subspaces. We initially defined a linear
subspace of Rd to be the span of a finite collection of d-vectors. For example, the column space C(A) of
an m× n matrix A is the span of the n columns considered as vectors in Rm, so it is a linear subspace of
Rm due to its very definition.

In contrast, the null space N(A) is defined in a very different manner: it is the collection of vectors
x ∈ Rn that satisfy Ax = 0, which amounts to m equations

a1 · x = 0, a2 · x = 0, . . . , am · x = 0

in the n coordinates x1, . . . , xn of x, where ai is the ith row of A. In other words, if we write the ith row
of A as ai = (ai1, . . . , ain) ∈ Rm then N(A) is the solution set to the system of m equations

n∑

j=1

a1jxj = 0,
n∑

j=1

a2jxj = 0, . . . ,
n∑

j=1

amjxj = 0 (B.2.1)

in the n unknowns x1, . . . , xn.
It is not evident from this latter description that N(A) is a linear subspace of Rn. Let’s explain what

the issue is. On the one hand, the visualization we have in our head for each equation in the system is that
its solution set is a “hyperplane” in Rn through the origin (assuming the equation isn’t the silly case of
having all coefficients equal to 0), generalizing the picture of a plane through the origin in the case n = 3.
Thus, the geometric meaning of such a simultaneous system is akin to that of two different planes in R3

through the origin meeting along a line through the origin. In other words, our geometric experience in
R3 strongly suggests that N(A) “looks like” it ought to be a linear subspace (much as two different planes
through the origin in R3 intersect in another linear subspace: a line). But can we prove it based on the
actual definition of what a linear subspace is? In effect, we are trying to show that geometric and algebraic
perspectives are equivalent to each other (which is the source of much of the power of linear algebra).

The task is to show that there is actually some collection of vectors v1, . . . ,vk ∈ N(A) so that the
elements of N(A) are precisely the linear combinations of the vi’s. In algebraic terms, this asks if there is
some finite collection of solutions to the system (B.2.1) of m simultaneous equations so that the general
solutions are obtained precisely by forming linear combinations of those finitely many solutions. When
phrased that way in terms of the actual definition of the concept “linear subspace”, its validity for N(A) is
not so apparent as a visual picture suggests. Fortunately, everything turns out nicely:

Theorem B.2.1. For any m × n matrix A, the null space N(A) is a linear subspace of Rn. Equivalently,
for any m vectors a1, . . . , am ∈ Rn, the solution set of vectors x ∈ Rn to the simultaneous equations

a1 · x = 0, a2 · x = 0, . . . , am · x = 0

is a linear subspace of Rn.

A consequence of this result is that for any linear subspace V = span(a1, . . . , am) ⊂ Rn, its orthogo-
nal complement is a linear subspace since V ⊥ is exactly the collection of x’s as in Theorem B.2.1.
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To understand what is going on in this theorem, we shall now step away from the specificity of null
spaces (so as to cut down on the amount of notation) and formulate a few properties of any null space. It
will turn out that any collection of vectors in Rm satisfying this short list of properties is a linear subspace!
The starting point is the following temporary concept (whose terminology we have cooked up solely for the
present discussion; it is not standard terminology outside this course) that captures the common features
of linear subspaces and null spaces that were observed in Propositions 4.1.11 and 21.3.5.

Definition B.2.2. A collectionW of vectors in Rn is called an abstract subspace if it satisfies the following
conditions:

(i) 0 ∈ W ,
(ii) if w,w′ ∈ W then w +w′ ∈ W ,

(iii) if w ∈ W and c is any scalar then cw ∈ W .
In other words: W contains the origin and is “preserved” under the operations of vector addition and scalar
multiplication on itself.

Note that if we iterate conditions (ii) and (iii) repeatedly, together they are just saying that any linear
combination of vectors in W again belongs to W . That is: for any w1, . . . ,wm ∈ W , we have

span(w1, . . . ,wm) ⊂ W.

Example B.2.3. Every linear subspace V of Rn is an abstract subspace. This was already recorded in
Proposition 4.1.11, but let’s review the reasoning once again. By definition of “linear subspace”, V is the
span of some v1, . . . ,vk ∈ Rn. Thus,

0 = 0v1 + . . . 0vk ∈ V

(verifying Definition B.2.2(i) for V ). Also, for any w,w′ ∈ W we have

w =
k∑

j=1

ajvj, w′ =
k∑

j=1

bjvj

for some scalars a1, . . . , ak, b1, . . . , bk ∈ R and hence

w +w′ =
k∑

j=1

(ajvj + bjvj) =
k∑

j=1

(aj + bj)vj ∈ V

(verifying Definition B.2.2(ii) for V ). Finally, for any w ∈ V and scalar c we have w =
∑k

j=1 ajvj for
some scalars a1, . . . , ak ∈ R, so

cw =
k∑

j=1

(caj)vj ∈ V

(verifying Definition B.2.2(iii) for V ). ■

Here is a setting that may initially seem to be far-removed from linear algebra yet is a situation in
which the concept of an “abstract subspace” very naturally emerges.

Example B.2.4. Consider the differential equation

y′′ + 2y′ − 3y = 0.

Such “second-order constant-coefficient” differential equations arise in the description of positions in
many mechanical systems (where the first derivative corresponds to velocity and the second derivative
corresponds to acceleration). An uninteresting solution to this is the constant function y(x) = 0. More
interesting solutions are e−3x and (1/4)ex (check these work).

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 638



Now something curious happens: the sum of these two explicit solutions is yet another solution. In-
deed, for f(x) = e−3x + (1/4)ex we have

f ′′ + 2f ′ − 3f = (9e−3x + (1/4)ex) + 2(−3e−3x + (1/4)ex)− 3(e−3x + (1/4)ex)

= (9e−3x − 6e−3x − 3e−3x) + ((1/4)ex + (2/4)ex)− (3/4)ex)

= (9− 6− 3)e−3x + ((1/4) + (2/4)− (3/4))ex

= 0.

In fact, we can do much more than form the sum: any linear combination f(x) = ae−3x + b(1/4)ex =
ae−3x + (b/4)ex for a, b ∈ R is a solution!

Rather than grind out the algebra of plugging such an expression into the differential equation and
observing magical cancellations, we make an even more striking observation: if y1(x), y2(x) are any two
solutions to the given differential equation then any linear combination y(x) = c1y1(x) + c2y2(x) is also
a solution. Indeed:

y′′ + 2y′ − 3y = (c1y1 + c2y2)
′′ + 2(c1y1 + c2y2)

′ − 3(c1y1 + c2y2)

= (c1y
′′
1 + c2y

′′
2) + 2(c1y

′
1 + c2y

′
2)− 3(c1y1 + c2y2)

= (c1y
′′
1 + c2y

′′
2) + (2c1y

′
1 + 2c2y

′
2)− 3c1y1 − 3c2y2,

and collecting together the terms involving a given scalar cj turns this into

c1(y
′′
1 + 2y′1 − 3y1) + c2(y

′′
2 + 2y′2 − 3y2). (B.2.2)

Aha, but y1(x) and y2(x) have been assumed to satisfy the original differential equation, which says
exactly that

y′′1 + 2y′1 − 3y1 = 0, y′′2 + 2y′2 − 3y2 = 0,

so (B.2.2) collapses to c1(0) + c2(0) = 0. Putting it all together, this says that the function y(x) =
c1y1(x) + c2y2(x) satisfies y′′ + 2y′ − 3y = 0, as desired.

What just happened? We have shown that the collection of all solutions to our initial differential
equation satisfies conditions exactly like those in Definition B.2.2. In Math 53 you will explore the striking
consequences of this link between differential equations and linear algebra. It leads to a compelling
explanation for the fact the solutions ae−3x + (b/4)ex with a, b ∈ R actually account for all solutions of
the given differential equation, and it leads to a systematic method to use insights from linear algebra to
determine all solutions to a much wider class of “constant-coefficient” differential equations. Even in the
case of second-order equations (the type which arise frequently in physics and engineering applications),
this is a rather illuminating perspective. ■

In most textbooks and courses on linear algebra, the somewhat abstract Definition B.2.2 is taken as
the definition of “linear subspace” (of Rn). We have taken the more geometric and concrete approach of
defining “linear subspace” of Rn to be a span of finitely many vectors. We just saw that the more abstract
concept includes the more geometric one as a special case. The crucial fact is that the seemingly more
general concept of abstract subspace is in fact exactly the same thing as the concept of linear subspace:
see Theorem B.2.6. The reason for introducing the seemingly more general notion is that it is sometimes
easier to verify. Knowing these concepts agree opens the door to many nice consequences.

Another source of examples of abstract subspaces is null spaces:

Example B.2.5. If A is an m × n matrix then we claim that the null space N(A) is an abstract subspace
of Rn. If a1, . . . , am are the rows of A (considered as vectors in Rn) then N(A) consists of exactly those
vectors x ∈ Rn satisfying the m conditions

a1 · x = 0, a2 · x = 0, . . . , am · x = 0.
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We want to show that this collection of conditions on x satisfies the requirements in Definition B.2.2.
This was already recorded as Proposition 21.3.5, but let’s review the reasoning again. The vector 0 ∈ Rn

belongs toN(A) since 0 is orthogonal to all aj’s (or because the matrix-vector productA0 vanishes, which
comes to the same thing). If x,x′ ∈ N(A) then x+ x′ ∈ N(A) because for all 1 ≤ j ≤ n we have

aj · (x+ x′) = aj · x+ aj · x′ = 0 + 0 = 0,

so x+ x′ ∈ N(A). Finally, if x ∈ N(A) and c ∈ R then cx ∈ N(A) because for all 1 ≤ j ≤ m we have

aj · (cx) = c(aj · x) = c(0) = 0.

■

Here is the crux of the matter.

Theorem B.2.6. Every abstract subspace V ⊂ Rn is a linear subspace; i.e., V is the span of a finite
collection of vectors in Rn.

By Example B.2.5 we can apply this to V = N(A), so Theorem B.2.1 is thereby established too.

PROOF. By definition, V contains 0. If it has no nonzero vectors then V is just the span of the single
vector 0 and so is a linear subspace. Hence, we may and do assume V contains some nonzero vector v.
But V is an abstract subspace of Rn, so V contains the line span(v). In the case n = 1 there is no room
left for dimension reasons: we must have V = R1, again a linear subspace. This settles the case n = 1, so
we now focus on the case n > 1.

Working up one step at a time for n, we may suppose the result is already known to hold for abstract
subspaces of Rn−1. In particular, we may suppose all abstract subspaces of Rn−1 are known to be linear
subspaces of Rn−1. If V is an abstract subspace of Rn and every vector in V has vanishing nth coordinate
then we can view V as living inside Rn−1, so we would be done (i.e., V would be the span of finitely
many vectors in Rn−1 viewed as vectors in Rn by appending to 0 as a final coordinate of everything in
sight). Thus, we can assume V contains some vector v whose final coordinate vn is nonzero. Since V is
an abstract subspace, it contains the vector w = (1/vn)v whose nth coordinate is equal to 1.

For any x ∈ V ⊂ Rn with ith coordinate xi, the vector x− xnw is a linear combination of x,w ∈ V ,
so x−xnw ∈ V by what it means to say that V is an abstract subspace. But since w has its final coordinate
equal to 1, the final coordinate of x − xnw is equal to xn − xn · 1 = xn − xn = 0. In other words, if we
form the overlap

V ′ = {v = (x1, . . . , xn) ∈ V : xn = 0}
of V with the collection of vectors in Rn having vanishing final coordinate then the formula

x = (x− xnw) + xnw

expresses everything in V as a sum of something in V ′ and a scalar multiple of w ∈ V . Moreover, by
design V ′ ⊂ V and w ∈ V , so every vector of the form v′ + cw for v′ ∈ V ′ and c ∈ R belongs to V by
definition of V being an abstract subspace.

Thus, we can view V in the following way: it consists of exactly the vectors of the form v′ + cw for
some v′ belonging to the abstract subspace V ′ ⊂ Rn and some scalar c. But everything in V ′ has vanishing
final coordinate, so by ignoring that we can view V ′ inside Rn−1 where it is certainly an abstract subspace
(as V ′ is such inside Rn). The gain is that we already know that abstract subspaces of Rn−1 are linear
subspaces, so V ′ is the span of some collection of vectors v′

1, . . . ,v
′
k ∈ Rn−1. Viewing v′

1, . . . ,v
′
k as

n-vectors by appending an nth coordinate equal to 0, we conclude that the vectors in V are precisely the
n-vectors of the form

a1v
′
1 + · · ·+ akv

′
k + cw
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for scalars a1, . . . , ak, c. This says
V = span(v′

1, . . . ,v
′
k,w),

so V is a span of a finite set of vectors in Rn, which is what we wanted to show! □

Since the null space N(A) of an m × n matrix A is now known to be a linear subspace, it has a
dimension (smallest size of a spanning set). This allows us to state a result that was seen in Section 21.6
to lie at the heart of the equality of row rank and column rank (Theorem 21.6.1).

Theorem B.2.7 (Rank–Nullity Theorem). For any m× n matrix A, dimN(A) + dimC(A) = n.

Applying this to the n×m matrix A⊤ gives dimN(A⊤) + dimC(A⊤) = m, which is the version that
arose in our discussion at the end of Section 21.6.

PROOF. If C(A) = {0} then A is the zero matrix, so N(A) = Rn and there is nothing to do. Hence,
we may suppose C(A) is nonzero. Let d = dimC(A) > 0, and pick a basis b1, . . . ,bd of C(A). By
the very meaning of the column space, for each bj we can pick a solution vj ∈ Rn to Ax = bj; i.e.,
Avj = bj .

The first observation to make is that the n-vectors v1, . . . ,vd are linearly independent. That is, if
c1, . . . , cd are scalars for which c1v1 + · · ·+ cdvd = 0 then we claim that the cj’s all vanish. By applying
the matrix-vector product against A to both sides, we get

A(c1v1 + · · ·+ cdvd) = A0 = 0

in Rm. The left side equal to c1Av1+· · ·+cdAvd = c1b1+· · ·+cdbd, so
∑d

j=1 cjbj = 0. But the bj’s are
linearly independent (as they constitute a basis of C(A) by design), so this vanishing linear combination
forces all coefficients cj to vanish, as desired.

Now that the vj’s are known to be linearly independent, let’s see how any v ∈ Rn is related to the
vj’s. The m-vector Av certainly belongs to C(A), which in turn is spanned by the bj’s (since the bj’s are
a basis of C(A) by design), so there are scalars c1, . . . , cd for which

Av = c1b1 + · · ·+ cdbd = c1Av1 + · · ·+ cdAvd = A(c1v1 + · · ·+ cdvd).

Comparing the left and right sides, we have two vectors giving the same output under A. But whenever
Av = Av′ for n-vectors v and v′, we have A(v− v′) = Av−Av′ = 0, so v− v′ ∈ N(A). Hence, if we
define

w = v − (c1v1 + · · ·+ cdvd)

then w ∈ N(A) and
v = w + c1v1 + · · ·+ cdvd. (B.2.3)

In words, everything in Rn is obtained by combining the null space ofA and the linearly independent vj’s.
We argue separately depending on whether or not N(A) = {0}. First assume N(A) = {0}, so

dimN(A) = 0 and our desired dimension formula is dimC(A)
?
= n, which is to say d ?

= n. In other
words, in this case we have to show d = n. Well, w above vanishes since it lies inside the null space
N(A) that we are now assuming is just the zero vector, and so (B.2.3) says that the arbitrary v is in the
span of the vj’s. Hence, the linearly independent vj’s span the entirety of Rn. But a linearly independent
spanning set is the same thing as a basis, so the number d of such vj’s must equal dimRn = n, as desired.

Now suppose N(A) is not just the zero vector. Being a nonzero linear subspace of Rn, we can pick
a basis w1, . . . ,wr of N(A), where r = dimN(A). We are going to show that the collection of d + r
vectors

v1, . . . ,vd,w1, . . . ,wr
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is a basis for Rn, so n = d + r, which is the desired result since d = dimC(A) by definition. This is a
spanning set for Rn because (B.2.3) shows that every v ∈ Rn can be written as

v = w + c1v1 + · · ·+ cdvd = a1w1 + · · ·+ arwr + c1v1 + · · ·+ cdvd

(where
∑r

j=1 ajwj is an expression for w ∈ N(A) as a linear combination of the wj’s that span N(A) by
design). Hence, if this collection of d + r vectors is also linearly independent then it would be a basis of
its span Rn, which is what we are aiming to show.

Finally, it remains to check that the collection of vi’s and wj’s is linearly independent. To that end, we
suppose for some scalars c1, . . . , cd, a1, . . . , ar that

c1v1 + · · ·+ cdvd + a1w1 + · · ·+ arwr = 0 (B.2.4)

and we just need to deduce that all of these scalar coefficients vanish. First we will show that the ci’s all
vanish, and then that the aj’s all vanish. Applying the matrix-vector product against A to both sides gives

A(c1v1 + · · ·+ cdvd + a1w1 + · · ·+ arwr) = A0 = 0,

and the left side (by “linearity”) is equal to

c1Av1+ · · ·+ cdAvd+a1Aw1+ · · ·+arAwr = c1b1+ · · ·+ cdbd+a10+ · · ·+ar0 = c1b1+ · · ·+ cdbd.

(Here we have used that each wj belongs to N(A) by design, and that Avi = bi by design of vi.) Hence,
we have

c1b1 + · · ·+ cdbd = 0.

But the bi’s are linearly independent (they constitute a basis of C(A) by design), so this forces the coeffi-
cients c1, . . . , cd to vanish. Plugging this conclusion into (B.2.4) yields

a1w1 + · · ·+ arwr = 0.

By design the wj’s are linearly independent since they constitute a basis of N(A), so this forces the aj’s
to vanish too. □

Corollary B.2.8. Let be A an n× n matrix.
(a) IfA is not invertible thenN(A) contains a nonzero vector. In particular, whenever the vector equation

Ax = b has a solution x0, it has more than one solution (namely x0 + v for any nonzero v ∈ N(A)),
so it never happens for such A and some b that Ax = b has exactly one solution.

(b) If an n× n matrix A has vanishing null space then it is invertible.

PROOF. Once the first assertion in (a) is proved, the rest of (a) is immediate. Likewise, (b) would also
follow since by (a) the vanishing of N(A) never happens in the non-invertible case (so when N(A) = {0}
it follows thatA cannot be non-invertible, so it must be invertible). We therefore focus on the first assertion
in (a).

By Theorem 18.3.3, the invertibility of an n × n matrix M amounts to the equation Mx = b having
a unique solution for every n-vector b. Since A is not invertible, this tells us that for some n-vector b0

the equation Ax = b0 must fail to “have a unique solution”. That means one of two things must happen:
either (i) there is no solution or (ii) there is a solution but actually more than one. If case (ii) is what occurs
for b0 then we are done because Proposition 21.3.10 then tells us that for any two different solutions to
Ax = b0, their nonzero difference lies in the null space (so N(A) is nonzero, as desired). But how do we
rule out the possibility that for every b0 for which Ax = b0 fails to have a unique solution (i.e., either no
solution or more than one solution), it is always case (i) that occurs?

Let’s suppose it is always case (i) that occurs, so the vector equation Ax = b for every n-vector b has
at most one solution (i.e., either no solution or just one solution). From this supposition we will deduce
an inconsistency, so in fact such a situation never could have arisen. Since case (ii) is never occurring,
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we must have N(A) = 0 since otherwise Ax = 0 falls into case (ii). We conclude by Theorem B.2.7
that dimC(A) = n − dimN(A) = n, so the linear subspace C(A) ⊂ Rn has dimension n and hence
C(A) = Rn (Theorem 4.2.8). Thus, every b ∈ Rn lies in the column space, which is to say Ax = b has
a solution for every b.

But we have assumed that the vector equation Ax = b (for any b at all) has at most one solution!
Since we have deduced (in our situation) that there is always some solution, we conclude that there is
always exactly one solution. The property for an n × n matrix A that the equation Ax = b has exactly
one solution for every n-vector b is one of the equivalent definitions of the invertibility of the matrix (see
Proposition 18.1.5(a) and Definition 18.1.6). We have assumed A is not invertible, so we have reached an
inconsistency. Hence, our initial assumption that case (ii) never occurs for a non-invertible A is false, and
so (as explained above) we are done. □

B.3. Geometric proof of the Spectral Theorem. Our aim here is to prove Theorem 24.1.4 using geo-
metric ideas. We require a refinement of Theorem 20.1.4: that result (whose proof was a direct calculation
in matrix algebra) says that if A is an n×nmatrix then for any v,w ∈ Rn we have (Av) ·w = v ·(A⊤w),
so in particular if A is symmetric (i.e., A⊤ = A) then (Av) · w = v · (Aw) for all v,w ∈ Rn. The
connection to symmetry goes the other way too:

Proposition B.3.1. An n×nmatrixA is symmetric precisely when (Av)·w = v·(Aw) for all v,w ∈ Rn.

PROOF. If A is symmetric then the desired identity holds; this is part of Theorem 20.1.4. For the
opposite implication, suppose (Av) · w = v · (Aw) for all v,w ∈ Rn; we want to deduce that A is
necessarily symmetric. Letting v = ei and w = ej , we have (Aei) · ej = ei · (Aej). The left side is the
jth entry of the ith column Aei of A, which is to say it equals aji. The right side is the ith entry of the jth
column, which is to say it equals aij . We conclude that aij = aji for all i, j, so A is symmetric. □

Remark B.3.2. As a nice application of Proposition B.3.1, we can explain the symmetry of the n × n
matrix A for ProjV : Rn → Rn for any linear subspace V of Rn (which was mentioned without proof in
Proposition 20.3.10). By Proposition B.3.1, it suffices to show that for any x,y ∈ Rn we have (Ax) · y =
x · (Ay). By Theorem 6.2.1, the differences x − ProjV (x) and y − ProjV (y) are each orthogonal to
everything in V , so x − Ax and y − Ay are each orthogonal to everything in V . But the projections Ay
and Ax belong to V , so

(x− Ax) · (Ay) = 0, (y − Ay) · (Ax) = 0.

These respectively say x · (Ay)− (Ax) · (Ay) = 0 and y · (Ax)− (Ay) · (Ax) = 0, so

x · (Ay) = (Ax) · (Ay) = (Ay) · (Ax) = y · (Ax) = (Ax) · y.
The equality of the outer terms is exactly what we needed to show.

Here is a proof of the Spectral Theorem in 3 steps.
Step 1. The first observation is that it suffices to show in general that a symmetric n× n matrix A has

some eigenvector, for all n. Indeed, granting this fact in general (for all n), let’s see how to deduce the full
result, first building the wj’s. The case n = 1 is obvious, so we may now assume n > 1. Let v ∈ Rn be
an eigenvector of A (the existence of such v in general is what we are temporarily taking as known). Let
λ be the corresponding eigenvalue. Let H = v⊥ be the hyperplane perpendicular to the line spanned by
v, so (applying Theorem 19.2.5 to the line span(v)) we have dimH = n− 1 < n.

We claim that the linear transformation TA : Rn → Rn corresponding to A (i.e., TA(x) = Ax for all
x ∈ Rn) carries H into itself. That is, we claim that if w ∈ H then Aw ∈ H . By definition of H as v⊥,
we use the symmetry of A and Proposition B.3.1 (or really Theorem 20.1.4) to compute

(Aw) · v = w · (Av) = w · (λv) = λ(w · v) = λ(0) = 0,
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so Aw ∈ v⊥ = H .
Now we use Gram–Schmidt to build an orthonormal basis {h1, . . . ,hn−1} of H . Recall that this

amounts to building an orthogonal basis and then dividing each basis vector by its length. Since the basis
vectors are orthogonal with unit length, this basis makes H “look like” Rn−1: vectors in H are uniquely
written as h =

∑n−1
i=1 xihi for scalars x1, . . . , xn−1 and the dot product on H (inherited from Rn) looks

like with the usual dot product on Rn−1:

(
n−1∑

i=1

xihi) · (
n−1∑

j=1

yjhj) =
∑

1≤i,j≤n−1

(xihi) · (yjhj)

=
∑

1≤i,j≤n−1

(xiyj)hi · hj

=
n∑

i=1

xiyi

(where the final equality uses that hi · hj vanishes for i ̸= j and equals 1 for i = j, due to {h1, . . . ,hn−1}
being chosen as orthonormal; i.e., pairwise orthogonal unit vectors). The point is that the final expression
in this chain of equalities is the usual formula for the dot product on Rn−1.

The preceding argument shows that the linear transformation TA : Rn → Rn restricts to a linear
transformation TA : H → H , and this in turn corresponds to some (n− 1)× (n− 1) matrix B under the
identification of H with Rn−1 that we made using the hi’s (i.e., for each h ∈ H we have h =

∑n−1
i=1 xihi

and computations of linear combinations and dot products with such h’s is given by the usual formulas
in terms of the associated coefficients (x1, . . . , xn−1) ∈ Rn−1). We claim that B is symmetric. For this
we use the criterion from Proposition B.3.1: since the identification of Rn−1 with H respects notions of
dot product on each, the symmetry criterion (Bx) · x′ = x · (Bx′) for any x,x′ ∈ Rn−1 amounts to the
assertion that TA(v) · v′ = v · TA(v′) for all v,v′ ∈ H . But this is a special case of the general identity
(Av) · v′ = v · (Av′) for all v,v′ ∈ Rn (let alone v,v′ ∈ H), which holds because A is symmetric.

If the Spectral Theorem were known for (n− 1)× (n− 1) symmetric matrices then we could apply it
to the symmetric (n− 1)× (n− 1) matrix B to get an orthonormal basis of eigenvectors for B in Rn−1.
But eigenvectors for B in Rn−1 correspond exactly to eigenvectors for A in H . Indeed, if

x =



x1
...

xn−1


 ∈ Rn−1

and h =
∑n−1

i=1 xihi is the corresponding vector in H then by definition of B we know that Bx ∈ Rn−1

corresponds toAh ∈ H , so the eigenvector conditionBx = µx for a scalar µ is equivalent to the condition
Ah = µh. Since the usual dot product on Rn−1 matches the dot product on H , an orthonormal basis of
eigenvectors for B in Rn−1 would thereby yield an orthonormal basis of H consisting of eigenvectors
for A. When such a latter basis is combined with the unit eigenvector v for A that is orthogonal to the
hyperplane H (due to how H was defined), we would get an orthonormal collection of n eigenvectors
for A in Rn. Any collection of n mutually orthogonal unit vectors in Rn has span that is n-dimensional
(Theorem 5.2.2) and hence coincides with Rn (Theorem 4.2.8).

Thus, if it is known that symmetric square matrices of every size always admit some eigenvector then
via induction on n we obtain the existence of an orthogonal basis of eigenvectors for symmetric matrices
of every size. Moreover, for w1, . . . ,wn as in the statement of the Spectral Theorem and λj the eigenvalue
for wj , let’s check that the λj’s are the only eigenvalues for A. Suppose Aw = λw for some w ̸= 0 and
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λ ∈ R. By writing w = c1w1 + · · ·+ cnwn for some scalars c1, . . . , cn, we have

Aw = c1(Aw1) + · · ·+ cn(Awn) = c1(λ1w1) + · · ·+ cn(λnwn) = (λ1c1)w1 + · · ·+ (λncn)wn

and λw = (λc1)w1 + · · · + (λcn)wn. Since w1, . . . ,wn is a basis, the coefficients λjcj and λcj of wj in
these two expressions for the vector Aw = λw must be the same: λjcj = λcj for every j. But some cj0 is
nonzero since w ̸= 0, so we can cancel cj0 to conclude that λj0 = λ; this says that λ is equal to one of the
λj’s, as desired.

Remark B.3.3. The geometric method used above to bootstrap from the existence of one eigenvector to the
existence of more eigenvectors via considering the hyperplane orthogonal to an “eigenline” is not merely
an idea with theoretical significance. The exact same technique underlies what is actually done in practice
to transform an optimization algorithm for computing the biggest eigenvalue of a symmetric matrix (see
Remark B.3.4) into an algorithm for directly computing the k biggest singular values in the SVD of an
arbitrary matrix, for whatever k we wish (e.g., k = 10 or k = 50).

The tremendous practical importance of this is addressed in Remark 27.3.10, and it illustrates that
in mathematics, theoretical and practical insights go hand in hand: when one understands the concepts
behind why a result holds, it is often possible to build upon such insights to develop efficient practical
algorithms.

Step 2. We are left with the task of proving for each n that every symmetric n× n matrix A has some
eigenvector. In order to motivate how we will do this, let’s admit the Spectral Theorem for a moment,
and consider how to “extract” an eigenvalue from A. We can’t hope to give an explicit formula for an
eigenvalue, but we’ll come quite close.

Granting temporarily (for motivational purposes) that there is an orthonormal basis v1, . . . ,vn of (unit)
eigenvectors of A for Rn, by (24.2.2) the quadratic form qA(v) = v · (Av) = v⊤Av is expressed in vj-
coordinates as

qA(
n∑

i=1

xivi) =
n∑

i=1

λix
2
i .

Rearrange the vi’s if necessary so that
λ1 ≤ · · · ≤ λn.

We define λmax = λn, so this is the largest eigenvalue of A (which might be negative). Here is the key
observation: if v =

∑
xivi then since ∥v∥2 =∑n

i=1 x
2
i (as v1, . . . ,vn is an orthonormal basis) we have

qA(v) =
n∑

i=1

λix
2
i ≤

∑

i

λmaxx
2
i = λmax∥v∥2,

with equality achieved precisely when xi = 0 whenever λi < λmax. That is, equality is achieved precisely
when v is in the span of the vi’s with λi = λmax, which implies v is an eigenvector for A with eigenvalue
λmax (a nonzero linear combination of eigenvectors with the same eigenvalue is again an eigenvector with
that same eigenvalue; beware that in contrast, a sum of eigenvectors having pairwise distinct eigenvalues
is never an eigenvector).

In other words, for v ∈ Rn with v ̸= 0 we have shown
qA(v)

∥v∥2 ≤ λmax (B.3.1)

with equality actually attained for some eigenvectors with eigenvalue λmax; i.e., for some nonzero solutions
to Av = λmaxv. (The left side of (B.3.1) is sometimes called a Rayleigh quotient for A.) Any eigenvector
can be scaled to become a unit vector without affecting its property of being an eigenvector, nor affecting
the corresponding eigenvalue. Thus, qA(v) ≤ λmax for unit vectors v, with equality holding for some unit
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eigenvectors with eigenvalue λmax. (The Min-max Theorem gives a formula for the kth largest eigenvalue:
if mk(W ) denotes the minimal value of qA(v) for unit vectors v in a k-dimensional subspace W in Rn

then λk is the maximal value of mk(W ) as W varies. For k = 1 this recovers the above recipe for λmax.)

Remark B.3.4. The preceding geometric interpretation of the maximal eigenvalue as a maximal value for
qA on unit vectors is not just an idea of theoretical value: it underlies the numerical algorithm by which
one actually computes the biggest eigenvalue and a corresponding eigenvector to very high accuracy on a
computer! (One such algorithm is called “Rayleigh quotient iteration”.)

Step 3. Now forget any assumption that A actually has an eigenvector. The preceding analysis,
especially in Step 2, motivates us to define the function qA : S = {x ∈ Rn : ∥x∥ = 1} → R on
the “unit sphere” S in Rn by the formula qA(x) = x⊤Ax. We want to show that qA actually attains a
maximum value at some point v0 on the unit sphere S, and then directly prove that this v0 actually is an
eigenvector for A (with eigenvalue equal to the maximum value of qA on S).

This idea immediately runs into several issues:
• How do we know that qA is even bounded on S? (Our earlier study of its behavior was predicated on

the existence of an orthonormal basis of eigenvectors, which is what we are trying to prove.)
• Even once the boundedness is known, how can we prove a maximum value is actually attained by qA

at some point v0 on the unit sphere S? (Our earlier analysis giving the existence of a point where a
maximum is attained was conditional on assuming the existence of eigenvectors for A, a result we are
presently trying to prove.)

• Finally, even if we can show that a maximum value λA is attained by qA at some point v0 on the unit
sphere S, how are we going to prove Av0 = λAv0?

We now take care of all of these issues. The idea for the first two issues is that one should apply a
variant of the Extreme Value Theorem from single-variable calculus. That result says that if f : [a, b] → R
is a continuous function to R on a closed bounded interval then f attains maximal and minimal values.
We haven’t defined what “continuity” means for a function f : Rn → R, but it is rather plausible that
under any reasonable definition of such continuity, a function such as qA that is a (quadratic) polynomial
expression in x1, . . . , xn has to be continuous. Furthermore, the Extreme Value Theorem does indeed carry
over to continuous functions on regions like spheres {∥x∥ = r} and balls {∥x∥ ≤ r} in Rn, as you’ll learn
if you take a course such as Math 115 or 171 (the key concept is called “compactness”). The upshot is
that an appropriate generalization of the Extreme Value Theorem ensures that qA attains a maximal value
on S, which we will denote as λA.

The most serious issue is this: if v0 ∈ S is a unit vector at which qA attains its maximal value λA on
S, why does Av0 = λAv0? Note that if Av0 = λv0 for some scalar λ then λA = qA(v0) = v0 · Av0 =
v0 · (λv0) = λ(v0 · v0) = λ∥v0∥2 = λ, so necessarily λ = λA and we’d be done. So our problem is the
same as showing that any v0 ∈ S at which qA attains a maximum must be an eigenvector of A (without
needing to know in advance that the eigenvalue is λA; this follows automatically, as we just showed).

For this we will give two methods: one based on Lagrange multipliers from Chapter 12 (the eigenvalue
will turn out to be the multiplier), and another that is more self-contained but modeled on ideas in the proof
(in Section 12.5) of the main theorem on Lagrange multipliers (Theorem 12.2.1).

Method 1. The unit vector v0 is a solution to a constrained optimization problem: it optimizes the
function f(x) = qA(x) = x · (Ax) subject to the constraint that the function g(x) = x · x =

∑n
j=1 x

2
j is

equal to 1 (this says x ∈ S). So the main theorem on Lagrange multipliers (Theorem 12.2.1) tells us that
at v0 either the gradient ∇g vanishes or ∇f is a scalar multiple of ∇g.

But the gradient (∇g)(x) is the vector whose jth entry is ∂g/∂xj = 2xj , so (∇g)(x) = 2x, and this
only vanishes at the origin, which is not on the unit sphere S. Hence, (∇f)(v0) = λ(∇g)(v0) = 2λv0

for some scalar λ. We will now show that (∇f)(x) = 2Ax for all x ∈ Rn, so for x = v0 we’d get
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2Av0 = 2λv0, exactly the eigenvector condition “Av0 = λv0” that we wanted to establish! (When n = 1,
the asserted identity (∇f)(x) = 2Ax is the fact that the function f(x) = ax2 has derivative 2ax.)

It remains to compute the gradient of f(x) = x · (Ax). As a quadratic expression in the xi’s, the
variable xj appears in f(x) in two ways: there is the contribution ajjx2j from the diagonal of A and the
contributions 2aijxixj from the common off-diagonal entry aij and aji = aij in the ij and ji positions
in A for each i ̸= j. Applying the partial derivative with respect to xj , the diagonal contribution gives
2ajjxj and the off-diagonal contributions give 2aijxi for each i ̸= j. Adding these all together, we get∑n

i=1 2aijxi as the jth entry of the vector (∇f)(x). But this sum is twice the jth entry of the vector Ax,
so (∇f)(x) and 2Ax have the same jth entry for all j and hence these vectors are equal, as desired.

Method 2. Since λA = qA(v0) is the maximal value of qA on S, we know that qA(x) ≤ λA whenever
∥x∥ = 1. This implies that for every v ∈ Rn, we have qA(v) ≤ λA∥v∥2. Indeed, this inequality is
clear when v = 0 (as qA(0) = 0), and if v ̸= 0 then we can form the unit vector x = v/∥v∥ to obtain
qA(v/∥v∥) ≤ λA. But qA(cy) = c2qA(y) for any scalar c and vector y, so setting c = 1/∥v∥ and y = v
then gives qA(v/∥v∥) = qA(v)/∥v∥2. Hence, qA(v)/∥v∥2 ≤ λA, so qA(v) ≤ λA∥v∥2 as desired.

Our goal is to show Av0 = λAv0. To this end, we are going to introduce auxiliary polynomials that
control the possible failure of this equality. Fix h ∈ Rn and define fh(t) = λA∥v0 + th∥2 − qA(v0 + th).
Note that fh(t) ≥ 0 for any t (since we have shown that qA(v) ≤ λA∥v∥2 for every v ∈ Rn). The function
fh(t) is a polynomial in t of a special type:

fh(t) = λA(v0 + th) · (v0 + th)− (v0 + th) · A(v0 + th)

= λA(v0 + th) · (v0 + th)− (v0 + th) · (Av0 + tAh)

= λA(v0 · v0 + 2tv0 · h+ t2h · h)− (v0 · Av0 + tv0 · Ah+ th · Av0 + t2h · Ah)
= λA(v0 · v0) + 2λAtv0 · h+ λA(h · h)t2 − qA(v0)− tAv0 · h− th · Av0 − (h · Ah)t2

= λA + 2λA(v0 · h)t+ λA∥h∥t2 − λA − 2(Av0 · h)t− qA(h)t
2

= 2λA(v0 · h)t− 2(Av0 · h)t+ λA∥h∥2t2 − qA(h)t
2

= 2((λAv0) · h)t− 2(Av0 · h)t+ (λA∥h∥2 − qA(h))t
2

= 2((λAv0 − Av0) · h)t+ (λA∥h∥2 − qA(h))t
2.

In other words, fh(t) = at + bt2 where a = 2((λAv0 − Av0) · h) and b = λA∥h∥2 − qA(h). Note that
b ≥ 0 (again using that qA(v) ≤ λA∥v∥2 for every v ∈ Rn).

We are going to show a = 0. For every t, we have 0 ≤ fh(t) = at + bt2 = t(a + bt). If b = 0
then 0 ≤ fh(t) = at for all t, so setting t = −a yields 0 ≤ −(a2), which forces a = 0. Suppose
instead that b ̸= 0 (so b > 0). The function fh is then a quadratic polynomial with positive leading
coefficient, so its graph is a parabola with minimal value attained at t = −a/(2b). But that minimal value
is −(a/(2b))(a− a/2) = −a2/(4b) ≤ 0, yet fh(t) ≥ 0 for all t, so once again we conclude that a = 0.

The upshot is that 2(λAv0 − Av0) · h = 0 no matter what h ∈ Rn we choose. Taking h to be
λAv0 − Av0, we get that 2∥λAv0 − Av0∥2 = 0, so λAv0 − Av0 = 0. Hence, Av0 = λAv0 as desired.

B.4. A geometric explanation of SVD. In Section 27.4 we used the Spectral Theorem to sketch a
proof of the main result about SVD (Theorem 27.3.3) via matrix algebra. Here we provide a more complete
and totally different proof of that main result. The argument will be rather longer than the proof via matrix
algebra, but the length of the proof is not really an indication of being more difficult: it is entirely due to
the fact that certain concepts in the argument (such as quadratic form, dot product, and linear function)
have been introduced in this book in a manner that is not sufficiently “coordinate-free”. If we had set
up the framework of linear algebra in this book in a more general way (as is done in Math 113) then the
geometric argument below would be a lot shorter.
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PROOF. Consider the linear transformation L : Rn → Rm with matrix A (that is: L(x) = Ax for
all x ∈ Rn). Let’s call its null space V = N(A) ⊂ Rn and its column space W = C(A) ⊂ Rm. We
are going to carry out some geometric arguments involving W and the orthogonal subspace V ⊥ ⊂ Rn

consisting of vectors in Rn perpendicular to everything in V .
Step 1. By Theorem 6.2.4, every vector x ∈ Rn is uniquely of the form v + v′ with v belong to the

null space V and v′ belong to its orthogonal subspace V ⊥. In the language of projections onto subspaces,
v = ProjV (x) and

v′ = ProjV ⊥(x) = x−ProjV (x).

Since V is the null space of A and v ∈ V , we have L(v) = Av = 0. Thus,

L(x) = L(v + v′) = L(v) + L(v′) = 0+ L(v′) = L(v′),

so the effect of L on x only matters through what it does to V ⊥. Hence, everything in the column space of
A (i.e., any vector of the form L(x) = Ax) has the form L(v′) for some v′ ∈ V ⊥.

The vectors of the form L(x) are exactly those in the column space W ⊂ Rm of L (this is exactly
Theorem 13.4.1), and we have just seen that every w ∈ W has the form L(v′) for some v′ ∈ V ⊥ ⊂ Rn.
We claim that w arises in this way from exactly one v′ ∈ V ⊥; that is, if

L(v′
1) = w = L(v′

2)

for some v′
1,v

′
2 ∈ V ⊥ then we claim v′

1 = v′
2. This says that L : V ⊥ → W is a linear “one-to-one

correspondence”: everything in W has the form L(v′) for exactly one v′ ∈ V ⊥.
To prove v′

1 = v′
2, we show the difference v′

1 − v′
2 vanishes. This difference belongs to V ⊥ since V ⊥

is a linear subspace and any difference of vectors in a subspace is still in that subspace. Next,

A(v′
1 − v′

2) = L(v′
1 − v′

2) = L(v′
1)− L(v′

2) = w −w = 0,

forcing the difference vector v′
1−v′

2 ∈ V ⊥ to also belong to the null space V of A. But a vector belonging
to both V and V ⊥ has to vanish: the orthogonality of any y ∈ V ⊥ to everything in V (such as to y if
y ∈ V too) implies that if y ∈ V also then 0 = y · y = ∥y∥2, so y = 0. Using y = v′

1 − v′
2 implies

v′
1 − v′

2 = 0, so v′
1 = v′

2 as desired.
Step 2. Now comes the great geometric idea, with which we will be able to use the Spectral Theorem:

we will use the linear transformation L : V ⊥ → W to transport the dot product on W ⊂ Rm to an
operation on the subspace V ⊥ ⊂ Rn that behaves like a dot product but algebraically looks nothing at all
like the usual dot product from the viewpoint of coordinates on Rn. Define

v′
1 ∗ v′

2 = L(v′
1) · L(v′

2)

for any v′
1,v

′
2 ∈ V ⊥. This may look a bit mysterious, but we claim it behaves exactly like the usual dot

product in the sense that (i) it shares all of the usual algebraic properties with respect to vector addition
and scalar multiplication in V ⊥, and (ii) it satisfies the “positive-definiteness” property

v′ ∗ v′ ≥ 0, with equality precisely when v′ = 0.

Roughly speaking, we are using L : V ⊥ → W to transport the “geometry of Rm seen in W ” over into the
setting of the subspace V ⊥ ⊂ Rn. This makes L serve as a dictionary between different worlds.

To understand what is going on with ∗, first note that for the algebraic features of dot products the
linearity of L does all of the work. For instance:

(v′
1 + v′

2) ∗ v′
3 = L(v′

1 + v′
2) · L(v′

3) = (L(v′
1) + L(v′

2)) · L(v′
3)

= L(v′
1) · L(v′

3) + L(v′
2) · L(v′

3)

= v′
1 ∗ v′

3 + v′
2 ∗ v′

3.
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The other algebraic properties of dot products (as listed in parts (i), (iii), and (iii′) of Theorem 2.2.1) carry
over in exactly the same way. To show v′ ∗ v′ ≥ 0 with equality precisely when v′ = 0, we observe that
v′ ∗ v′ = L(v′) · L(v′) = ∥L(v′)∥2 ≥ 0 with equality precisely when L(v′) = 0, which is exactly when
v′ = 0 by the uniqueness property of L : V ⊥ → W at the end of Step 1.

With this motivation, we are led to consider the function q : V ⊥ → R defined by

q(v′) = v′ ∗ v′ = L(v′) · L(v′) = ∥L(v′)∥2,
regarded as a kind of shadow of squared-length on W seen from the perspective of V ⊥; in other words,
we use L to define a non-standard notion of “squared length” on V ⊥ ⊂ Rn by using squared length on
L(V ⊥) = W .

We claim that q really looks like a quadratic form when written in terms of coordinates relative to a
basis of V ⊥. Indeed, since any basis of V ⊥ can be extended to a basis of Rn by combining it with a basis
of V , it suffices to show the same “quadratic form” property for the function L(x) · L(x) on the entirety
of Rn (then we can set to 0 the coordinates in that expression corresponding to basis vectors from V ). But
in the language of matrix-vector products,

L(x) · L(x) = (Ax) · (Ax) = (Ax)⊤(Ax) = x⊤(A⊤A)x

(the second equality uses (20.1.1)); this is the quadratic form corresponding to the symmetric matrix
M = A⊤A (as discussed in Section 20.3). If we write it in terms of some basis of Rn that may not be the
standard one then it still looks like a “quadratic expression” in the vector coordinates (since expressing
n-vectors in terms of a non-standard basis involves coefficients that are linear expressions in the usual
vector entries, and plugging such linear expressions into a quadratic form again yields a quadratic form).
Thus, the function q : V ⊥ → R really does look algebraically like a quadratic form when vectors in
V ⊥ are expressed in terms of a fixed choice of basis, and we have seen that this function on V ⊥ is even
“positive-definite”: for x ∈ V ⊥, q(x) = ∥Lx∥2 ≥ 0 with equality precisely when x = 0.

Step 3. Finally, we can apply the consequence (24.2.2) of the Spectral Theorem to describe the
“positive-definite quadratic form” q : V ⊥ → R. Strictly speaking, (24.2.2) is for quadratic forms on
Euclidean spaces RN equipped with their usual dot product, whereas q is given on V ⊥. Hence, next we
make V ⊥ “look like” a Euclidean space. Let d = dimV ⊥ and pick an orthonormal basisB′ = {e′1, . . . , e′d}
of V ⊥ (Theorem 5.2.5), so the usual dot product of Rn viewed on V ⊥ looks like the usual dot product
of Rd when written in terms of the B′-coordinates: (

∑d
j=1 xje

′
j) · (

∑d
i=1 yie

′
i) =

∑
1≤i,j≤d xjyie

′
j · e′i =∑d

j=1 xjyj, where the final equality holds because e′j · e′i = 0 when j ̸= i and e′j · e′j = 1. The point
is that

∑d
j=1 xjyj is the formula for the usual dot product on Rd, but it is now expressed in terms of the

B′-coordinates on V ⊥. So by writing everything in terms of such an orthonormal basis we can make V ⊥

equipped with the dot product it inherits from Rn look like the Euclidean space Rd equipped with its usual
dot product.

In Step 2 we saw that when q : V ⊥ → R is written in terms of any basis of V ⊥ then it looks
like some (mysterious) quadratic form in d variables, so for some (mysterious) coefficients cij we have
q(
∑d

j=1 xje
′
j) =

∑
1≤i≤j≤d cijxixj that we moreover know is positive-definite. By (24.2.2), the Spectral

Theorem provides an orthonormal basis {v′
1, . . . ,v

′
d} of Rd for which the expression on the right side

becomes “diagonal” (no cross-terms) when we write everything in Rd in terms of the orthonormal basis
{v′

1, . . . ,v
′
d} of Rd (rather than in terms of the standard basis).

By using B′-coordinates to identify points of Rd with points of V ⊥, which we have seen respects the
notions of dot product on both sides (and so respects the notions of orthogonality and of unit vector), we
can regard {v′

1, . . . ,v
′
d} as an orthonormal basis of V ⊥ for which q looks “diagonal”:

q(
∑

yjv
′
j) =

∑
λjy

2
j (B.4.1)
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for some λ1, . . . , λd. In particular q(v′
j) = λj and q is positive-definite, so λj > 0 for all j. By rearranging

the v′
j’s if necessary, we can ensure λ1 ≥ λ2 ≥ · · · ≥ λd > 0.

In Step 4 we are going to explain the geometric meaning of (B.4.1), but for motivational purposes it is
instructive to show the picture of that visualization right now. It will turn out that when we describe the
linear transformation L : V ⊥ → W in terms of the orthonormal basis {v′

1, . . . ,v
′
d} of V ⊥ and the basis

{w′
1 = L(v′

1)/∥L(v′
1)∥, . . . ,w′

d = L(v′
d)/∥L(v′

d)∥} of unit vectors for W then L carries the “ellipsoid”∑d
j=1 λjy

2
j = 1 in V ⊥ whose axes of symmetry have lengths 1/

√
λ1 ≤ 1/

√
λ2 ≤ · · · ≤ 1/

√
λd onto the

unit sphere
∑d

j=1 z
2
j = 1 in W , as shown in Figure B.4.1 with vj = v′

j/
√
λj (corresponding to a case

with V = N(A) = {0} and W = Rd = R3, so V ⊥ = Rd = R3).

v3

v1

v2

A =

[
3/4 1/7 0
−1/3 2/3 −1/4
−1/4 1/3 3/4

]
w′3

w′1
w′2

FIGURE B.4.1. Proof of the singular value decomposition for a specific invertible 3 × 3
matrix A defining some L : R3 → R3, with ∥v1∥ ≈ 1.03789, ∥v2∥ ≈ 1.50541, ∥v3∥ ≈
1.32746. ThoughA highly distorts the standard grid, it carries some ellipsoid onto a sphere!

In accordance with the principle that a picture is worth a thousand words, Figure B.4.1 expresses the
entire content of the geometric proof of SVD. Before we carry out Step 4, let’s explain what Figure B.4.1
is conveying and why it is so surprising. The corners of the cubical grid in the source are the points in R3

with integer coordinates, and the parallelepiped grid in the target is where the cubical grid is carried under
L; the corners of the smallest parallelepipeds are the linear combinations a1L(e1)+ a2L(e2)+ a3L(e3) =
L(a1e1 + a2e2 + a3e3) with integers a1, a2, a3 (L(ei) is the ith column of A). The deviation of the grid
in the target from the cubical grid along the coordinate axes thereby illustrates the stretching, shearing,
and rotation effects typical of linear transformations. This deviation from the cubical coordinate grid,
especially the fact that the angles at the corners of the basic building blocks are not right angles (unlike for
the cubical coordinate grid that it arises from in the source), suggests that it would be very rare for there
to exist 3 mutually orthogonal directions in the source that are carried by L onto 3 mutually orthogonal
directions in the target.

The main content of SVD is that such magical directions in the source V ⊥ and target W always exist!
We can’t see them in an elementary way because when staring at the matrix A we are blinded by the lack
of nice geometry among the columns (due to the non-cubical nature of the grid in the target and especially
its typical lack of right angles). In effect, the “usual coordinates” for describing vectors and matrices may
be poorly suited to seeing good geometric behavior of L. Step 4 will show that ∥L(v′

j)∥ =
√
λj (so

L(vj) = w′
j for vj = v′

j/
√
λj with ∥vj∥ = 1/

√
λj) and that the unit vectors w′

1, . . . ,w
′
d are mutually

orthogonal, so the mutually orthogonal (typically non-unit) vectors vj in the source are respectively carried
onto the mutually orthogonal unit vectors w′

j in the target. These outcomes of Step 4, which are the heart
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of SVD for A, are expressed visually in two ways: (i) the ellipsoid in the source with semi-axes given by
the vj’s is carried onto the unit sphere in the target, (ii) the axes of symmetry of the ellipsoid are carried
onto mutually perpendicular directions in the target (through the w′

j’s).
Step 4. Now we show that the diagonalization (B.4.1) of q expresses the singular value decomposition.

Just as the usual dot product is recovered from squared-length via the formula (20.4.2) which we used just
after Theorem 20.4.1 to show that a length-preserving linear transformation is also angle-preserving, we
have an analogous formula recovering ∗ from q:

x′ ∗ y′ =
(x′ + y′) ∗ (x′ + y′)− x′ ∗ x′ − y′ ∗ y′

2
=
q(x′ + y′)− q(x′)− q(y′)

2
.

Indeed, this holds for exactly the same reason as (20.4.2): ∗ shares the same relevant algebraic properties
as the usual dot product! Hence, for i ̸= j we have

v′
j ∗ v′

i =
q(v′

j + v′
i)− q(v′

j)− q(v′
i)

2
=

(λj + λi)− λj − λi
2

= 0.

This says that L(v′
j) · L(v′

i) = 0 for i ̸= j, so {L(v′
1), . . . , L(v

′
d)} is an orthogonal set of vectors in W .

Provided it is a spanning set consisting of nonzero vectors, we could conclude that it is an orthogonal basis
of W .

Each w ∈ W has the form L(v′) for some v′ ∈ V ⊥, so by writing v′ =
∑d

j=1 cjv
′
j we have

w = L(v′) =
d∑

j=1

cjL(v
′
j).

Hence, the vectors L(v′
1), . . . , L(v

′
d) do span W . Moreover, each L(v′

j) is nonzero since more generally
L(v′) is nonzero for any nonzero v′ ∈ V ⊥. Indeed, we know that everything in W has the form L(x) for
a unique x ∈ V ⊥, so by uniqueness the only way we can have L(x) = 0 with x ∈ V ⊥ is for x = 0.
Hence, for v′ ∈ V ⊥ that is nonzero, definitely L(v′) is nonzero. This concludes the verification that
L(v′

1), . . . , L(v
′
d) is an orthogonal basis of W .

Of course, the L(v′
j)’s are typically not unit vectors: ∥L(v′

j)∥2 = L(v′
j) ·L(v′

j) = q(vj) = λj . Letting
σj =

√
λj = ∥L(v′

j)∥ > 0, we have σ1 ≥ · · · ≥ σd > 0 and the vectors

w′
j =

L(v′
j)

σj

are unit vectors which constitute an orthonormal basis of W . To summarize, we have found orthonormal
bases {v′

1, . . . ,v
′
d} of V ⊥ and {w′

1, . . . ,w
′
d} of W for which L(v′

j) = σjw
′
j for all 1 ≤ j ≤ d. This looks

very much like an SVD, except we are working with orthonormal bases of V ⊥ and W rather than of the
ambient spaces Rn and Rm that contain them. The final Step 5 below disposes of this minor issue.

Remark B.4.1. Now that Step 4 is complete, before carrying out Step 5 let’s pause to revisit Figure B.4.1
to get more insight into the geometry of what we just did. Consider the collection E of points w =∑d

j=1 zjw
′
j ∈ W satisfying

∑d
j=1 ajz

2
j = 1 for some coefficients aj > 0 (E is an “ellipsoid”). For which

v′ =
∑d

j=1 yjv
′
j ∈ V ⊥ do we have L(v′) ∈ E? Since L(

∑d
j=1 yjv

′
j) =

∑d
j=1 yjL(v

′
j) =

∑d
j=1 yjσjw

′
j ,

the condition L(v′) ∈ E says exactly that 1 =
∑d

j=1 aj(yjσj)
2 =

∑d
j=1 ajσ

2
j y

2
j =

∑d
j=1 ajλjy

2
j . When

describing vectors in V ⊥ in terms of the orthonormal basis of v′
j’s and describing vectors in W in terms

of the orthonormal basis of w′
j’s, there are two notable special cases of this conclusion:

(i) Using aj = 1 for all j, L carries the ellipsoid
∑d

j=1 λjy
2
j = 1 in V ⊥ onto the unit sphere in W .

(ii) Using aj = 1/λj for all j, L carries the unit sphere in V ⊥ onto the ellipsoid
∑d

j=1 z
2
j /λj = 1 in W .
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Case (ii) (“unit sphere onto ellipsoid”) is what is shown in visualizations of SVD in all other references
(books, Internet, etc.). But case (i) (“ellipsoid onto unit sphere”) is what is shown in Figure B.4.1, and this
is really the correct picture for illustrating the geometric proof of SVD. To see this, note that the entire
content of the preceding steps has been to build orthonormal bases {v′

1, . . . ,v
′
d} of V ⊥ and {w′

1, . . . ,w
′
d}

of W so that composing with L : V ⊥ → W carries the positive-definite squared-length quadratic form
on W back to a positive-definite “diagonal” quadratic form q on V ⊥. Such a matching of positive-definite
quadratic forms under composing with L is expressed most naturally by saying composing with Lmatches
each level set for squared-length on W with the level set (for the same value) for a specific diagonal
quadratic form q on V ⊥. For any positive-definite quadratic form Q and c > 0, the level set Q = c is
obtained from the level set Q = 1 via multiplication by

√
c (since Q(

√
cx) = (

√
c)2Q(x) = cQ(x)),

so matching level sets of such quadratic forms is encoded entirely by matching the level sets for value 1.
That in turn is exactly what is shown in Figure B.4.1 (ellipsoid onto unit sphere).

Step 5. If we append an orthonormal basis of V to the end of the list of v′
j’s then by Theorem 6.2.4

the extended list is an orthonormal basis B′ of Rn; by design its last n − d members are annihilated by
L (because V is the null space of A). Likewise, we can extend {w′

1, . . . ,w
′
d} to an orthonormal basis B

of Rm by appending to the end of that list an orthonormal basis of W⊥. When the effect of the linear
transformation L : Rn → Rm is expressed by writing vectors in Rn and Rm respectively in terms of these
chosen orthonormal bases of Rn and Rm then it is exactly an m × n “diagonal” matrix D with diagonal
entries σ1 ≥ σ2 ≥ · · · ≥ 0 by defining σi = 0 for all i > d.

Let Q be the m × m matrix whose columns are the members w′
1, . . . ,w

′
d, . . . of the orthonormal

basis B of Rm, and let Q′ be the n × n matrix whose columns are the members v′
1, . . . ,v

′
d, . . . of the

orthonormal basis B′ of Rn. Each of Q and Q′ are orthogonal matrices. Moreover, essentially by design,
the effect of Q is to turn B-coordinates on Rm into “standard coordinates” on Rm, and the effect of Q′

is to turn B′-coordinates on Rn into “standard coordinates” on Rn. Hence, going in reverse, the effect of
Q′−1 = Q′⊤ is to turn “standard coordinates” on Rn into B′-coordinates on Rn.

Putting it all together, the effect of the m × n matrix QDQ′⊤ is first to turn standard coordinates
on Rn into B′-coordinates on Rn, then apply the “diagonal” D, and finally turn that output viewed in
B-coordinates on Rm back into standard coordinates on Rm. In other words, the linear transformation
Rn → Rm associated with the m × n matrix QDQ′⊤ is the one that looks like D when we write vectors
Rn in terms of B′-coordinates and we write vectors in Rm in terms of B-coordinates. But we have
designed the bases B and B′ so that L : Rn → Rm is precisely that same overall linear transformation, yet
L corresponds to the m× n matrix A by definition. Since a linear transformation Rn → Rm corresponds
to exactly one m× n matrix, we conclude that

QDQ′⊤ = A.

Voila, we have established the singular value decomposition for A!
If one inspects the geometric meaning of the construction in Steps 1–4, one sees that an SVD for A

is exactly such a geometric construction in disguise. In particular, the nonzero σj’s are uniquely deter-
mined because they must be exactly the square roots of the positive eigenvalues of the “symmetric matrix”
corresponding to the “quadratic form” q : V ⊥ → R as built above (when we work with any choice of
orthonormal basis of V ⊥ to make V ⊥ look like a Euclidean space Rd). □

We now use SVD to prove the Polar Decomposition stated and used in Example 24.6.7:

Theorem B.4.2 (Polar Decomposition). If A is an invertible n × n matrix then we can uniquely write
A = QS where Q is an orthogonal n × n matrix and S is a positive-definite symmetric n × n matrix.
Moreover, also A = S ′Q for the same Q and a positive-definite symmetric n× n matrix S ′.
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There is a vast generalization of this theorem called the Cartan29 Decomposition which is important in
the study of “continuous symmetry”.

PROOF. Once we prove the assertions concerning Q and S, we can obtain the expression S ′Q with
the same Q as follows. Since A = QS = QS(Q−1Q) = (QSQ−1)Q = (QSQ⊤)Q, we can define
S ′ = QSQ⊤ provided that this S ′ really is symmetric and positive-definite. For its symmetry, we compute

(S ′)⊤ = (QSQ⊤)⊤ = (Q⊤)⊤S⊤Q⊤ = QSQ⊤ = S ′

(the second equality uses that transpose flips the order of matrix multiplication). For positive-definiteness,
for any nonzero x ∈ Rn we want to show that qS′(x) = x ·S ′x is positive. SinceQ⊤x ̸= 0 (by invertibility
of Q⊤), we have

x · S ′x = x · (QSQ⊤)x = x ·Q(SQ⊤x) = (Q⊤x) · (SQ⊤x) = qS(Q
⊤x) > 0

by positive-definiteness of S (the third equality uses Theorem 20.1.4). Hence, we now may focus our
attention on the assertions involving Q and S. For the existence of the desired expression QS for A, we
shall manipulate the singular value decomposition for A (so the Spectral Theorem is being used).

Step 1. The SVD for A says that A = Q0D0Q
′
0
⊤ = Q0D0Q

′
0
−1 for some n × n orthogonal matrices

Q0 and Q′
0 and diagonal matrix D0 with non-negative diagonal entries. The matrix A is invertible by

hypothesis, and Q0 and Q′
0 are invertible since they are square orthogonal matrices, so D0 = Q−1

0 AQ′
0

is invertible (as is any product of invertible n × n matrices). An invertible diagonal matrix must have
all diagonal entries nonzero, so the non-negative diagonal entries of D0 are all positive. In particular, the
visibly symmetric D0 is also positive-definite. Writing

A = Q0D0Q
′
0
−1

= Q0(Q
′
0
−1
Q′

0)D0Q
′
0
−1

= (Q0Q
′
0
−1
)(Q′

0D0Q
′
0
−1
),

this is the desired Polar Decomposition because Q0Q
′
0
−1 is orthogonal (as Q0 and Q′

0 are orthogonal,
so Q′

0
−1 is orthogonal, and a product of orthogonal matrices is always orthogonal) and Q′

0D0Q
′
0
−1 =

Q′
0D0Q

′
0
⊤ is positive-definite and symmetric due to the same properties for the diagonal D0: this de-

duction goes exactly like the calculation we did for S ′ near the start of the proof (e.g., qQ′
0D0Q′

0
⊤(x) =

qD0(Q
′
0
⊤x) > 0 for all nonzero x ∈ Rn). This completes the construction of Q and S, by defining

Q = Q0Q
′
0
−1 and S = Q′

0D0Q
′
0
−1.

Step 2. It remains to show that if also A = Q1S1 for orthogonal Q1 and positive-definite symmetric
S1 then necessarily Q1 = Q and S1 = S. It suffices to show S1 = S, as then QS = A = Q1S1 = Q1S,
so multiplying both sides by S−1 on the right would yield that Q = Q1. To show that S1 = S, we will
again exploit the Spectral Theorem. The key observation is that the contributions of Q and Q1 to A⊤A
disappear: since Q⊤ = Q−1 by orthogonality of Q and S⊤ = S by symmetry of S, we have

A⊤A = (QS)⊤(QS) = S⊤Q⊤QS = SQ−1QS = S2

and similarly A⊤A = S2
1 by using the alternative expression Q1S1 for A. Putting it all together, we have

S2 = S2
1 , and from this we shall deduce that S = S1.

Rather generally, we shall show that if S and T are positive-definite symmetric n × n matrices for
which Sm = Tm for some positive integer m then S = T (we then apply it with T = S1 and m = 2). This
property of positive-definite symmetric matrices (which is false for general invertible n×n matrices) is an
analogue of the familiar fact for positive scalars s and t that if sm = tm then s = t (and more specifically:
if 0 < s < t then sm < tm). We will use the Spectral Theorem to deduce this matrix assertion from the

29Elie Cartan (1869-1951) was was one of the most important mathematicians in the first half of the 20th century, making
fundamental discoveries in partial differential equations, geometry, and the study and classification of “continuous symmetry”.
A school inspector visiting his elementary school noticed his exceptional talent and set him on the path to scholarships and a
university education, which was usually out of reach at that time in France for children from very poor families such as his.
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scalar analogue (applied to eigenvalues)! The general principle of which this is a special case is that the
Spectral Theorem enables many constructions and arguments with positive real numbers to be generalized
to the setting of positive-definite symmetric matrices.

The first key point is to check that Sm is positive-definite and symmetric (and the same then applies
to Tm by using T instead of S). It is generally not true that matrix multiplication preserves symmetry
or positive-definiteness, but mth powers are rather special among matrix products. For example, Sm is
symmetric because the “flip” interaction of matrix multiplication and transpose yields (Sm)⊤ = (S⊤)m =
Sm. Positive-definiteness lies a bit deeper: it relies on the Spectral Theorem for S. That result provides
an orthogonal basis {v1, . . . ,vn} of Rn consisting of eigenvectors for S, and Svj = λjvj with λj > 0
by positive-definiteness of S (Proposition 24.2.10(i)). For later purposes we scale the vj’s so that they
are all unit vectors, and we arrange the labels so that λ1 ≤ λ2 ≤ · · · ≤ λn. As in our considerations
with matrix powers and eigenvectors in (24.3.1), we have Smvj = λmj vj for all j. Hence, the orthogonal
basis {v1, . . . ,vn} of Rn also consists of eigenvectors for Sm, with eigenvalues λmj that are all positive.
Applying Proposition 24.2.10(i) to the symmetric Sm, we conclude from the positivity of its eigenvalues
that Sm is positive-definite!

Step 3. Next, we harness some ideas from the proof of the Spectral Theorem in Section B.3 (applied
to both S and Sm, as well as to both T and Tm). In that proof we built an eigenvector by maximizing a
specific quadratic form on the unit sphere in Rn. More specifically, we showed for any symmetric n × n
matrix M that any unit vector at which qM(x) = x · (Mx) attains a maximum on the unit sphere must be
an eigenvector for M , with eigenvalue equal to the maximal value.

Where is qSm(x) maximized on the unit sphere in Rn? We claim that this occurs exactly where qS(x)
is maximized! Although qSm(x) and qS(x)m typically have nothing to do with each other, at certain unit
vectors these will match in a useful way. To see what is going on, we compute everything in terms of
the orthonormal basis {v1, . . . ,vn} of eigenvectors for S. Since this is an orthonormal basis (not just an
orthogonal basis) and λn is the largest eigenvalue (and all eigenvalues are positive), the formula (24.2.2)
applied to Sm says that for any v =

∑n
j=1 tjvj ∈ Rn we have

qSm(v) =
n∑

j=1

λmj t
2
j ≤

n∑

j=1

λmn t
2
j = λmn

n∑

j=1

t2j = λmn ∥v∥2 (B.4.2)

(the final equality using that the vj’s are an orthonormal basis, which gives that v · v =
∑n

j=1 t
2
j ; keep in

mind that the tj’s are not defined as the entries of the n-vector v but rather as the coefficients when v is
expressed in terms of the orthonormal basis of vj’s). Letting λ = λn be the largest eigenvalue of S, in the
special case that v is a unit vector we conclude from (B.4.2) that qSm(v) ≤ λm and that the upper bound
λm is attained at exactly those unit vectors v for which the inequalities λmj t

2
j ≤ λmt2j are equalities for all

j. For j with λj < λ we have λmj < λm (as λj and λ are both positive), so such equality occurs only when
tj = 0. On the other hand, if λj = λ then such equality holds for any tj . Hence, qSm is maximized on the
unit sphere at exactly those unit vectors v in the span of the vj’s having the maximal S-eigenvalue λ. We
shall now describe this span in a more useful way.

The eigenvalues have been arranged in monotonically increasing order, so λj = λ precisely for j =
r, r + 1, . . . , n for some r ≤ n. Hence, an expression v =

∑n
j=r tjvj as a span of such vj’s implies

Sv =
n∑

j=r

tj(Svj) =
n∑

j=r

tj(λvj) = λ

n∑

j=r

tjvj = λv,

so v is then an S-eigenvector with eigenvalue λ. The same works in reverse: if v is a unit vector (or even
any vector) satisfying Sv = λv then necessarily v is in the span of the vj’s for which λj = λ. Indeed,
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writing v =
∑n

j=1 tjvj for some scalars t1, . . . , tn, we have

Sv =
n∑

j=1

tj(Svj) =
n∑

j=1

tj(λjvj) =
n∑

j=1

(λjtj)vj, λv = λ

n∑

j=1

tjvj =
n∑

j=1

(λtj)vj,

and the equality of Sv and λv implies the equality termwise for these sums since the vj’s are linearly
independent. Equating corresponding coefficients then gives λjtj = λtj for all j, so when λj < λ (i.e.,
j < r) necessarily tj = 0; this says v =

∑n
j=r tjvj , as desired.

To summarize: qSm(x) is maximized on the unit sphere in Rn at exactly the unit vectors that are S-
eigenvectors with the maximal S-eigenvalue. But Sm = Tm by assumption, and the preceding reasoning
with S applies equally well to T , so the quadratic form qSm(x) = qTm(x) is also maximized on the unit
sphere in Rn at exactly the unit vectors that are T -eigenvectors with maximal T -eigenvalue. Voila: this
shows that the maximal S-eigenvalue and maximal T -eigenvalue coincide and that the unit eigenvectors
for that common eigenvalue are the same. Every eigenvector is a scalar multiple of a unit eigenvector
(since eigenvectors are nonzero), so we conclude that S and T share the same maximal eigenvalue λ and
that the λ-eigenvectors for S are the same as those for T . Observe how the Spectral Theorem led us to
such conclusions about S and T from the assumption of equality of Sm and Tm.

Step 4. Since Svn = λvn, we conclude that vn is an eigenvector for both S and T with the same
eigenvalue (namely λ = λn) for each. We aim to show the same for all vj’s, so then we would have S = T
since any v =

∑n
j=1 tjvj ∈ Rn would then satisfy

Sv =
n∑

j=1

tj(Svj) =
n∑

j=1

tj(λjvj) =
n∑

j=1

tj(Tvj) = Tv

(forcing S = T as desired). To bootstrap from the largest eigenvalue to the rest, we will pass to lower-
dimensional subspaces exactly as in the proof of the Spectral Theorem.

The subspace H = span(v1, . . . ,vn−1) is the orthogonal complement to vn due to the vj’s being an
orthogonal basis, and since vn is an eigenvector for both S and T it follows that H is preserved by both S
and T due to the symmetry of each: if x · vn = 0 then

(Tx) · vn = x · (Tvn) = x · (λvn) = λ(x · vn) = λ(0) = 0

and similarly for S. In particular, it makes sense to consider the effects of S and T on H as functions
H → H .

Exactly as in Step 1 of the proof of the Spectral Theorem, if we identify H with Rn−1 by using
coefficients relative to an orthonormal basis of H then the effects of S and T on H become symmetric
linear functions Rn−1 → Rn−1. Moreover, these (n−1)×(n−1) symmetric matrices are positive-definite
because their associated quadratic forms are exactly the effects of qS and qT onH (which are positive away
from the origin due to the positive-definiteness of S and T on the entirety of Rn). Also, the mth powers
of these (n− 1)× (n− 1) matrices are equal because they are each the effect of Sm = Tm on H .

Putting it all together, we conclude that the study of the effects of S and T on H is an (n − 1)-
dimensional version of our same overall problem. Thus, by induction on dimension we conclude that S
and T coincide on H . But every v ∈ Rn can be written as v = h + cvn for some h ∈ H and scalar c
(express v as a linear combination of the vj’s and collect the contribution from v1, . . . ,vn−1 to get h), so
the equality of S and T on both the linear subspace H and on the vector vn gives

Sv = S(h+ cvn) = Sh+ c(Svn) = Th+ c(Tvn) = T (h+ cvn) = Tv.

This shows that S = T , as desired, and so completes the proof of the Polar Decomposition. □
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“There is no royal road to geometry.”
Euclid (allegedly said to King Ptolemy I)

C. Equivalence of two perspectives on ellipses and hyperbolas (optional)

Ellipses and hyperbolas are often defined by equations of the form Ax2+By2 = C with A,B,C ̸= 0.
But the concepts of “ellipse” and “hyperbola” were originally defined without equations in ancient Greek
geometry, by Menaechmus around 350 BC, via slicing a cone with a plane (so such curves are called
“conic sections”). The ancient Greeks did not have the algebraic language that we take for granted, nor the
concepts of negative number or 0, nor coordinate geometry (an idea that emerged in the 17th century). But
they knew how to go from cone-based definitions to the equations of ellipses and hyperbolas via results
expressed in an entirely different way (see [Arch, pp. 147-150], [Apol, Prop. 2, Prop. 3, pp. 9-12]).

The ancient Greek geometers also knew that the cone-based definitions of “ellipse” and “hyperbola”
are equivalent to planar definitions in terms of distance conditions [Apol, Prop. 73, p. 118]30. This ap-
pendix directly shows that the planar definitions in terms of distance conditions (provided below) are
equivalent to definitions in terms of equations, bypassing the intervention of cones.

C.1. Ellipses. The geometric planar definition of an ellipse E is the collection of points in a plane
whose distances to a chosen pair of points P,Q (called “foci”) have sum equal to a fixed positive number
larger than the distance PQ. See Figure C.1.1 for a picture, with green and orange segments illustrating

the distance condition. Our aim is to express E via an equation of the form
x2

a2
+
y2

b2
= 1 for some a, b > 0.

Denote by 2a the fixed positive sum of distances to P and Q in the definition of E, so 2a > PQ (see
Figure C.1.1). Set up coordinates so the midpoint of the segment PQ is (0,0), with P and Q on the x-axis;
relabel if necessary so P is on the non-negative x-axis and Q is on the non-positive x-axis: P = (c, 0) and
Q = (−c, 0) where 2c ≥ 0 is the length of PQ. (The case P = Q is allowed; ellipses with equal foci are
circles by another name.) Hence 2a > 2c, so a > c.

y

x

•

Q P

(x, y)

• • •
• • •

b

−b

−c c

••

a−a

••

•

•

FIGURE C.1.1. The points on the red ellipse with foci at (±c, 0) have their sum of dis-
tances to the foci (e.g., green and orange paths) equal to 2a, with a > c.

30An especially elegant proof of this equivalence using inscribed spheres was found in 1822 by G. Dandelin [Dan].
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Denote the y-intercepts of E as (0,±b) with b > 0. Since 2a is the sum of the distances from each
point on E to the two foci (±c, 0) (by the way 2a was introduced at the start), the sum of the distances
from each point (0,±b) to (c, 0) and (−c, 0) is 2a. Thus, by the Pythagorean Theorem 2a =

√
b2 + c2 +√

b2 + (−c)2 = 2
√
b2 + c2. Hence, b2 = a2 − c2 (i.e., b =

√
a2 − c2 ≤ a).

The distance-defining condition for E is
√

(x− c)2 + y2 +
√

(x+ c)2 + y2 = 2a. Writing this as
√

(x− c)2 + y2 = 2a−
√

(x+ c)2 + y2,

if we square both sides then we get

(x− c)2 + y2 = 4a2 − 4a
√

(x+ c)2 + y2 + (x+ c)2 + y2.

Expanding out the squares on the left and right, this says

x2 − 2xc+ c2 + y2 = 4a2 − 4a
√

(x+ c)2 + y2 + x2 + 2xc+ c2 + y2.

Cancelling the common terms x2, c2, y2 on both sides, this says

−2xc = 4a2 − 4a
√

(x+ c)2 + y2 + 2xc,

or equivalently
4a
√
(x+ c)2 + y2 = 4a2 + 4xc.

Dividing by 4a throughout, this says
√

(x+ c)2 + y2 = a+ x(c/a). (C.1.1)

Now squaring both sides again, this says

(x+ c)2 + y2 = a2 + 2xc+ x2(c2/a2),

and expanding out the left side turns this into

x2 + 2xc+ c2 + y2 = a2 + 2xc+ x2(c2/a2).

Cancelling 2xc from both sides and subtracting the x2-term on the right over to the left and subtracting the
constant term c2 on the left over to the right (since c2 < a2) turns this into

x2
(
1− c2

a2

)
+ y2 = a2 − c2,

or equivalently

x2
(
a2 − c2

a2

)
+ y2 = a2 − c2.

But a2 − c2 = b2, so dividing by b2 throughout turns this into x2/a2 + y2/b2 = 1.
To go in reverse, showing that any (x, y) satisfying x2/a2 + y2/b2 = 1 also satisfies the distance-

based definition of E (so the equation defines precisely the points of E), we just need to make sure that
steps where quantities were squared can be undone without sign ambiguity in the formation of square
roots. Looking back at the steps where both sides of an equation were squared, we have to verify the
non-negativity of a+ x(c/a) and 2a−

√
(x+ c)2 + y2 for any (x, y) satisfying x2/a2 + y2/b2 = 1.

The equation implies x2/a2 ≤ 1, so |x| ≤ a. Hence, a+ x(c/a) ≥ a− a(c/a) = a− c > 0. To show
2a−

√
(x+ c)2 + y2 ≥ 0 is the same as to show 2a ≥

√
(x+ c)2 + y2. But the algebraic work above can

be run in reverse starting from the equation x2/a2 + y2/b2 = 1 to deduce that (C.1.1) must hold (since we
have just shown that a + x(c/a) ≥ 0). Hence, it is equivalent to show that 2a ≥ a + x(c/a). Subtracting
a from both sides and then multiplying both sides by the positive a/c, it is the same as showing a2/c ≥ x.
But 0 < c < a, so a2/c > a2/a = a ≥ x, as desired.
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Remark C.1.1. The preceding work yields an equation forE with b ≤ a because we set up the coordinates
with foci on the x-axis, and any 0 < b ≤ a arises: use foci at (±c, 0) for c =

√
a2 − b2. The equations

with a ≤ b correspond to swapping the roles of x and y, so in effect setting up coordinates with foci on
the y-axis. (Circles are the case with equal foci P = Q: c = 0 or equivalently a = b.)

C.2. Hyperbolas. The geometric planar definition of a hyperbola H is the collection of points in a
plane whose distances to a chosen pair of distinct points P,Q (called “foci”) have difference in the sense
absolute value equal to a fixed positive number less than the distance PQ. See Figure C.2.1 for a picture,
with green and orange segments illustrating the distance condition. Our next aim is to express H via an
equation of the form x2/a2 − y2/b2 = 1 for some a, b > 0.

Denote by 2a the fixed positive absolute difference of distances to P and Q in the definition of H , so
2a < PQ (see Figure C.2.1). Set up coordinates in the plane so the midpoint of the segment PQ is (0,0),
with P and Q on the x-axis. Relabel if necessary so P is on the positive x-axis and Q is on the negative
x-axis: P = (c, 0) and Q = (−c, 0) where 2c > 0 is the length of PQ. Hence, 2a < 2c, so a < c. In
particular, it makes sense to define b =

√
c2 − a2 > 0, so b2 = c2 − a2.

PQ
•

•

• •

•

•

y

x•• ••

• •• •
• •• •

2a

a−a c−c

FIGURE C.2.1. The blue hyperbola H with foci at (±c, 0) and difference of distances to
them (in the sense of absolute value) equal to 2a, with a < c.

Points on the y-axis are equidistant from P and Q due to how we set up coordinates, so the difference
of their distances to P and Q is 0. But points on H have distances to P and Q whose difference has a
fixed positive absolute value, so points (x, y) ∈ H cannot lie on the y-axis and hence x ̸= 0. If x > 0 (the
“right half”) then the distance-defining condition for H is

√
(x+ c)2 + y2 −

√
(x− c)2 + y2 = 2a;

it is the opposite order of subtraction when x < 0 (always bigger distance minus smaller distance). In
other words, when x < 0 the effect in this latter equation is to swap the roles of c and −c.

Suppose for now that x > 0. Writing this as
√

(x+ c)2 + y2 = 2a+
√

(x− c)2 + y2,

squaring both sides yields

(x+ c)2 + y2 = 4a2 + 4a
√

(x− c)2 + y2 + (x− c)2 + y2.
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Expanding out the squares on the left and right, this says

x2 + 2xc+ c2 + y2 = 4a2 + 4a
√

(x− c)2 + y2 + x2 − 2xc+ c2 + y2.

Cancelling the common terms x2, c2, y2 on both sides, this says

2xc = 4a2 + 4a
√

(x− c)2 + y2 − 2xc,

or equivalently
4a
√

(x− c)2 + y2 = −4a2 + 4xc.

Dividing by 4a throughout, this says
√

(x− c)2 + y2 = −a+ x(c/a). (C.2.1)

If instead x < 0, we obtain the analogous equation with c negated:
√

(x+ c)2 + y2 = −a+ x(−c/a).
Continuing with x > 0, squaring both sides of (C.2.1) yields

(x− c)2 + y2 = a2 − 2xc+ x2(c2/a2),

and expanding out the left side turns this into

x2 − 2xc+ c2 + y2 = a2 − 2xc+ x2(c2/a2).

Cancelling −2xc from both sides and subtracting x2 + y2 on the left over to the right and subtracting the
constant term a2 on the right over to the left (since a2 > c2) turns this into

c2 − a2 = x2
(
c2

a2
− 1

)
− y2,

and the same is obtained when x < 0 since in this final equality c and x only appears through their squares.
Summarizing, in both cases (either sign for x ̸= 0) we have

x2
(
c2 − a2

a2

)
− y2 = c2 − a2.

But c2 − a2 = b2, so dividing by b2 throughout turns this into x2/a2 − y2/b2 = 1.
To go in reverse, showing that any (x, y) satisfying x2/a2− y2/b2 = 1 also satisfies the distance-based

definition of H (so the equation defines precisely the points of H), we just need to make sure that steps
where quantities were squared can be undone without sign ambiguity in the formation of square roots,
being attentive to the sign of x. The equation x2/a2 − y2/b2 = 1 implies x2/a2 ≥ 1, so |x| ≥ a. In
particular, x ̸= 0 (since a > 0). Looking back at the steps where both sides of an equation were squared
in the case x > 0, we have to verify the non-negativity of −a+ x(c/a) and 2a+

√
(x+ c)2 + y2 for any

(x, y) satisfying x2/a2 − y2/b2 = 1 with x > 0. If instead x < 0 then we have to verify the non-negativity
of −a+ x(−c/a) and 2a+

√
(x− c)2 + y2.

The sums 2a+
√

(x± c)2 + y2 are non-negative since a sum of non-negative numbers is always non-
negative. It remains to show −a + x(c/a) ≥ 0 when x > 0 and −a + x(−c/a) ≥ 0 when x < 0. Since
−x = |x| when x < 0, a unified assertion is that −a + |x|(c/a) ≥ 0 always. We have seen that |x| ≥ a,
so −a+ |x|(c/a) ≥ −a+ a(c/a) = −a+ c > 0. This completes the argument.

Remark C.2.1. The preceding yields an equation for H in which x2 has a positive coefficient 1/a2 and
y2 has a negative coefficient −1/b2 because we set up the coordinates with foci on the x-axis, and any
a, b > 0 arises: use foci at (±c, 0) for c =

√
a2 + b2. Equations of the form −x2/a2 + y2/b2 = 1 (i.e.,

with coefficient signs swapped), or equivalently x2/a2− y2/b2 = −1, correspond to swapping the roles of
x and y, so in effect setting up the coordinates with foci on the y-axis.
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“I make my money on the stock market. I don’t make it by proving theorems.”
C. Shannon

D. Google’s PageRank algorithm (optional)

Go to a webpage and start clicking links at random. (One of the authors spends a regrettable amount
of time doing exactly this.) Where do you end up? You will, of course, end up spending a lot more time
on “important” websites than unimportant ones. This is related to the basic idea of Google’s PageRank
algorithm (named after Larry Page, not just “webpage”). We now explain a simplification of the original
version of that algorithm.

D.1. The algorithm. When one does a Google search for a phrase, the output of the search algorithm
is a list of (potentially hundreds of thousands of) webpages containing that phrase, and these webpages
must be ordered in some way. The method of ordering the webpages containing the search phrase is the
key innovation that made Google so successful in web search, and it involves assigning a “value” to each
webpage (with the search outcome then arranged in decreasing order of this “value”). How is such a
“value” to be determined?

Let n be the number of webpages on the Internet (a very large number, in the billions). For the ith
webpage, Google seeks to assign it some value vi > 0 with

∑n
i=1 vi = 1 (i.e., the total value of all

webpages is defined to be 100% = 1, with that total distributed across all webpages in some way to be
determined). One of Google’s first insights was that vi should be determined by a method requiring no
knowledge about the content of webpages, only about what links to what, trusting that the users set up
links based on relevance and utility of content and that no webpage links to itself. The condition required
on the vi’s is that each vi should be a weighted sum of the values vj for all j for which the jth webpage has
a link to the ith one. In symbols, we want to find vi’s satisfying the (massive) system of n linear equations
in n unknowns

vi =
n∑

j=1

wijvj (D.1.1)

for certain specific numerical weights wij between 0 and 1 whose precise definition won’t concern us here
but which satisfy the following conditions:

(i) the definition of wij is given solely in terms of links of the ith and jth webpages to other webpages
(so Google can calculate these coefficients once per month from a snapshot of the entire Internet in
terms of links among webpages), and wij = 0 if the jth webpage doesn’t link to the ith one.

(ii) the larger the value of wij , the more valuable is the link from the jth page to the ith page,
(iii) most wij’s are equal to 0 (since a given webpage tends not to be linked to a huge number of others

relative to the overall size of the Internet) and the sum
∑n

i=1wij of the weights by which the jth page
contributes to the value of all other pages to which it is linked is equal to 1 (a reasonable condition:
the weights wij for a fixed j indicate what fraction of the value of the jth webpage contributes to the
value of the ith one, so summing this over all i with j fixed should give 100% = 1).

In the language of vectors and matrices, if v ∈ Rn is the vector whose ith entry is vi (so we are trying
to find v) then (D.1.1) says

v = Wv

where W is the n × n matrix (computed monthly by Google) whose ij-entry is wij . Keep in mind, as
noted above, that we also want vi > 0 for all i and

∑n
i=1 vi = 1. Also, for any j, the sum of the entries in
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the jth column of W is
n∑

i=1

wij = 1

(as noted in (iii) above). Thus, W is a Markov matrix.
How do we find v? Although the equation v = Wv, or equivalently (In −W )v = 0, can be regarded

as a (massive) system of linear equations for which we seek a nonzero solution vector (having positive
entries summing to 1), it is completely impractical – even for the most powerful computers – to solve this
system directly. Indeed, with a billion webpages, if a computer can carry out a trillion multiplications
every second then it would take around a billion years to solve v = Wv by direct means (such as via the
classical “Gaussian elimination” method, essentially the LU -decomposition in Chapter 22).

Google made a small (but crucial) modification in the way they define the weights wij: they chose a
specific number α slightly less than 1 (in fact, around 0.85) and replaced wij with

w′
ij = αwij +

1− α

n

(recall that n is the number of webpages on the entire Internet, so (1 − α)/n is extremely small). This
adjustment prevents the PageRank algorithm from developing certain unrealistic features. Now, instead
of many weights wij being equal to 0, they are all at least as large as the very tiny but positive number
(1− α)/n. Let W ′ be the n× n matrix whose ij-entry is w′

ij , so the column sums of W ′ also equal 1:
n∑

i=1

w′
ij =

n∑

i=1

(
αwij +

1− α

n

)
= α

n∑

i=1

wij + n · 1− α

n
= α · 1 + (1− α) = 1.

Both W ′ and W are Markov matrices, as were the matrices denoted as M in Sections 16.1 and 16.2.
Sergey Brin and Larry Page [BP] found an excellent approximation to v by applying the following

theorem on Markov matrices which had been proved in 1907 by Perron:31

Theorem D.1.1 (Perron). If an n × n Markov matrix M has all entries positive then there is a unique
vector v ∈ Rn with positive entries summing to 1 for which v =Mv.

Moreover, if v0 is any vector having non-negative entries summing to 1 then the vectorsMkv0 obtained
by multiplying M repeatedly against v0 converge to v as k → ∞. (Taking v0 to be any of the standard
basis vectors ei, so Mkei is the ith column of Mk, it follows that for large k all columns of Mk are nearly
equal to v and hence are all nearly the same as each other!)

A proof of both the first part of Theorem D.1.1 and additional results from which the second part can
be deduced with a bit more work is given in [M, Sec. 8.2]. (This reference has a more general setup –
it doesn’t assume M is Markov – and correspondingly a weaker-looking conclusion “rv = Mv” for a
special r > 0. But for Markov M it follows by summing up the entries in rv and Mv that r = 1 in such
cases, so Perron’s theorem is obtained.)

In the setting of Theorem D.1.1 relevant to Google, we can take v0 ∈ Rn to be the vector whose first
entry is 1 and whose other entries are all equal to 0 (or whose entries are all equal to 1/n) and compute
W ′kv0 for larger and larger values of k. Because of the way W ′ is made from the matrix W that has most
of its entries equal to 0, despite the huge number of rows and columns the powers W ′k can be computed
rather quickly (using specialized linear algebra techniques for working with “sparse matrices”, such as W

31Oskar Perron (1880-1975) was a German mathematician who worked across a wide array of fields, including differential
equations, linear algebra, geometry, and number theory, publishing papers well past the age of 80. He had a lifelong interest
in the subject of continued fractions, on which he wrote a 2-volume masterpiece [Pe]. Perron’s discovery of the tremendously
useful Theorem D.1.1 grew out of his work on continued fractions [Ha3, Sec. 17.1].
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that is very close to W ′) and so Google can solve for v in a matter of days via Perron’s theorem: compute
W ′kv0 for increasing k until it stabilizes to within very good accuracy.

D.2. A refinement of Perron’s theorem. Although the positivity condition in Perron’s Theorem
D.1.1 is satisfied in the case relevant to Google, due to the switch from W to W ′, there are plenty of
situations where a Markov matrix has lots of entries equal to 0. Both the bird migration example in
Section 16.1 and the gambler’s ruin example in Section 16.2 involved such a Markov matrix. When the
positivity condition on all matrix entries in Perron’s theorem is removed, the conclusion of the theorem
can fail (see Remark 16.1.3 for such an example).

Frobenius32 proved in 1912 that the situation with some entries equal to 0 is salvaged when the Markov
matrix satisfies a property called “irreducibility” (which always holds in the positive setting of Perron’s
theorem); this generalization is called the Perron–Frobenius theorem. The Markov matrix in Section 16.1
is irreducible (and satisfies an even stronger condition called “primitive”), explaining why the columns
of M20 in Section 16.1 – and even Mk for all bigger k – are the same to three decimal digits’ accuracy.
The 6 × 6 Markov matrix M in Section 16.2 is not irreducible, but Frobenius’ work shows that Mk

converges quickly as k grows (to a limit whose columns are not all the same!), so the vector of probabilities
p(k) = Mkp(0) in Section 16.2 is the same as p(100) in (16.2.2) to many decimal digits’ accuracy no
matter what big k we consider (even for k ≥ 30).

In the realistic study of population dynamics for which one keeps track of births and deaths (which
the bird migration example in Section 16.1 disregarded), a popular class of models involves powers of
a type of non-Markov matrix called a Leslie matrix that has non-negative entries of which many are 0.
The Perron–Frobenius theorem is applicable to Leslie matrices, leading to good qualitative predictions for
long-term behavior in a variety of ecological or biological population problems.

Remark D.2.1. Theorem D.1.1 (along with Frobenius’ generalization mentioned above) is an important
result in the theory of dynamical systems, and Sergey Brin’s father is an expert in dynamical systems; see
[BS, 3.3, 4.12]. Although you can use Perron’s Theorem D.1.1 without any knowledge of why it is true, if
you want to understand why the theorem works then you’ll have to learn more math. The systematic study
of large powers of matrices (and a huge amount more in linear algebra) relies crucially on the concept
of eigenvalue, for which we give an introduction in Chapters 23 and 24 and whose utility rests on the
non-commutativity of matrix multiplication.

Most of our discussion of eigenvalues focuses on n × n matrices A symmetric around their diagonal
(aij = aji) since that suffices for our primary needs in this book, but the matrix M in Theorem D.1.1
is typically not symmetric (e.g., in the application to PageRank the matrix is never symmetric, since the
weights wij used in (D.1.1) are highly non-symmetric under swapping i and j: the value of a link from the
jth page to the ith page has nothing at all to do with the value of a link from the ith page to the jth page).
Moreover, even though the statement of Theorem D.1.1 involves matrices and vectors whose entries are
real numbers, its proof involves linear algebra with complex numbers. So if you want to understand why
the theorem is true then you’ll need to learn more about eigenvalues than is covered in this book; Math
104 and Math 113 cover that further material.

32Georg Frobenius (1849-1917) was a German mathematician who made discoveries across the whole spectrum of pure
mathematics as it existed in the second half of the 19th century, with his greatest work being in algebraic directions (see
[Ha3]). He made important contributions to matrix algebra early in his career, and in his final period of research established
“Perron–Frobenius theory” that gave a definitive analogue of Theorem D.1.1 for matrices with non-negative entries.
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“One cannot escape the feeling that these mathematical formulas have an independent existence and
intelligence of their own, that they are wiser than we are, wiser than even their discoverers, that we get
more out of them than was originally put into them.”

H. Hertz

E. General determinants (optional)

In this appendix, we describe a very useful function called the determinant. For most functions con-
sidered in this book, the input is a vector and the output is either a vector or a scalar. The determinant is a
different kind of function: the input is an n×nmatrix A and the output is a number called the determinant
of A and written det(A).

There is an explicit formula defining det(A). However, unless n is very small, that formula has a lot
of terms and is not particularly useful for calculating the determinant. So we will not give that formula
here. Instead, we describe the geometric meaning of the determinant, the rules that the determinant obeys,
and how to use those rules to calculate and work with the determinant.

As mentioned above, the input of the determinant is an n×n matrix A. But we can also view the input
as n vectors in Rn, namely the columns of the matrix A. Thus if v1,v2, . . . ,vn are the columns of A, then
det(A) and det(v1,v2, . . . ,vn) are two notations for the same quantity. Another common notation for the
determinant A is to replace brackets with vertical lines, so the following all denote the same thing:

det

[
1 2
3 4

]
=

∣∣∣∣
1 2
3 4

∣∣∣∣ = det

([
1
3

]
,

[
2
4

])
.

E.1. Properties of the determinant. We want to state the essential properties that the determinant
satisfies, and then illustrate through a series of examples how to use these properties to compute determi-
nants. The procedures arising in these properties are generally called row and column operations since
they involve modifying rows or columns of an n× n matrix in specific ways.

Before stating these properties, we need to introduce a bit of terminology. The diagonal of an n × n
matrixA consists of the entries aii going from the upper left corner (i.e., a11) to the lower right corner (i.e.,
ann). If all entries below the diagonal are 0 then the matrix is called upper triangular, and if all entries
above the diagonal are 0 then the matrix is called lower triangular. (These notions are encountered in
Example 15.1.7 and Example 22.1.1.) We call A triangular if it is upper triangular or lower triangular.

For example, in the 3× 3 case the following types of matrices

a11 a12 a13
0 a22 a23
0 0 a33


 ,



b11 0 0
b21 b22 0
b31 b32 b33




are respectively upper triangular and lower triangular. In contrast, here is a non-triangular matrix:

0 0 2
0 3 4
5 6 7


 .

Here are the main properties of determinants with respect to “row and column operations”:

(1) The determinant of a triangular matrix is the product of the diagonal entries.
(2) Adding a multiple of one row of A to another row doesn’t change det(A); likewise for columns.
(3) Switching two rows (or two columns) of A multiplies the determinant by −1.
(4) Multiplying a row (or a column) of A by a scalar multiplies the determinant by that scalar.
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(5) If we fix all but one column of A, then det(A) is a linear function of the remaining column. For
instance, in the case of column 1 for a 3× 3 matrix we have

det(w1 +w′
1,w2,w3) = det(w1,w2,w3) + det(w′

1,w2,w3),

det(cv1,v2,v3) = c det(v1,v2,v3).

(6) Similarly, if we fix all but one row of A, then det(A) is a linear function of the remaining row.

Example E.1.1. Property (1) in the case of 3× 3 matrices says
∣∣∣∣∣∣

a11 a12 a13
0 a22 a23
0 0 a33

∣∣∣∣∣∣
= a11a22a33,

∣∣∣∣∣∣

b11 0 0
b21 b22 0
b31 b32 b33

∣∣∣∣∣∣
= b11b22b33.

Also, although we have noted already that 

0 0 2
0 3 4
5 6 7




is not triangular, switching its first and third rows makes it triangular, so we can thereby compute its
determinant using properties (3) and (1):

∣∣∣∣∣∣

0 0 2
0 3 4
5 6 7

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

5 6 7
0 3 4
0 0 2

∣∣∣∣∣∣
= (−1)5 · 3 · 2 = −30.

■

In general, by using the properties (1)–(6) and some experience (illustrated in examples below) one
can apply row and column operations (e.g., add or subtract multiples of one row or column from others to
cancel out many entries to get lots of 0’s) to quickly transform an n × n matrix to become triangular and
thereby calculate its determinant. This requires accuracy with the arithmetic, but a computer can handle
that extremely well (and a human can do it for n ≤ 3, but even for n = 3 a computer is often more reliable
than a human).

Example E.1.2. Let’s calculate the determinant of



1 1 1
1 3 5
3 6 2


. By subtracting row 1 from row 2, and then

3 times row 1 from row 3, we do not change the determinant but we get some helpful 0’s and can continue
further to reach the triangular state:

∣∣∣∣∣∣

1 1 1
1 3 5
3 6 2

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 1
0 2 4
0 3 −1.

∣∣∣∣∣∣

= 2

∣∣∣∣∣∣

1 1 1
0 1 2
0 3 −1.

∣∣∣∣∣∣
(factoring a 2 from row 2)

= 2

∣∣∣∣∣∣

1 1 1
0 1 2
0 0 −7

∣∣∣∣∣∣
(3(row 2) subtracted from row 3)

= −14.

■
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Example E.1.3. Let’s calculate the determinant of



0 2 6
1 4 5
1 8 a


 for a general scalar a in the lower right

entry. Using row and column operations, we have:
∣∣∣∣∣∣

0 2 6
1 4 5
1 8 a

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

1 4 5
0 2 6
1 8 a

∣∣∣∣∣∣
(rows 1 and 2 switched)

= (−1)

∣∣∣∣∣∣

1 4 5
0 2 6
0 4 a− 5

∣∣∣∣∣∣
(row 1 subtracted from row 3)

= (−1)

∣∣∣∣∣∣

1 4 5
0 2 6
0 0 a− 17

∣∣∣∣∣∣
(2(row 2) subtracted from row 3)

= (−1)(1)(2)(a− 17)

= 34− 2a.

■

In the preceding examples, there were lots of ways we could have proceeded: the choice of which
row and column operations to use to arrive at a triangular matrix permits much flexibility. Consequently,
it might be surprising that one really always arrives at the same final answer no matter how one chooses
among the row and column operations to apply (assuming one hasn’t made an arithmetic mistake). In
other words, it may be surprising that the properties (1)–(6) of determinants under row and column are
internally consistent. If you take a more advanced course in linear algebra then you will learn the general
definition of determinants (which we have omitted in favor of the rules (1)–(6) listed above), from which
one can establish all of the properties, or see [Ap, Ch. 3] (especially [Ap, Sec. 3.13]).

Theorem E.1.4. If an n× n matrix A has an entire row of 0’s or an entire column of 0’s then det(A) = 0.

To see why this is true, note that if some column v is the zero vector then v = 0v. Thus, by property
(5) we can factor out a 0 from that column to get det(A) = 0 · det(A) = 0. The same argument applies
using property (6) when there is a row that is the zero vector.

Remark E.1.5. The method of changing rows by adding (or subtracting) multiples of another row – which
has no effect on det(A) – and then swapping rows if necessary (which can change det(A) by a sign) can
always be used to bring ourselves to a triangular (and even diagonal) matrix. In this way, row operations
always allow us to compute det(A) (and we can do similarly with columns if we prefer).

The main point is that if some column

v =




a1
a2
...
an




has a nonzero entry ai in the ith position then for any j ̸= i if we subtract “aj/ai times the ith row” from
the jth row then we turn the jth entry in that column into 0. Doing this for all j ̸= i turns this column
entirely into 0’s except for the entry ai. We refer to this as using the entry ai in v as a “pivot” to make the
rest of this column vanish.
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For example, if we are given the matrix

A =




2 −1 7
5 3 1
−3 2 4




and focus on the first column, here is how to use its nonzero entry 5 in the second row to make all other
entries in the first column vanish: we subtract 2/5 times the second row from the first row to make the
upper left entry vanish, and we subtract −3/5 times the second row from the third row to make the lower
left entry vanish:

∣∣∣∣∣∣

2 −1 7
5 3 1
−3 2 4

∣∣∣∣∣∣
=

∣∣∣∣∣∣

0 −1− 3(2/5) 7− 1(2/5)
5 3 1
−3 2 4

∣∣∣∣∣∣
(subtract (2/5)(row 2) from row 1)

=

∣∣∣∣∣∣

0 −11/5 33/5
5 3 1
−3 2 4

∣∣∣∣∣∣
(carry out arithmetic in row 1)

=

∣∣∣∣∣∣

0 −11/5 33/5
5 3 1
0 2− (−3/5)3 4− (−3/5)1

∣∣∣∣∣∣
(subtract (−3/5)(row 2) from row 3)

=

∣∣∣∣∣∣

0 −11/5 33/5
5 3 1
0 19/5 23/5

∣∣∣∣∣∣
(carry out arithmetic in row 3)

We can do this procedure with every column, so we either arrive at a step in which there is a column of
0’s (so det(A) = 0) or we clear out all entries except one in every column (as in the preceding calculation
for the first column). The unique nonzero entry in each column occurs in some position.

Suppose as we vary across all columns the row in which each nonzero entry occurs never repeats (e.g.,
if the first column has its nonzero entry in the third row, then in no other column is the nonzero entry in the
third row). By rearranging the rows (at the cost of possibly changing the determinant by a sign), we can
therefore arrange that these nonzero entries occur along the diagonal, so we have a triangular (and even
diagonal) matrix.

Suppose instead that some row contains the unique nonzero entry in at least two columns. Then we
claim that there must be some row consisting entirely of 0’s (so det(A) = 0). Indeed, if some row is
occupied by at least two of the nonzero entries then there are only n − 2 other nonzero entries remaining
yet there are n− 1 other rows, so not all of those other rows can have a nonzero entry (there are too many
other rows).

E.2. Formula for 2× 2 determinants. As a further application of the properties of determinants, in
the case of 2 × 2 matrices we can compute them in general, deducing that the notion of “determinant”
introduced in the 2 × 2 case for the study of eigenvalues and eigenvectors in Theorem 23.3.1 coincides
with the case n = 2 of n× n determinants as discussed in this appendix.

Theorem E.2.1. The determinant of
[
a b
c d

]
is ad− bc.

To establish this formula, we first observe that as “row vectors”
[
a b

]
=
[
a 0

]
+
[
0 b

]
,
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so by linearity in the first row (property (6)) we get

∣∣∣∣
a b
c d

∣∣∣∣ =
∣∣∣∣
a 0
c d

∣∣∣∣+
∣∣∣∣
0 b
c d

∣∣∣∣

= ad+

∣∣∣∣
0 b
c d

∣∣∣∣

= ad−
∣∣∣∣
b 0
d c

∣∣∣∣ (columns 1 and 2 switched)

= ad− bc.

E.3. Relation of determinant to area and volume. Up to now, determinants may look like a pecu-
liar algebraic concept. But in fact they have a rather compelling geometric meaning that underlies their
importance in some applications. To explain this, we need to use the fact from Section 14.3 that any n×n
matrix A can be thought as a linear function TA : Rn → Rn: given an input x, the output is Ax. (See
Definition 14.3.1.)

Example E.3.1. Let B =

[
2 0
0 1

]
. If the input is

[
x
y

]
, the output is B

[
x
y

]
=

[
2x
y

]
, so the associated linear

function TB : R2 → R2 doubles the x-coordinate and leaves the y-coordinate unchanged.
Hence, if we apply the function TB to any region U in R2, this region is stretched out horizontally by a

factor of 2. Thus the area of the stretched region TB(U) (which we also denote as B(U)) should be twice
the area of U (see Figure E.3.1). We therefore say that the area magnification factor of B is 2.

U B(U)
B

FIGURE E.3.1. The effect of B on a planar region U .

Consider C =

[
−2 0
0 1

]
. If the input is

[
x
y

]
, the output is

[
−2x
y

]
. If we apply the function TC to

a region U in R2, the region gets stretched out horizontally by a factor of 2 and then flipped around the
y-axis (due to the minus sign). Flipping doesn’t affect area, so the area of the stretched out region C(U)
is twice the area of U (see Figure E.3.2). Thus, the area magnification factor of C is 2, as for B.
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U C(U)
C

FIGURE E.3.2. The action of C on a planar region U .

Though B and C have the same area magnification factor (namely 2), there is something different
about B and C. Figure E.3.3 shows a portrait of one of the members of the Stanford Math Department
holding a koala bear.

Quincy

FIGURE E.3.3. Quincy

To maintain anonymity, we will call this person by the nickname Quincy. Note that Quincy has his right
hand on top of the koala bear. Figures E.3.4 and E.3.5 show the result of feeding the picture of Quincy
into the linear transformations TB and TC . After applying transformation TB we still see Quincy’s right
hand on the koala, but after we apply transformation TC we then see what appears to be Quincy’s left hand
on top of the koala (from the perspective of someone who only sees the output)!

Quincy Quincy

B

FIGURE E.3.4. The effect of B on the portrait of Quincy.
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Quincy Quincy

C

FIGURE E.3.5. The effect of C on the portrait of Quincy.

The distinction between B and C is that B is orientation-preserving while C is orientation-reversing.
In general, an orientation-reversing transformation is one that switches what is “right” and what is “left.”
Note also that C reverses the direction of the text at the bottom of Quincy’s portrait. This is another
example of how C switches “right” and “left.”

Let D =

[
−1 0
0 −1

]
. Geometrically, D represents rotation by 180° around the origin. Figure E.3.6

shows the result of applying TD to the image of Quincy. Now the output image is upside down, but the
right hand remains on the koala. Thus, D is orientation-preserving.

Quincy

Quincy

D

FIGURE E.3.6. The effect of D on the portrait of Quincy.

■

With the preceding example in mind, we can now describe the geometric meaning of the determinant.

For a 2× 2 matrix A, det(A) is the “signed area magnification factor” of A. More precisely:
• If A is orientation-preserving then det(A) is the area-magnification factor.
• If A is orientation-reversing then det(A) is minus the area-magnification factor.

If A is an n × n matrix then det(A) is the signed n-dimensional volume magnification factor of
A:
• If A is orientation-preserving then det(A) is the n-dimensional volume magnification factor.
• IfA is orientation-reversing then det(A) is minus the n-dimensional volume magnification factor.
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If the notions of orientation-preserving and orientation-reversing, or of n-dimensional volume (for
n > 3), are unclear then don’t worry: we haven’t defined these concepts for general n. We hope the
examples above give you a basic idea about these concepts in the 2-dimensional case. In practice, it
is easy to tell whether a given matrix is orientation-preserving or orientation-reversing: just calculate
the determinant and see whether it is positive or negative. Beware that the determinant might be 0; in
that case, the concept of orientation doesn’t apply and so the matrix is neither orientation-preserving nor
orientation-reversing.

Example E.3.2. Let U be the ball of radius r > 0 centered at the origin in R3:

U = {x ∈ R3 : ∥x∥ ≤ r}.
We shall now find the volume of the region A(U) obtained from U by feeding points of U into TA for

A =



1 1 3
0 2 7
2 2 3


 .

We have

vol(A(U)) = | det(A)|(vol(U)) = | det(A)| · 4
3
πr3,

so we just need to find det(A). This goes as follows:
∣∣∣∣∣∣

1 1 3
0 2 7
2 2 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 3
0 2 7
0 0 −3

∣∣∣∣∣∣
(2(row 1) subtracted from row 3)

= −6.

Thus

vol(A(U)) = | − 6| · 4
3
πr3 = 8πr3.

■

In Remark 18.2.6 we gave a general interpretation of the determinant of a 2 × 2 matrix A in terms of
area. The calculations there showed that det(A) equals plus or minus the area of the parallelogram whose
edges are the columns of A, with sign “+” when A is orientation-preserving (i.e., the second column of A
lies counterclockwise from the first column with an angle of at most 180°) and sign “−” ifA is orientation-
reversing. The n-dimensional analogue of a parallelogram is called a parallelepiped. (A parallelogram in
R2 with a corner at (0, 0) and vectors v1,v2 among its edges consists of the points xv1 + yv2 ∈ R2 with
0 ≤ x, y ≤ 1, shown in Figure 14.1.3 as the red region labeled “Q” there. For n vectors v1, . . . ,vn ∈ Rn

the parallelepiped P with a corner at 0 and the vi’s among its “edges” is defined to be the set of points
a1v1+· · ·+anvn ∈ Rn with 0 ≤ a1, . . . , an ≤ 1.) Arguing in a more sophisticated way, one can establish:

Let A be an n × n matrix, and PA the parallelepiped with a corner at the origin and the columns of
A among its edges. If det(A) ̸= 0 then | det(A)| equals the “n-dimensional volume” (appropriately
defined when n > 3) of PA and the determinant is positive when A is orientation-preserving and
negative when A is orientation-reversing. If det(A) = 0 then then PA is contained in a hyperplane
(due to Theorem E.4.5 below) and so its “n-dimensional volume” vanishes.

A visual interpretation of PA is as follows, illustrated in Figure E.3.7 for n = 3. Let TA : Rn → Rn

be the linear map associated to A, which is to say TA(x) = Ax. By definition, the unit n-cube consists of
points (a1, . . . , an) = a1e1 + · · · + anen with 0 ≤ a1, . . . , an ≤ 1 (for n = 2 this is the unit square in the
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lower-left of the first quadrant). If A has columns v1, . . . ,vn from left to right then vj = Aej = TA(ej)
and so

a1v1 + · · ·+ anvn = a1TA(e1) + · · ·+ anTA(en) = TA(a1e1 + · · ·+ anen).

Thus, PA is exactly the output of applying TA to the unit n-cube in Rn, so | det(A)| is the “n-dimensional
volume” of the output of TA on the unit n-cube.

e1

e2

e3
TA

•

v1

v2

v3

•

FIGURE E.3.7. A parallelepiped P in R3 as the image of the unit cube by a specific linear
map TA, with | det(A)| the volume of P .

Example E.3.3. Consider the triangle QRS in R2 whose vertices are at the points Q = (1, 2), R =
(−2, 3), and S = (4, 5). Here is a general method to compute its area by using a 2× 2 determinant via the
area interpretation discussed above (applied with n = 2).

Method: For a triangle T in R2, we apply displacement by the negative of a vertex to move T to a
new triangle T ′ (so with the same area) having one vertex at the origin. The area of T ′ is half of the area of
a parallelogram P whose area is | det(A)| for the 2× 2 matrix A with columns given by the edge vectors
of T ′ emanating from the origin as illustrated in Figure E.3.8 (also see Figure 18.2.2 in Remark 18.2.6).

y

x

T

T ′

P

FIGURE E.3.8. Triangle T moving by displacement to a triangle T ′ with a vertex at the
origin, and T ′ is “half” of a parallelogram P .

We now apply this method to compute the area of the triangle QRS, by respectively moving each
vertex to the origin. These three calculations will yield quite different 2 × 2 matrices A, but in all cases
| det(A)| will be the same (namely, the area of the triangle).

First we use displacement by −Q to compute the area. Displacing by −Q = (−1,−2) yields T ′

with vertices at −Q + Q = (0, 0), −Q + R = (−3, 1), and −Q + S = (3, 3). Thus, T ′ is half of the

parallelogram with a vertex at the origin and two edges along the vectors v =

[
−3
1

]
and w =

[
3
3

]
(so the
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other vertex of the parallelogram is v +w =

[
0
4

]
). The area of the parallelogram is the absolute value of

the determinant of the 2× 2 matrix with columns given by v and w. This determinant is

det

[
−3 3
1 3

]
= −9− 3 = −12,

so half of its absolute value is 6.
Next, we use displacement by −R to compute the area. Displacing by −R = (2,−3) yields T ′ with

vertices at −R+Q = (3,−1), −R+R = (0, 0), and −R+S = (6, 2). Thus, T ′ is half of the parallelogram

with a vertex at the origin and two edges along the vectors v =

[
3
−1

]
and w =

[
6
2

]
(so the other vertex of

the parallelogram is v+w =

[
9
1

]
). The area of the parallelogram is the absolute value of the determinant

of the 2× 2 matrix with columns given by v and w. This determinant is

det

[
3 6
−1 2

]
= 6− (−6) = 12,

so half of its absolute value is 6, agreeing with the first area calculation (as it must).
Finally, we use displacement by −S to compute the area. Displacing by −S = (−4,−5) yields T ′

with vertices at −S + Q = (−3,−3), −S + R = (−6,−2), and −S + S = (0, 0). Thus, T ′ is half of

the parallelogram with a vertex at the origin and two edges along the vectors v =

[
−3
−3

]
and w =

[
−6
−2

]

(so the other vertex of the parallelogram is v+w =

[
−9
−5

]
). The area of the parallelogram is the absolute

value of the determinant of the 2× 2 matrix with columns given by v and w. This determinant is

det

[
−3 −6
−3 −2

]
= 6− 18 = −12,

so half of its absolute value is 6, agreeing with the two preceding area calculations (as it must). ■

E.4. Additional Properties of and Formulas for Determinants. In our study of matrix algebra, we
encountered operations on n × n matrices such as matrix multiplication and transpose. It is useful to
understand how these interact with the determinant.

Theorem E.4.1. For any n × n matrices A and B, we have det(AB) = det(A) det(B). If A is
invertible then det(A) ̸= 0 and det(A−1) = 1/ det(A).

Remark E.4.2. In Remark E.4.6 we will provide a refinement: the non-vanishing of det(A) is equivalent
to the invertibility of A (rather than just being a consequence of the invertibility of A as asserted in
Theorem E.4.1).

To understand why Theorem E.4.1 is true, let U be a region in Rn with volume equal to 1. Then

vol((AB)(U)) = | det(AB)|vol(U) = | det(AB)|.
On the other hand,

vol((AB)(U)) = vol(A(B(U)))

= | det(A)|vol(B(U))

= | det(A)|| det(B)|vol(U)
= | det(A)|| det(B)|.
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Thus | det(AB)| = | det(A)| | det(B)|, so

det(AB) = ± det(A) det(B).

In fact, the orientations always work out so that

det(AB) = det(A) det(B)

(see [Ap, Sec. 3.7] for a proof if you are interested). In the invertible case, if we take B to be A−1 then
AB = In, so

1 = det(In) = det(AB) = det(A) det(B).

This implies that det(A) must be nonzero (as otherwise we would have 1 = 0 det(B) = 0, which is
absurd). Then we can divide by det(A) to get that det(A−1) = det(B) = 1/ det(A) as claimed.

Theorem E.4.3. For any n× n matrix A, det(A⊤) = det(A).

The idea behind this result is that row operations on A correspond to column operations on A⊤ and
vice-versa, with the same effect on each determinant (e.g., swapping two rows or two columns multiplies
the determinant by −1, adding a multiple of one row or column to another has no effect, and multiplying
a row or column by a scalar c multiplies the determinant by c).

Let’s explain the idea in a 3 × 3 case before we take it up in general. Any matrix A can be changed
into an upper triangular matrix by adding multiples of rows to other rows and possibly switching pairs of
rows if necessary:

A =



a11 a12 a13
a21 a22 a23
a31 a32 a33


⇝



b11 b12 b13
0 b22 b23
0 0 b33.


 = B.

(This was discussed in Remark E.1.5, where we saw that one can even arrange forB to be diagonal.) Thus,
if there are k row swaps involved then

det



a11 a12 a13
a21 a22 a23
a31 a32 a33


 = (−1)k det



b11 b12 b13
0 b22 b23
0 0 b33.


 = (−1)kb11b22b33. (E.4.1)

Note that if we do exactly the same operations to the columns of A⊤ then we change it to the lower
triangular matrix B⊤ (since applying column operations on the transpose A⊤ is “the same” as applying
the corresponding row operations on A and then passing to the transpose):

A⊤ =



a11 a21 a31
a12 a22 a32
a13 a23 a33


⇝



b11 0 0
b12 b22 0
b13 b23 b33


 = B⊤,

so

det(A⊤) = (−1)kb11b22b33. (E.4.2)

From (E.4.1) and (E.4.2), we see that det(A) and det(A⊤) are equal.
The general case goes in a similar way: row and column operations can always be used to bring a

matrix to diagonal form, as we saw in Remark E.1.5. Hence, the problem of equality of det(A⊤) and
det(A) can be transformed via compatible row and column operations on A and A⊤ into the case that A
is diagonal. But in the diagonal case we have A⊤ = A, so certainly det(A⊤) = det(A)!

Corollary E.4.4. IfR is an n×n orthogonal matrix then det(R) = ±1. In particular, ifR is an orthogonal
2 × 2 or 3 × 3 matrix then its effect on R2 or R3 respectively is orientation-preserving precisely when
det(R) = 1.
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PROOF. Applying the determinant to both sides of the orthogonality equation RR⊤ = In yields (with
the help of Theorems E.4.1 and E.4.3)

1 = det(In) = det(RR⊤) = det(R) det(R⊤) = det(R) det(R) = det(R)2,

so det(R) = ±1. The sign of the determinant keeps track of whether or not a linear motion of R2

or R3 preserves the sense of “orientation” (in effect, the distinction between left-handedness and right-
handedness, which is flipped if one looks in a mirror), so when n = 2, 3 we have that R is orientation-
preserving precisely when det(R) > 0, or equivalently det(R) = 1. □

Determinants also encode linear dependence for any n vectors v1, . . . ,vn in Rn:

Theorem E.4.5. For an n× n matrix A, det(A) = 0 precisely when the n columns v1, . . . ,vn ∈ Rn

of A are linearly dependent. Put another way, the n vectors v1, . . . ,vn ∈ Rn are linearly independent
(or equivalently, constitute a basis of Rn) precisely when det(A) ̸= 0.

Likewise, det(A) = 0 precisely when the n rows of A are linearly dependent, and det(A) ̸= 0
precisely when the n rows of A are linearly independent.

To explain this result, first note that the result for rows of A is the same as the result for columns of
A⊤, and by Theorem E.4.3 the matrices A and A⊤ have the same determinant. Hence, it is enough to
check that det(A) = 0 exactly when the columns v1, . . . ,vn are linearly dependent in Rn.

As a warm-up to the general case, let’s first suppose n = 3 and explain why linear dependence of
the columns u, v, w of a 3 × 3 matrix forces the vanishing of the determinant. By linear dependence,
one of these columns is a linear combination of the other two. Suppose, for example, than w is a linear
combination of u and v:

w = au+ bv

for some scalars a and b. Then subtracting a times column 1 from column 3 and then subtracting b times
column 2 from column 3 does not change the determinant but it makes the third column vanish:

det(u,v,w) = det(u,v,w − au− bv) = det(u,v,0).

The right side vanishes by Theorem E.1.4.
In the general case, linear dependence says

∑
cjvj = 0 for some scalars c1, . . . , cn ∈ R that aren’t all

0. Some cj0 is nonzero, so if we divide through by cj0 then

vj0 =
∑

j ̸=j0

−(cj/cj0)vj.

The determinant is unaffected by adding multiples of one column to another, so if we add to vj0 the
multiple by cj/cj0 of the jth column vj for every j ̸= j0 then det(A) doesn’t change but the effect on the
j0th column is to turn it into

vj0 +
∑

j ̸=j0

(cj/cj0)vj =
∑

j ̸=j0

−(cj/cj0)vj +
∑

j ̸=j0

(cj/cj0)vj

=
∑

j ̸=j0

(−(cj/cj0) + cj/cj0)vj

=
∑

j ̸=j0

0vj

= 0.

We have arrived at an entire column of 0’s, so det(A) = 0 (by Theorem E.1.4).
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Now going in reverse, suppose det(A) = 0. We want to show that v1, . . . ,vn is linear dependent.
It is hard to establish this directly, so instead we are going to proceed by contradiction: we assume the
collection v1, . . . ,vn is linearly independent and will deduce a contradiction (so the assumption of linear
independence fails, and hence linear dependence must hold, as desired). The key point is that by assuming
linear independence we can apply a serious ingredient: general results about dimension and bases.

Since dimRn = n, any n linearly independent vectors in Rn constitute a basis and in particular span
Rn. Hence, every vector b ∈ Rn is a linear combination of the vj’s. In particular, each of the standard
basis vectors e1, . . . , en ∈ Rn is in the span of the vj’s. We can write this as a collection of equations

ej =
n∑

i=1

cijvi

for some scalars cij . If we let C be the n× n matrix (cij) then the product matrix AC has first column
n∑

i=1

ci1vi = e1

and likewise jth column
∑n

i=1 cijvi = ej for all 1 ≤ j ≤ n.
This says that AC is the n × n matrix whose jth column is ej , and that is exactly the identity matrix

In. In other words, when the columns of A are linearly independent we have built an n × n matrix C so
that AC = In. Now we apply Theorem E.4.1:

1 = det(In) = det(AC) = det(A) det(C).

But we assumed det(A) = 0, so the right side is 0 det(C) = 0, yielding 1 = 0, an absurdity. This
completes our verification of Theorem E.4.5!

Remark E.4.6. A consequence of Theorem E.4.5 is that det(A) ̸= 0 exactly when A is invertible.
Indeed, in Theorem E.4.1 we saw that if A has an inverse then det(A) cannot vanish. In the other
direction, if det(A) ̸= 0 then by Theorem E.4.5 the n columns in Rn are linearly independent, so the
argument in the second part of the explanation for Theorem E.4.5 produces an n× n matrix C so that
AC = In, so A is invertible.

Here is a formula that computes an n× n determinant in terms of an (n− 1)× (n− 1) determinant in
a special case, which we will then build upon to give a general procedure to compute determinants.

Proposition E.4.7. For n > 1, if all entries in the ith row of an n× n matrix are 0 except for possibly the
ij-entry then

det(A) = (−1)i+jaij det(Ãij),

where Ãij is the (n− 1)× (n− 1) matrix obtained by removing row i and column j from A.

Before we discuss why Proposition E.4.7 is true, we illustrate it with some examples in order to convey
what it is saying.

Example E.4.8. The matrix 

1 2 3
0 0 4
5 6 7




has all entries in the second row vanishing except for the entry in the 23 position, so∣∣∣∣∣∣

1 2 3
0 0 4
5 6 7

∣∣∣∣∣∣
= (−1)2+3 4

∣∣∣∣
1 2
5 6

∣∣∣∣ = −4(1 · 6− 2 · 5) = −4(−4) = 16.
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Likewise,

∣∣∣∣∣∣∣∣

a b c d
e f 0 g
h i 0 j
k ℓ 0 m

∣∣∣∣∣∣∣∣
= (−1)1+3 c

∣∣∣∣∣∣

e f g
h i j
k ℓ m

∣∣∣∣∣∣
.

■

Example E.4.9. Proposition E.4.7 can be made applicable by first using row or column operations to
create many 0’s as we did in Remark E.1.5. For instance, let us compute the determinant of



1 2 5
0 1 1
5 4 6


 .

To make more 0’s along the second row we can subtract column 2 from column 3 to get a matrix whose
second row has only one nonzero entry (so we can use Proposition E.4.7):

∣∣∣∣∣∣

1 2 5
0 1 1
5 4 6

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 2 3
0 1 0
5 4 2

∣∣∣∣∣∣

= (−1)2+21

∣∣∣∣
1 3
5 2

∣∣∣∣
= 1(1 · 2− 5 · 3)
= −13.

We could have proceeded in an entirely different way, using row operations instead of column opera-
tions, to still arrive at the same answer (assuming we avoid arithmetic errors): to introduce more 0’s along
the first row (rather than along the second column) we can subtract 5 times row 1 from row 3 (and then
use Proposition E.4.7 on column 1):

∣∣∣∣∣∣

1 2 5
0 1 1
5 4 6

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 2 5
0 1 1
0 −6 −19

∣∣∣∣∣∣

= (−1)1+1 1

∣∣∣∣
1 1
−6 −19

∣∣∣∣
= (−1)2(1(−19)− 1(−6))

= −19 + 6

= −13.
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And we can also calculate the determinant without using Proposition E.4.7 at all (so there is really a
lot of flexibility in how to compute determinants):

∣∣∣∣∣∣

1 2 5
0 1 1
5 4 6

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 2 5
0 1 1
0 −6 −19

∣∣∣∣∣∣
(5(row 1) subtracted from row 3)

=

∣∣∣∣∣∣

1 2 5
0 1 1
0 0 −13

∣∣∣∣∣∣
(6 (row 2) added to row 3)

= (1)(1)(−13)

= −13.

■

The explanation for Proposition E.4.7 rests on using swaps of rows and columns to pass to the case
i = j = 1 as follows. Moving the ith row up one step at a time by swapping it repeatedly with the row
just above it involves i − 1 row swaps and brings the original ith row to the top of the matrix. Now the
first row vanishes except for possibly the jth entry. In the same way, using j− 1 successive column swaps
to the left brings the jth column all the way to the left. The outcome B of this process is related to the
original matrix A as follows:
• The original entry aij in A is now in the upper left of B: b11 = aij .
• The (n− 1)× (n− 1) matrix Ãij obtained by deleting the ith row and jth column from the original
n×n matrix is now exactly the lower-right (n−1)× (n−1) matrix obtained by deleting the first row
and column from B; that is, B̃11 = Ãij . (This is the reason that we carried out the row and column
swaps using successive adjacent rows and columns, so B̃11 and Ãij are exactly the same, and not off
from each other by some row or column swaps.)

Hence, det(A) = (−1)(i−1)+(j−1) det(B) = (−1)i+j−2 det(B) = (−1)i+j det(B), so if we can establish
the result for B (the case i = j = 1) then

det(A) = (−1)i+jb11 det(B̃11) = (−1)i+jaij det(Ãij),

which is what we want. So by using row and column swaps, we have brought ourselves to the case
i = j = 1; i.e., we can rename B as A.

We now want to show
det(A)

?
= a11 det(Ã11)

when the entire first row vanishes away from the left entry. If a11 = 0 then we have an entire row of 0’s,
so det(A) = 0 by Theorem E.1.4 and the desired formula says 0

?
= 0det(Ã11), which is certainly true

(regardless of the value of det(Ã11)).
Suppose instead a11 ̸= 0, so we can use the nonzero a11 as a pivot to clear out the entire first column as

well (using row operations as in Remark E.1.5 to subtract off a suitable multiple of the first row from each
of the other rows). Now consider using row or column operations on the (n− 1)× (n− 1) submatrix Ã11

to turn that into a diagonal matrix (as can be done, by Remark E.1.5). This has no impact on the first row
or the first column of A (as those are now 0’s away from the upper-left corner). Moreover, the effect of
such row and column operations on both sides of the desired formula det(A)

?
= a11 det(Ã11) (essentially

to change by possibly a sign) is the same, so the validity or not of the desired formula is reduced to the
case that Ã11 is diagonal. But then A is diagonal, so now

det(A) = a11a22 · · · ann = a11 det(Ã11)
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(because Ã11 is diagonal with entries a22, . . . , ann), so we are done!
Although Proposition E.4.7 might look too special to be of much use in general, we can always leverage

the linearity properties of determinants to put ourselves into a situation where the hypotheses of Proposi-
tion E.4.7 really hold. To see this, it is simplest first to explain the idea in the case n = 3: we claim the
general formula

∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
= a

∣∣∣∣
e f
h i

∣∣∣∣− b

∣∣∣∣
a c
g i

∣∣∣∣+ c

∣∣∣∣
d e
g h

∣∣∣∣ . (E.4.3)

(Informally, this is called “expanding along the first row” since we move across the first row and multiply
each entry against the 2× 2 determinant of what remains when we remove the row and column containing
the chosen entry. We also have to use alternating signs when we put it all together.)

The key insight to get the formula (E.4.3) is to express the first row as a linear combination of row
vectors which are each 0 away from one entry:

[
a b c

]
=
[
a 0 0

]
+
[
0 b 0

]
+
[
0 0 c

]
.

Thus, we can use linearity of determinants in the first row along with Proposition E.4.7 (for the case i = 1)
to get

∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a 0 0
d e f
g h i

∣∣∣∣∣∣
+

∣∣∣∣∣∣

0 b 0
d e f
g h i

∣∣∣∣∣∣
+

∣∣∣∣∣∣

0 0 c
d e f
g h i

∣∣∣∣∣∣

= (−1)1+1 a

∣∣∣∣
e f
h i

∣∣∣∣+ (−1)1+2 b

∣∣∣∣
d f
g i

∣∣∣∣+ (−1)1+3 c

∣∣∣∣
d e
g h

∣∣∣∣

= a

∣∣∣∣
e f
h i

∣∣∣∣− b

∣∣∣∣
d f
g i

∣∣∣∣+ c

∣∣∣∣
d e
g h

∣∣∣∣ .

The same reasoning for an n× n matrix gives:

det(A) = a11 det Ã11 − a12 det Ã12 + a13 det Ã13 − · · ·

=
n∑

j=1

(−1)1+ja1j det(Ã1j).

This is called expanding det(A) along row 1. More generally, one can expand along row i for any i to get:

Theorem E.4.10. For any 1 ≤ i ≤ n,

det(A) =
n∑

j=1

(−1)i+jaij det(Ãij).

Since det(A) = det(A⊤) (Theorem E.4.3), one can also expand along column j (for any j):

detA =
n∑

i=1

(−1)i+jaij det(Ãij).
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For example, we can expand along column 3 to get
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= (−1)1+3a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣+ (−1)2+3a23

∣∣∣∣
a11 a12
a31 a32

∣∣∣∣+ (−1)3+3a33

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣

= a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣− a23

∣∣∣∣
a11 a12
a31 a32

∣∣∣∣+ a33

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣

and expand along column 2 to get
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= (−1)1+2a12

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣+ (−1)2+2a22

∣∣∣∣
a11 a13
a31 a33

∣∣∣∣+ (−1)3+2a32

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣

= −a12
∣∣∣∣
a21 a23
a31 a33

∣∣∣∣+ a22

∣∣∣∣
a11 a13
a31 a33

∣∣∣∣− a32

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣ .

Observe that the alternating signs in the expansions along column 3 and column 2 are not the same: for
column 3 we have “+−+” and for column 2 we have “−+−”. The trick to remembering what signs to
use when expanding along a row or column in Theorem E.4.10 is to think about the n × n array of “+”
and “−” alternating horizontally and vertically beginning with “+” in the upper left, as in the following
for the cases n = 2, 3, 4 respectively:

+ −
− +

+ − +
− + −
+ − +

+ − + −
− + − +
+ − + −
− + − +

(In each of these arrays, the ij-entry is the sign of (−1)i+j for 1 ≤ i, j ≤ n.)
Expanding along a row or along a column is usually not an efficient way to calculate determinants (so

its significance is more for theoretical purposes rather than for numerical computations). It is better to use
row and/or column operations to get to a triangular form, or to get a row (or column) all but one of whose
entries is 0 so that one can apply the simpler Proposition E.4.7 (as in Example E.4.8).

Remark E.4.11. For an n × n matrix A that is invertible (equivalently, det(A) ̸= 0), here is an explicit
(but computationally inefficient) formula for A−1: the ij-entry of A−1 is (−1)i+j det(Ãji)/ det(A), where
Ãji is the (n − 1) × (n − 1) matrix obtained by removing row j and column i from A. For a proof, see
[Ap, Thm. 3.12].

E.5. Applications to eigenvalues and interpolation. An instance of using the vanishing of a deter-
minant to detect non-invertibility of a square matrix is that it gives a tool to detect eigenvalues, as follows.
In Theorem 23.3.1 we saw that for a 2 × 2 matrix, its eigenvalues are exactly the roots of an associated
quadratic polynomial. The version for a n× n matrix A with any n ≥ 1 is:

Theorem E.5.1. A scalar λ is an eigenvalue of A exactly when det(λIn − A) = 0.

This determinant is a degree-n polynomial in λ (see Remark E.5.2); it is called the characteristic
polynomial of A. For n = 2 this recovers the result in Theorem 23.3.1.

To explain Theorem E.5.1, first note that by Theorem E.4.5 this vanishing is exactly the condition that
the columns of λIn − A are linearly dependent, and that in turn amounts to the existence of a nonzero
v ∈ Rn for which

(λIn − A)v = 0
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(since a matrix-vector productMx is the linear combination of the columns ofM for which the ith column
of M is multiplied against the ith entry xi in x, by Theorem 13.4.1, so Mx = 0 with x nonzero precisely
expresses linear dependence for the columns of M by Theorem 19.1.5). But this is exactly the condition
λ Inv − Av = 0, which is to say

Av = λv,

the very meaning of the nonzero v being an eigenvector of A with eigenvalue λ.

Remark E.5.2. As an application of Theorem E.4.10, we can show that the determinant det(λIn − A)
whose vanishing characterizes the eigenvalues of A in Theorem E.5.1 is a degree-n polynomial in λ.
Explaining this for general n gets bogged down in notation, but already in the case n = 3 one can see
exactly what is going on, so here is the calculation for n = 3: by expanding along the first row, the
determinant

det(λI3 − A) =

∣∣∣∣∣∣

λ− a11 −a12 −a13
−a21 λ− a22 −a23
−a31 −a32 λ− a33

∣∣∣∣∣∣
is equal to

(λ− a11)

∣∣∣∣
λ− a22 −a23
−a32 λ− a33

∣∣∣∣− (−a12)
∣∣∣∣
−a21 −a23
−a31 λ− a33

∣∣∣∣+ (−a13)
∣∣∣∣
−a21 λ− a22
−a31 −a32

∣∣∣∣ .

This may look like a mess, but there are two key observations:
• the first term is λ−a11 times an 2×2 version of the same kind of expression, which we already know

is a quadratic polynomial (it is exactly what is given in Theorem 23.3.1), so altogether the first term
is a cubic polynomial in λ,

• the other terms involve 2× 2 determinants that we can expand along their first column to get polyno-
mial expressions in λ with degree at most 1.

Hence, when we put everything together, the first term is the only one contributing in degree 3: the others
contribute in degree at most 1. The overall result is therefore a cubic polynomial. In the general case one
shows that the result for (n− 1)× (n− 1) matrices (as in the above calculations for n = 3 where we used
the case of 2× 2 matrices from Theorem 23.3.1) and a bit of algebra yields the result for n× n matrices.

Remark E.5.3. As an application of the case n = 3 in Remark E.5.2, we can now explain a fact which
was mentioned in Remark 20.7.3: any (orientation-preserving) rigid motion of R3 that preserves the origin
must be rotation around some line through the origin by some angle. By Theorem 20.4.1, any rigid motion
of R3 preserving the origin arises from an orthogonal 3 × 3 matrix R. By Corollary E.4.4 we have
det(R) = 1. We need to show any such R is rotation by some angle around a line through the origin.

Now eigenvalues assist us in a crucial way: although a 2 × 2 matrix can fail to have an eigenvalue
(e.g., rotation through an angle 0 < θ < π), every 3 × 3 matrix has an eigenvalue λ ∈ R! Indeed, the
eigenvalues are the roots of the characteristic polynomial, and for a 3×3 matrix this is a cubic polynomial
of the form f(x) = x3 + ax2 + bx+ c. But every cubic polynomial with leading term x3 and coefficients
in R has a root in R! This is a consequence of the Intermediate Value Theorem because the graph of
such a cubic polynomial (unlike a quadratic polynomial) shoots off both arbitrarily high up positive and
arbitrarily low down negative (think about the graph of y = x3, for instance). To be precise, since x3

dominates the other terms ax2, bx, and c by a lot in absolute value when |x| is large, f(x) is very large for
large x and is very negative for very negative x. By the Intermediate Value Theorem from single-variable
calculus, therefore there must be a zero of f between those extremes (positive and negative values of f ).
Such a zero is exactly an eigenvalue.

So R has an eigenvalue λ for some eigenvector v. The effect of R on the line ℓ = span(v) is multi-
plication by λ. Hence, the effect of R on this line is to alter length by the factor |λ|, so |λ| = 1 since R
is length-preserving. That is, λ = ±1. If λ = 1 then ℓ is a line on which the effect of R is to do nothing.
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We claim that in such cases R is a rotation around the axis ℓ. Since R is angle-preserving, it preserves
the property of being orthogonal to ℓ. Hence, for the plane ℓ⊥ through 0 perpendicular to ℓ, R carries
ℓ⊥ into itself. The resulting effect of R on that plane is linear and length-preserving, hence also a “rigid
motion”, and an argument with determinants shows that it is also orientation-preserving on ℓ⊥ because R
is orientation-preserving on R3 and on ℓ (where it does nothing). Consequently (please convince yourself
of this), on ℓ⊥ the effect of R must be rotation through some angle θ. Since every 3-vector is a sum of a
vector in ℓ and a vector in the perpendicular plane ℓ⊥ (Theorem 6.2.4), by applying R to such a sum we
see that (when λ = 1) R is exactly the rotation around ℓ by the angle θ!

What if λ = −1? In such cases the linear effect of R on the plane ℓ⊥ is certainly orthogonal (since R
is orthogonal on R3) and it is orientation-reversing (by an argument using multiplicativity of determinants
and the fact that R is orientation-preserving on R3 but orientation-reversing on the line ℓ perpendicular to
that plane, as R acts on ℓ through multiplication by λ = −1). Hence, the effect of R on the plane ℓ⊥ has
determinant −1. In particular, if we choose a basis of this plane to express the linear effect of R on it in
terms of a 2 × 2 matrix B, the quadratic characteristic polynomial of B has constant term det(B) = −1.
By the quadratic formula, any quadratic polynomial of the form x2 + ax − 1 has two different roots
in R because the discriminant a2 − 4(−1) = a2 + 4 is always positive (regardless of the value of a).
Such different roots λ′, λ′′ for the characteristic polynomial of B are different eigenvalues for B, and
corresponding eigenvectors are nonzero vectors v′,v′′ ∈ ℓ⊥ satisfyingRv′ = λ′v′ andRv′′ = λ′′v′′. Thus,
λ′ and λ′′ are different eigenvalues of R. But we have already seen that the only possible eigenvalues of R
are ±1, so one of λ′ or λ′′ must be 1! So even when λ = −1, we found that 1 still occurs as an eigenvalue
for R (along another line, located in the plane ℓ⊥). Hence, we can run the earlier “λ = 1” argument using
that line in place of ℓ to get the desired conclusion.

In Theorem E.4.5 we saw that the linear independence of n vectors in Rn is characterized by the non-
vanishing of the determinant of the n×n matrix whose columns are those vectors. This has an interesting
application to higher-degree curve fitting to a collection of points, also called polynomial interpolation.
The classic result on polynomial interpolation is:

Theorem E.5.4 (Lagrange Interpolation). Given d + 1 different numbers x1, . . . , xd+1 and d + 1 values
y1, . . . , yd+1, there is exactly one polynomial f(x) = a0 + a1x+ · · ·+ adx

d of degree at most d for which

f(x1) = y1, f(x2) = y2, . . . , f(xd+1) = yd+1.

In other words, there is exactly one such f whose graph passes through (x1, y1), (x2, y2), . . . , (xd+1, yd+1).

Note that we do not make any assumption of distinctness among the yj’s (only for the xi’s). In the case
d = 1, the result holds because there is exactly one line through 2 different points. For many applications,
one needs to go further and design efficient algorithms to construct f from the given data. There are a
variety of ways to do this (an explicit formula for f is due independently to Waring and Lagrange, though
it isn’t so useful on a computer when d is large), and here we want to discuss the role of a remarkable
determinantal identity in its proof:

Theorem E.5.5 (Vandermonde’s determinant). For any numbers x1, . . . , xd+1, we have
∣∣∣∣∣∣∣∣

1 x1 x21 · · · xd1
1 x2 x22 . . . xd2
...

...
... . . . ...

1 xd+1 x2d+1 · · · xdd+1

∣∣∣∣∣∣∣∣
=

∏

1≤i<j≤d+1

(xj − xi),

so if the xi’s are pairwise different then this determinant is nonzero and hence the matrix is invertible.

(In this result, the notation
∏

– capital Greek “P ” – is shorthand for “product” in the same way that∑
– capital Greek “S” – is shorthand for “sum”.)
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As a special case of Theorem E.5.5, if d = 2 then the result is asserting the formula
∣∣∣∣∣∣

1 x1 x21
1 x2 x22
1 x3 x23

∣∣∣∣∣∣
= (x2 − x1)(x3 − x1)(x3 − x2).

For those who are interested, a short proof of the general case of Theorem E.5.5 via row and column
operations (using induction on d) is given on the Wikipedia page for “Vandermonde matrix” (the name for
the matrix whose determinant is being considered in Theorem E.5.5).

The Vandermonde matrix is used in algorithms that perform rapid evaluation of a given polynomial at
many points, and is very useful for the “inverse problem” of polynomial interpolation. More specifically,
the conditions f(xi) = yi in Theorem E.5.4 amount to a system of equations

a0 + a1x1 + · · ·+ adx
d
1 = y1

a0 + a1x2 + · · ·+ adx
d
2 = y2

...

a0 + a1xd+1 + · · ·+ adx
d
d+1 = yd+1

which can be written in vector form as



1 x1 x21 · · · xd1
1 x2 x22 . . . xd2
...

...
... . . . ...

1 xd+1 x2d+1 · · · xdd+1







a0
a1
...
ad


 =




y1
y2
...

yd+1


 .

Since the xi’s are pairwise different, so the (d+1)× (d+1) matrix A on the left is invertible by Theorem
E.5.5, we can solve for the ai’s in terms of the yj’s, namely a = A−1y. This establishes Theorem E.5.4.

Remark E.5.6. The problem of polynomial interpolation (i.e., finding a polynomial of controlled de-
gree whose graph passes through a given finite collection of points) arises in a variety of situations. For
instance, it occurs in cryptography for secure multi-party computation (see [DKMSZ]) and Shamir
secret-sharing (see [Sham]), and in coding theory via the Reed–Solomon error-correcting codes (used
in applications as varied as supermarket scanners, QR code readers, and deep space communications).

If we regard x1, . . . , xd+1 as fixed and y1, . . . , yd+1 as varying, it makes sense to ask how the coef-
ficients a0, . . . , ad of the unique f in Theorem E.5.4 depend on the values yi being interpolated. The
formula a = A−1y shows that this dependence is linear, a fact that is very useful to know. (In practice
there are faster ways to compute the aj’s than to use the recipe A−1y inverting the Vandermonde matrix,
but knowing the aj’s depend linearly on the yi’s is useful; this linearity can also be seen in other ways.)

A somewhat different application of the Vandermonde determinant formula arises in higher-degree
curve-fitting (“approximate polynomial interpolation”) as follows. In Section 20.6 we gave a matrix-
algebra method to find the quadratic polynomial ax2 + bx+ c whose graph (among those of all quadratic
polynomials) best fits n given data points (xi, yi). The method required knowing that as long as there are
at least 3 different values among the xi’s (a reasonable assumption, since otherwise the data points would
lie on one or two vertical lines, so it wouldn’t make any sense to seek a quadratic function fitting the data)
then the n-vectors

1 =




1
1
...
1


 , X =




x1
x2
...
xn


 , X′ =




x21
x22
...
x2n



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are linearly independent. (The method we used in Section 20.6 involved a projection into the span of those
three vectors, and we needed to know that these vectors are a basis of their span to ensure the invertibility
of the 3× 3 matrix V⊤V, where V is the n× 3 matrix whose columns are those same three vectors.)

To understand why such linear independence holds when there are at least 3 different values for the
xi’s, it is convenient to consider a more general linear independence claim: if at least d+ 1 of the xi’s are
different from each other then we claim that the n-vectors




1
1
...
1


 ,




x1
x2
...
xn


 ,




x21
x22
...
x2n


 , . . . ,




xd1
xd2
...
xdn




are linearly independent; note that there are d+ 1 such vectors. (For d = 2 this recovers the situation that
arose in the quadratic-fit example in Section 20.6.) Since d + 1 of the xi’s are assumed to be pairwise
different, we can rearrange the xi’s so that that x1, . . . , xd+1 are pairwise different (matching the setup in
Theorem E.5.5, except that now we also have xd+2, . . . , xn).

It isn’t the columns of the (d+1)× (d+1) matrix in Theorem E.5.5 that arise, but rather the columns
of the n× (d+ 1) matrix




1 x1 x21 · · · xd1
1 x2 x22 . . . xd2
...

...
... . . . ...

1 xn x2n · · · xdn


 . (E.5.1)

Theorem E.5.5 ensures that the top (d+ 1)× (d+ 1) submatrix of (E.5.1) is invertible, so the columns of
that (d + 1) × (d + 1) submatrix are linearly independent (by Theorem E.4.5). Thus, it suffices to show
that the linear independence of those d + 1 vectors in Rd+1 implies the linear independence of the d + 1
columns in Rn that appear in (E.5.1).

By writing v1, . . . ,vd+1 ∈ Rn for the columns in (E.5.1), to show they are linearly independent it is
the same (by Theorem 19.1.5) to show that the only way we can have a vanishing linear combination

c1v1 + c2v2 + · · ·+ cd+1vd+1 = 0 (E.5.2)

in Rn is when the coefficients cj all vanish. But such vanishing in Rn implies the corresponding vanishing
in Rd+1 upon focusing on the first d+ 1 entries in these vectors. In other words, if v′

j ∈ Rd+1 is obtained
from vj by chopping off everything after the (d+ 1)th entry then certainly

c1v
′
1 + c2v

′
2 + · · ·+ cd+1v

′
d+1 = 0 (E.5.3)

in Rd+1 as well; note that (E.5.3) has the same coefficients as in (E.5.2). But v′
1, . . . ,v

′
d+1 are exactly

the columns of the matrix that appears in Theorem E.5.5, which we have seen has linearly independent
columns (because x1, . . . , xd are pairwise different). This forces all coefficients cj in (E.5.3) to vanish,
and those are exactly the same as the coefficients in (E.5.2), so those also vanish as desired.

E.6. Change of Variables formula. As a final application of determinants, we discuss how and why
determinants of derivative matrices arise as “fudge factors” when comparing integrals computed relative
to different coordinate systems (e.g., standard coordinates and polar coordinates on R2, or standard co-
ordinates and spherical coordinates on R3). This section is intended for those who have already learned
about integration on regions in R2 and R3, such as from another multivariable calculus course (where the
concept of a derivative matrix is usually not mentioned).
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It is assumed just for this section that the reader knows about integrals of the form
∫

R

f(x, y, z) dV

for regions R in R3 such as a box, a ball, a half-space (such as z ≥ 0), or even R3 itself. Some books
write triple integrals using the notation “

∫∫∫
”, but that is entirely unnecessary; we stick with the shorter

notation of a single integral sign, and shall often write more simply
∫

R

f

when not focused on the explicit evaluation as an iteration of three single-variable integrals. Our aim
is to explain how determinants of derivative matrices extend the scope of comparison formulas for such
integrals computed in different coordinate systems.

We will focus on regions in R3 for concreteness, but the methods we discuss work for integration on
regions in Rn for any n. The generality of Rn for all n is needed in probability theory when one analyzes
relationships among n “random variables” for large n, as occurs in many probabilistic problems. It is also
useful in some parts of physics, and in many parts of mathematics. Before we define what is meant by a
coordinate system on a general region in R3, let’s look at the special case of spherical coordinates:

Example E.6.1. Let B be the ball {x ∈ R3 : ∥x∥ < 7} of radius 7 centered at the origin. Points
P = (x, y, z) of B can be described using spherical coordinates (r, θ, φ) shown in Figure E.6.1 (where the
green sphere has radius ∥P∥ < 7). Here, r < 7 is distance from P to the origin (so r2 = x2 + y2 + z2),
θ is angular measure in the xy-plane, and φ is angular measure from the positive z-axis. In particular,
0 ≤ θ < 2π and 0 ≤ φ ≤ π. In particular, polar coordinates in the xy-plane are (r, θ).

x
y

z

P

r

θ

φ

FIGURE E.6.1. Visualization of spherical coordinates for P at distance r from 0.

We are going to interpret spherical coordinates in terms of a one-to-one correspondence between points
of B and points of a specific rectangular block. Consider the rectangular region

R = {(r, θ, φ) ∈ R3 : 0 < r < 7, 0 < θ < 2π, 0 < φ < π}
in R3 (a block without its faces), and define the spherical coordinate formula ψ : R → B by

ψ(r, θ, φ) = (r cos θ sinφ, r sin θ sinφ, r cosφ). (E.6.1)

Geometric considerations with the picture in Figure E.6.1 show that if we ignore the half-planar slices y =
0, x ≥ 0 in B then every point b that remains is described as ψ(r, θ, φ) for exactly one triple (r, θ, φ) ∈ R.

We say ψ provides a “parameterization” of the ball B by the rectangular block R. Going in reverse
from points b ∈ B (away from where y = 0, x ≤ 0) to points ψ−1(b) = (r(b), θ(b), φ(b)) ∈ R is exactly
the usual notion of spherical coordinates. ■
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Now consider a general region Q in R3. A parameterization of Q amounts to specifying a second
region U in R3 and a differentiable function ψ : U → Q so that, apart from some “thin” pieces of U and
Q that have vanishing volume (such as planar slices), the function ψ has an inverse Q → U that is also
differentiable. Writing ψ(u) = (x1(u), x2(u), x3(u)) ∈ Q for u ∈ U , we call ψ a parameterization of
U much as the formula (E.6.1) describes points of a ball B by points of a rectangular block R. Writing
ψ−1(q) = (y1(q), y2(q), y3(q)) for q ∈ Q, we call the functions y1, y2, y3 : Q → R a coordinate system
since Example E.6.1 shows how spherical coordinates on a ball centered at 0 is a special case of this.

Our goal is to compute the integral
∫
Q
f of a given function f over the region Q as an integral∫

U
F of an associated function F over the “parameter region” U . This is sometimes described as “com-

puting
∫
Q
f in the y-coordinates”. The crucial point is that F is not “f in y-coordinates”: generally

F (y1(q), y2(q), y3(q)) ̸= f(q), or in other words generally F (u) ̸= f(ψ(u)). To formulate what to use for
F : U → R, and why f(ψ(u)) doesn’t work, let’s return to the case of spherical coordinates.

In the study of 3-dimensional integrals in multivariable calculus using spherical coordinates, an im-
portant result is that if f(x, y, z) is some function and

f̃(r, θ, φ) = f(r cos θ sinφ, r sin θ sinφ, r cosφ)

is the same function written in spherical coordinates then
∫

B

f =

∫ π

0

∫ 2π

0

∫ 7

0

f̃(r, θ, φ)r2 sinφdr dθ dφ =

∫

R

f̃(r, θ, φ)r2 sinφ, (E.6.2)

where B is a ball of radius 7 centered at 0 and R is the corresponding rectangular block in terms of
(r, θ, φ). In other words, the integrals of f over B and f̃ over R don’t agree, but instead we have to use the
product of f̃ by the “fudge factor” r2 sinφ. The need for this factor is explained by geometric arguments
in multivariable calculus books, and we’re going to see that the language of derivative matrices allows us
to carry out a similar argument for quite general 3-dimensional coordinate systems.

First we express the fudge factor in another way. For ψ as defined by (E.6.1), direct calculation gives

(Dψ)(r, θ, φ) =



cos θ sinφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r sin θ cosφ r cos θ sinφ
cosφ −r sinφ 0


 .

Going through some careful algebra using that sin2 θ + cos2 θ = 1 and sin2 φ+ cos2 φ = 1, by expanding
determinants along the bottom row one finds that

det(Dψ)(r, θ, φ) = r2 sinφ > 0.

Hence, we can rewrite (E.6.2) in a form that is better-suited to going beyond spherical coordinates: since
f̃ = f ◦ ψ, it says ∫

B

f =

∫

R

(f ◦ ψ)| detDψ|

where the integral on each side is the conventional 3-dimensional integral for a function on a region in R3

(the regions being the ball B and the rectangular block R). Here is the version for a general region and
any coordinate system on it:

Theorem E.6.2 (Change of Variables). Let f : Q → R be a function on a region Q in R3, and let
φ : U → Q be a parameterization: a differentiable function that has a differentiable inverse away
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from some volume-0 parts of U and Q (such as away from some planar slices). Then∫

Q

f =

∫

U

(f ◦ φ)| detDφ|.

If φ in coordinates is written as

φ(y1, y2, y3) = (x1(y), x2(y), x3(y))

then the determinant factor is det(∂xi/∂yj); this is called the Jacobian factor. We now explain informally
where the Change of Variables formula comes from, as an elegant synthesis of the approximation property
of derivative matrices and of the volume interpretation of determinants discussed in Section E.3. The
method we’ll use carries over without any changes to the case of regions in Rn for any n.

First we’ll approximate integrals by Riemann sums, and then use derivative matrices to approximate
non-linear functions by linear ones. We ignore the volume-0 regions where φ fails to have an inverse or
where some differentiability in the coordinate system or the parameterization break down. If one is careful
with the approximations and the bad volume-0 slices then the informal argument below can be turned into
a complete argument.

Let B1, B2, . . . be a collection of small boxes that cover U and overlap only along their faces (which
have volume 0). Then the φ(Bj)’s cover U = φ(Q) and have volume-0 overlaps, so integrals over Q can
be approximated by Riemann sums involving the φ(Bj)’s. Letting bj ∈ Bj be a point in each box, so
qj = φ(bj) is a point in Qj = φ(Bj), we have

∫

Q

f ≈
∑

j

f(qj) vol(Qj) =
∑

j

f(φ(bj)) vol(φ(Bj)) =
∑

j

(f ◦ φ)(bj) vol(φ(Bj)). (E.6.3)

Now comes the key point: how does the volume of φ(Bj) compare to the volume of Bj? Since Bj is
a small box containing the point bj , for points x ∈ Bj we can apply the linear approximation property of
the derivative matrix (Dφ)(bj) at bj:

φ(x) ≈ φ(bj) + ((Dφ)(bj))(x− bj).

Letting x run through the points of the boxBj , we conclude that at the level of small 3-dimensional regions

φ(Bj) ≈ φ(bj) + ((Dφ)(bj))(Bj − bj) (E.6.4)

with Bj − bj denoting the output of subtracting bj from all points of Bj .
The translation by φ(bj) on the right side in (E.6.4) has no effect on volume, so

vol(φ(Bj)) ≈ vol(((Dφ)(bj))(Bj − bj)).

But for any linear transformation L and region R in R3, we have vol(L(R)) = | detL| vol(R)! Applying
this with L = (Dφ)(bj) and R = Bj − bj , we get

vol(φ(Bj)) ≈ | det(Dφ)(bj)| vol(Bj − bj) = | det(Dφ)(bj)| vol(Bj),

where the final equality uses that Bj and its translate Bj − bj have the same volume. Plugging this final
approximation into the right side of (E.6.3), we get

∫

Q

f ≈
∑

j

(f ◦ φ)(bj)| det(Dφ)(bj)| vol(Bj).

The right side is exactly a Riemann sum approximation to
∫
U
(f ◦ φ)| detDφ| using the boxes Bj that

cover U . Taking the boxes ever smaller makes the approximations even better, so passing to the limit over
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tinier and tinier boxes Bj turns the approximations into an equality:∫

Q

f =

∫

U

(f ◦ φ)| detDφ|,

as desired.
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“Algebra is generous; it gives more than it is asked.”
J-B. d’Alembert

F. The cross product (optional)

F.1. Introduction. This appendix discusses a special operation on 3-vectors that answers:
Question: Is there a way to assign to every pair of 3-vectors v1 and v2 a 3-vector perpendicular
to each of them in a way that (i) depends linearly on each of v1 and v2 when the other is fixed,
and (ii) is rotationally invariant (i.e., if R is a rotation of R3 fixing the origin, the vector assigned
to v1 and v2 is carried by R to the vector assigned to R(v1) and R(v2))?

It turns out that there is essentially only one such assignment, up to an overall scaling factor; it is called the
cross product. Everything except the statement of Theorem F.4.1 and the proofs in Section F.4 should make
sense after learning the linear algebra material in Part I of this book if you take on faith some properties
of determinants discussed in Appendix E (the relevant case here is n× n determinants for n = 2, 3). The
full details build upon Appendix E and a variety of linear algebra topics up through Chapter 20.

The cross product is ubiquitous in certain physics and engineering applications (e.g., angular momen-
tum, and the force on a charged particle due to a magnetic field), where it is traditional to use the notation

i =



1
0
0


 , j =



0
1
0


 , k =



0
0
1


 ,

which we shall use in this appendix and call the standard basis of R3. Here is the visualization of the
standard basis that is always used (by both left-handed and right-handed people).

i

j

k

FIGURE F.1.1. The universally accepted standard basis {i, j,k} in all scientific work

Just as it is more convenient to set up the dot product as we did in this book based on an initial
algebraic definition (that was linked to a lot of geometry), it will be more convenient for us to begin with
an algebraic recipe as the initial definition of the cross product. We will compute it in some examples,
and then explore it in various ways via properties of 2 × 2 and 3 × 3 determinants and results about dot
products and orthogonality from the main text.

Many treatments of the cross product begin with a very geometric definition in terms of a “right-hand
rule”. Justifying the link between the algebraic and geometric perspectives requires knowing that the
algebraic perspective behaves well with respect to rotations around the origin, which is not at all apparent.
One main goal of this appendix is to explain this good behavior, and another is to show that the cross
product is the unique answer to the Question above (up to an overall scaling factor).
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F.2. Definition and basic calculations.

Definition F.2.1. For 3-vectors v =



v1
v2
v3


 and w =



w1

w2

w3


, the cross product v ×w is defined to be

the 3-vector

v ×w =



v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1


 = det

[
v2 v3
w2 w3

]
i− det

[
v1 v3
w1 w3

]
j+ det

[
v1 v2
w1 w2

]
k.

Due to the sign in front of the j-coefficient, the expression for v×w in terms of i, j, and k formally
looks like the expansion along the first row of a 3× 3 “determinant”

v ×w = det




i j k
v1 v2 v3
w1 w2 w3


 (F.2.1)

with v written along the second row and w written along the third row. This 3 × 3 “determinant”
shouldn’t be interpreted too literally, since the entries of a determinant must be numbers and in (F.2.1)
the entries in the top row are vectors. Nonetheless, (F.2.1) is a very convenient way to remember the
formula for the cross product when performing calculations.

A more visual description of v×w called the “right-hand rule” will be given in Proposition F.4.3. As
an illustration of (F.2.1), for v = 2i− 4j+ k and w = 3i+ 2j+ 1k we compute

v ×w = det



i j k
2 −4 1
3 2 1


 = det

[
−4 1
2 1

]
i− det

[
2 1
3 1

]
j+ det

[
2 −4
3 2

]
k

= −6i+ j+ 18k.

A bit of experience computing cross products by hand will demonstrate how easy it is to lose minus signs
and screw up such calculations.

We call v ×w a “product” for the same reason that matrix multiplication is considered to be a “prod-
uct”: it is distributive over addition. This is part of the following result.

Proposition F.2.2. For any v,v′,w ∈ R3, the following hold:
(i) (distributive over vector addition) (v+v′)×w = v×w+v′×w and w×(v+v′) = w×v+w×v′,

(ii) (compatibility with scalar multiplication) for any scalar c, (cv)×w = c(v ×w) = v × (cw),
(iii) (anti-commutative) w × v = −(v ×w),
(iv) v × v = 0.

The usefulness of the cross product in scientific applications and its status as the (essentially) unique
answer to the Question at the start of this appendix are the primary reasons for interest in this concept.
Properties (iii) and (iv) may be bothersome, but something much more distressing will arise later: the
failure of associativity (see Proposition F.3.2 and the identity (F.3.4)).

PROOF. One approach is via algebraic manipulations with the definition of the cross product. We now
explain an alternative perspective via properties of general determinants discussed in Appendix E.

Properties (i) and (ii) express the fact that determinants are linear in any row when the other rows
are held fixed (and you can take your pick as to whether to use that fact with 2 × 2 determinants in the
definition of v ×w or with 3× 3 determinants via (F.2.1)).
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Swapping the roles of v and w in the definition of the cross product corresponds to swapping the rows
in the 2 × 2 determinants in the definition, or alternatively in the formal 3 × 3 “determinant” in (F.2.1).
Hence, the sign-swapping property of determinants under a change of rows explains (iii). Property (iv)
expresses that determinants vanish when two rows coincide (or alternatively we can set w = v in (iii) to
get that the vector v × v is its own negative and so must vanish!). □

Example F.2.3. The linearity of v ×w in each of v and w when the other is fixed is useful for computa-
tions. For example, if v = 2i− 5j+ 3k then

v ×w = (2i)×w + (−5j)×w + (3k)×w = 2(i×w)− 5(j×w) + 3(k×w).

The same holds with (2,−5, 3) replaced by any triple of numbers. ■

This demonstrates that the most essential cross products to know how to calculate are for the standard
basis against anything. But we can also run the linearity argument in the other vector variable: for any
scalars w1, w2, w3 we have

i× (w1i+ w2j+ w3k) = i× (w1i) + i× (w2j) + i× (w3k) = w1(i× i) + w2(i× j) + w3(i× k),

and similarly with “i×” replaced by “j×” or “k×” everywhere. In other words, what determines every-
thing are the cross products among the standard basis vectors (and then linearity takes care of the rest).
But Proposition F.2.2(ii) tells us that the self-products i × i, j × j, and k × k all vanish, so we can focus
attention on cross products among distinct basis vectors. And by Proposition F.2.2(i) we only need to
consider such cross products in one of the two orders; e.g., one of i× j or j× i (the other is its negative).

So finally, what determines everything are the three cross products

i× j, j× k, i× k.

What are these? Flipping the third one to its negative, we have the following identities (obtained from the
definition, as you should check):

i× j = k, j× k = i, k× i = j. (F.2.2)

The way to remember this is to draw the symbols i, j, k in a circle with arrows pointing around
the circle in alphabetical order like this:

i j

k

FIGURE F.2.1. The trick to remembering cross products among i, j, and k

Whenever we want to form a cross product e× e′ among any two distinct standard basis vectors e and e′,
look for them next to each other in the circle. If the arrow points from e to e′ then e× e′ is the other letter
apart from those two. If the arrow points the other way, take the negative of that. For instance, with i× k
we go against the direction of the arrow linking i and k, so the rule says that i× k = −j (as is indeed the
case, since i× k = −(k× i)). This rule reproduces all equalities in (F.2.2).

Here is an important link between the algebra of the cross product and a geometric interpretation:

Proposition F.2.4 (Lagrange). For any v,w ∈ R3, we have

∥v ×w∥2 = ∥v∥2∥w∥2 − (v ·w)2, (F.2.3)
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and if v and w are nonzero with angle θ ∈ [0, π] between them then

∥v ×w∥ = ∥v∥∥w∥ sin(θ). (F.2.4)

For nonzero v and w and 0 < θ < π, the right side of (F.2.4) is the area of a parallelogram in
R2 formed by vectors with lengths ∥v∥ and ∥w∥ with angle θ between them (since for the base v of
the parallelogram the height has length ∥w∥ sin(θ), as one sees by drawing a picture). So in R3 this
result says that when v and w are not scalar multiples of each other (i.e., 0 < θ < π), the magnitude
of the cross product is the area of the parallelogram formed by v and w in the plane that they span.

PROOF. When v and w are nonzero, we have v ·w = ∥v∥∥w∥ cos(θ), so (F.2.3) is asserting

∥v ×w∥2 = ∥v∥2∥w∥2 − ∥v∥2∥w∥2(cos(θ))2,
or equivalently

∥v ×w∥2 = ∥v∥2∥w∥2(1− (cos(θ))2) = ∥v∥2∥w∥2(sin(θ))2 = (∥v∥∥w∥ sin(θ))2.
Both ∥v×w∥ and ∥v∥∥w∥ sin(θ) are non-negative (here we use that 0 ≤ θ ≤ π to ensure sin(θ) ≥ 0), so
we can pass to the square roots of both sides to obtain ∥v ×w∥ = ∥v∥∥w∥ sin(θ) as desired.

Hence, it remains to establish (F.2.3). To make the algebra as clean as possible, we will rewrite the
goal in terms of dot products, which have useful algebraic properties:

(v ×w) · (v ×w)
?
= (v · v)(w ·w)− (v ·w)(v ·w) = det

[
v · v v ·w
v ·w w ·w

]
.

To establish this result, we are actually going to show something more general, where we allow some of
the equal vectors in this equation to be more general vectors that need not be equal (opening the door
to vector operations that cannot be used in the initial setup with only v and w): we will show for any
3-vectors v1,v2,w1,w2 that

(v1 × v2) · (w1 ×w2)
?
= det

[
v1 ·w1 v1 ·w2

v2 ·w1 v2 ·w2

]
(F.2.5)

If this is proved then by setting w1 = v1 and w2 = v2 we get what we want. The advantage of (F.2.5) is
that it allows us to vary all four vectors, which will enable us to reduce to some special cases in a way that
is not possible to do within the more constrained setting of the case w1 = v1 and w2 = v2.

One approach to proving (F.2.5) is to grind out the algebra with general entries for all four of these
3-vectors. But that is a mess, and there is a better way: much as we used the linearity of cross products
to reduce all cross product calculations to those among distinct members of the standard basis, we can
do something similar with (F.2.5). This is an instance of a powerful technique to establish identities in
linear algebra, by exploiting linearity properties of both sides of a desired formula to reduce to a direct
verification when the vectors involved come from a basis.

Before we carry this out for (F.2.5), let’s explain the general context for the idea. Suppose we have two
expressions f(u1, . . . ,un) and g(u1, . . . ,un) in n general m-vectors (these expressions f and g might be
scalars or vectors in some RN ) and we want to show they are always equal. For instance, in our setting
we could use

f(u1,u2,u3,u4) = (u1 × u2) · (u3 × u4), g(u1,u2,u3,u4) = det

[
u1 · u3 u1 · u4

u2 · u3 u2 · u4

]
.

The key further assumption we make is that both f and g depend linearly on each ui when the other uj’s
are fixed. For instance, in the case n = 4 (as for us) this is the condition that for any a,b, c ∈ Rm and
varying x ∈ Rm, the quantities

f(x, a,b, c), f(a,x,b, c), f(a,b,x, c), f(a,b, c,x)
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all are linear as a function of x, and similarly for g. That certainly holds in our case by inspection of the
specific f and g of interest to us, due to linearity properties of the dot product and cross product in each of
their vector inputs.

General linearity trick. The key observation is that in such a situation, to check that f = g it is
enough to do so when the vector inputs u1, . . . ,un all come from within a fixed basis {e1, . . . , em} of
Rm. Let’s explain why this works. Informally, the linearity properties of f and g in each of their inputs
allows us to reconstruct their values on any (u1, . . . ,un) in the same way from their values on such n-
tuples of uj’s coming from the chosen basis of ei’s. To make this precise while keeping the notation under
control, let’s see it in the case n = 4 that we need: if we write u1 =

∑m
i=1 aiei then

f(u1,u2,u3,u4) =
m∑

i=1

aif(ei,u2,u3,u4), g(u1,u2,u3,u4) =
m∑

i=1

aig(ei,u2,u3,u4).

Thus, if we knew f = g on all 4-tuples of vector inputs whose first vector is in the basis of ei’s, then the
right sides in both of these equations would be equal term by term, hence the entire right sides would be
equal to each other, and so the left sides would be equal! Hence, for the purposes of proving f = g, we
can limit attention to 4-tuples of vectors (u1,u2,u3,u4) for which u1 is among the ei’s.

But now that’s we’ve got u1 to be among the ei’s, we can run the exact same linearity argument in the
second slot, to reduce to checking equality when also u2 is among the ei’s (in addition to u1 being of this
type). And so on, with u3 and finally u4. That is the general linearity trick.

Coming back to our situation, it is enough to prove (F.2.5) when each of the four vectors belongs to
the standard basis i, j, k of R3. To avoid too much case-checking, we make some more observations.
First, we can assume v1 ̸= v2 and w1 ̸= w2 since if either equality holds then the right side of (F.2.5) is a
determinant with equal rows or equal columns, while the left side vanishes since one of the cross products
is a self-product and so is equal to 0. In particular, at least two members of the standard basis must appear
among these four vectors, so at least one among i or j must appear. Second, swapping the roles of v1 and
v2 in (F.2.5) causes each side to be multiplied by −1, as we see by inspection, and likewise for swapping
the roles of w1 and w2. Finally, if you look closely at each side of (F.2.5) you’ll see that if we swap both
v1 and w1 as well as v2 and w2 then the value of each side is unaffected (the matrix on the right is flipped
but its determinant is unaffected).

If k doesn’t occur anywhere then the rearranging discussed above (which has the same effect on both
sides and so is harmless for our needs) brings us to the case v1 = i = w1 and v2 = j = w2, in which case

(F.2.5) says 1 ?
= det

[
1 0
0 1

]
, which is true. Hence, we can assume k does occur, so by further rearranging

as above we can arrange that either v1 = i or v1 = j, and also that v2 = k. In other words, (F.2.5) in these
cases is saying that for w and w′ distinct in the standard basis i, j, k, we have

−j · (w ×w′) = det

[
i ·w i ·w′

k ·w k ·w′

]

and

i · (w ×w′) = det

[
j ·w j ·w′

k ·w k ·w′

]
.

We’ll prove these now for any w,w′ ∈ R3. The first of these two desired equalities says that the negative
of the second coefficient of w×w′ is equal to w1w

′
3 − w′

1w3 = w1w
′
3 − w3w

′
1, which is exactly the 2× 2

determinant showing up (with a sign) as the second coefficient in the definition of w ×w′. The second of
these amounts to the fact that the expression w2w

′
3 − w′

2w3 = w2w
′
3 − w3w

′
2 is the first coefficient in the

definition of w ×w′.
□
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Remark F.2.5. Upon learning about the cross product on R3, it is natural to wonder if it has an analogue
on Rn for n ̸= 3. The answer turns out to be essentially “no”: it can be proved that an operation on Rn

satisfying several specific properties of the cross product (among the ones discussed above) only exists
for n = 3 and n = 7. There are a variety of formulations of this result, and an exposition of the proof
of one such formulation that assumes no background beyond the level of this course is given in [Wal].
The cross product on R3 turns out to be very closely related to a special 4-dimensional “number system”
called the quaternions that is extraordinarily useful in work with rotational dynamics in both computer
graphics and aerodynamics. The exotic cross product on R7 is related to a much less useful and quite
bizarre 8-dimensional “number system” called the octonions.

F.3. Triple product formulas. Having discussed some basic algebraic computations, we now turn to
more sophisticated properties of the cross product. This will pave the way to its geometric significance,
which is not at all evident from the initial algebraic definition (much as the initial definition of the dot
product doesn’t make evident at all its geometric meaning in terms of the cosine of the angle between two
3-vectors, though admittedly we were motivated to define the dot product in general based on deducing
the formula (2.1.3) for 3-vectors as a consequence of the Law of Cosines).

The key thing which will get all subsequent considerations off the ground is the following link between
cross products, dot products, and 3× 3 determinants; it is called the scalar triple product.

Theorem F.3.1 (Scalar triple product). For any 3-vectors u, v, and w,

u · (v ×w) = det



u1 u2 u3
v1 v2 v3
w1 w2 w3


 .

Moreover:
(i) v ×w is perpendicular to both v and w,

(ii) v ×w = 0 precisely when one of v or w is a scalar multiple of the other.
The triple product in this result is a dot product, so it is a scalar (and not a vector).

PROOF. To establish the determinantal expression for the scalar triple product, we first recall the defi-
nition of v ×w:

v ×w = det




i j k
v1 v2 v3
w1 w2 w3


 = det

[
v2 v3
w2 w3

]
i− det

[
v1 v3
w1 w3

]
j+ det

[
v1 v2
w1 w2

]
k.

Since u = u1i+ u2j+ u3k, we then have

u · (v ×w) = u1 det

[
v2 v3
w2 w3

]
− u2 det

[
v1 v3
w1 w3

]
+ u3 det

[
v1 v2
w1 w2

]
,

and this is exactly the desired determinant (expanded along its first row). This establishes the scalar triple
product formula.

To prove (i), set u to be v or w in the scalar triple product formula. The 3 × 3 determinant has its
first row equal to either the second or third row, so it vanishes by general properties of determinants. This
establishes (i).

For (ii), we have to show two things: if one of v or w is a scalar multiple of the other then v×w = 0
and otherwise v × w ̸= 0. When one of v or w is a scalar multiple of the other then in each 2 × 2
determinant appearing as a coefficient in the definition of v×w one of the rows is a scalar multiple of the
other, so the coefficients all vanish. Hence, v ×w = 0 in such cases.
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Now consider the case in (ii) when neither of v or w is a scalar multiple of the other. Then the pair of
vectors {v,w} span a plane and so extends to a basis of R3. Letting {v,w,u} be such a basis, the matrix
having these as their columns has nonzero determinant (Theorem E.4.5). But determinants are unaffected
by passing to the transpose matrix (turning columns into rows), and change at most by a sign when we
rearrange rows and columns, so we conclude that the determinant in the scalar triple product formula for
u · (v × w) is nonzero, so certainly the vector v × w cannot be 0 (or else its dot product against this
specific u would vanish, which we have seen is not the case). □

The dot product of two n-vectors is a scalar, so for n > 1 it does not make sense to form a “triple dot
product” v · w · x. But the cross product of two 3-vectors is again a 3-vector, so it does make sense to
multiply three together, say u× (v ×w). (Don’t ignore the parentheses in this expression. This will be a
real issue quite soon.) We want to explore what this “triple vector product” could be. To understand how
it behaves, we first consider the more typical case that neither of v or w is a scalar multiple of the other,
so their span is a plane.

We have shown that v×w is always perpendicular to v and w, and it is nonzero by Theorem F.3.1(ii),
so it is a nonzero vector on the line perpendicular to the plane in R3 spanned by v and w and thus spans
that line: span(v×w) = (span(v,w))⊥. But u× (v×w) is perpendicular to v×w (even better, u× x
is perpendicular to both u and x for any x ∈ R3), so

u× (v ×w) ∈ (v ×w)⊥ = ((span(v,w))⊥)⊥ = span(v,w)

(the final equality is the visual fact that if P is a plane through the origin in R3 and L is the line through
0 perpendicular to P then L⊥ = P ). In other words, if neither of v or w is a scalar multiple of the other
then

u× (v ×w) = av + bw (F.3.1)
for some scalar coefficients a and b. The same holds when one of v or w is a scalar multiple of the other:
then v ×w = 0 and hence choosing both coefficients to be 0 works, though it will turn out that there is a
“better” choice of coefficients than using 0’s for all such cases.

Describing the triple vector product as in (F.3.1) brings us to a realization: u × (v × w) is a linear
combination of v and w, but if we parenthesize the other way then we obtain (u×v)×w = −(w×(u×v))
that is a linear combination of u and v. So typically these two “triple vector products” are different since
the plane spanned by v and w is generally different from the plane spanned by u and v. For example,

i× (j× (ai+ bj+ ck)) = i× (−ak+ ci) = aj

and
(i× j)× (ai+ bj+ ck) = k× (ai+ bj+ ck) = −bi+ aj,

so choosing a, b, c with b ̸= 0 gives plenty of examples where the outcomes are different.
To summarize: the cross product is not associative. In contrast, though matrix multiplication is not

commutative, fortunately it is associative (a fact we use all the time when working with matrix products).
A lack of associativity does show up in other parts of algebra, such as exponentiation: a(bc) ̸= (ab)c, and a
failure to recognize this causes many algebraic errors by students when working with exponents.

The following result gives simple universal formulas for the scalar coefficients in (F.3.1), making the
failure of associativity for the cross product quite explicit:

Proposition F.3.2. For any u,v,w ∈ R3, the following hold:

u× (v ×w) = (u ·w)v − (u · v)w
and

(u× v)×w = (u ·w)v − (v ·w)u.
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PROOF. The second formula is a reformulation of the first by rewriting (u×v)×w as −(w×(u×v))
and then renaming vectors suitably. So we focus on the first formula. To establish it, one approach is to
write out both sides as explicit algebraic expressions in all of the vector entries and hope for the best.
This works, but is tedious and not so enlightening. We will once again use the “general linearity trick”
employed in the proofs of Proposition F.2.4. Both sides of the desired identity are linear in each of u,v,w
when the other two are fixed, so it suffices to treat the case when each of u,v,w belong to the standard
basis.

If v = w then the two sides both vanish, so we can assume v and w are distinct members of the
standard basis. Swapping the roles of v and w has the effect of multiplying both sides by −1, so it is
enough to consider when (v,w) is in each of the following three cases: (i, j), (j,k), (k, i). In particular,
v × w is the other member of the standard basis of R3. If u is distinct from both v and w (i.e., it is the
other member of the standard basis of R3, which is v × w due to the three cases for (v,w) that we are
now considering), then both dot products on the right side vanish and the left side also vanishes since it is
the cross product of v ×w against itself. Hence, for each (v,w) it remains to treat the cases u = v and
u = w. Thus, one of the two dot products on the right side vanishes and the other is equal to 1, so we
need to prove for each of the pairs (v,w) that

v × (v ×w) = −w, w × (v ×w) = v. (F.3.2)

Since {v,w,v × w} is the standard basis in all of these cases (in some arrangement of those vectors),
certainly these desired equalities hold up to a sign since the cross product of any two standard basis vectors
of R3 is the other one up to a sign.

Thinking in terms of the cyclic pattern in Figure F.2.1, since {v,w,v×w} is a triple that goes around
the circle in the direction of the arrows, the same holds for {w,v × w,v} and {v × w,v,w} (these
are each a tour around the circle in the same direction as the arrows, just beginning at a different point).
Hence, by that cyclic rule we have

w × (v ×w) = v, (v ×w)× v = w.

The first of these is one of the two desired identities in (F.3.2), and the second yields the other of the
desired identities in (F.3.2) upon negating both sides:

v × (v ×w) = −((v ×w)× v) = −w.

□

We immediately obtain the following consequence that illuminates the failure of associativity of the
cross product.

Corollary F.3.3. The cross product satisfies the Jacobi identity: all 3-vectors u,v,w satisfy

(u× v)×w + (v ×w)× u+ (w × u)× v = 0. (F.3.3)

Equivalently, by the anti-commutativity of the cross product,

(u× v)×w − u× (v ×w) = v × (w × u). (F.3.4)

If the cross product were associative then the left side of (F.3.4) would always equal 0, so the right
side of (F.3.4) tells us exactly when associativity of the cross product fails: when v × (w × u) ̸= 0.

PROOF. We apply the second equality in Proposition F.3.2 three times:

(u× v)×w = (u ·w)v − (v ·w)u,

(v ×w)× u = (v · u)w − (w · u)v,
(w × u)× v = (w · v)u− (u · v)w.
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Adding all three of these, on the right side everything cancels out (since the dot product is commutative).
□

The way to remember the left side of (F.3.3) is that in whatever order the three vectors are put for one
of the triple products, we then “cycle around” to make the other two triple products in the total sum that
vanishes, just as we did in Figure F.2.1. The formulation (F.3.3) is symmetric in how it treats the three
vectors, whereas (F.3.4) treats them asymmetrically (so (F.3.3) is easier to remember).

F.4. Geometric interpretation. We have established enough features of the cross product that we can
now prove a crucial geometric property that is not apparent from the initial algebraic definition.

Theorem F.4.1. If A is any 3× 3 matrix, then for any 3-vectors v and w,

A⊤((Av)× (Aw)) = (det(A))(v ×w).

In particular, if A is orientation-preserving and orthogonal (so A⊤ = A−1 and det(A) = 1) then

(Av)× (Aw) = A(v ×w).

PROOF. We use the same technique as in the proofs of Propositions F.2.4 and F.3.2: it is enough to
check that both sides agree when v and w come from the standard basis. If v = w then both sides vanish
(since the cross product of any 3-vector against itself vanishes), so we can focus on the cases when v,w
are distinct members of the standard basis. The two sides behave the same way when swapping the roles
of v and w (each side is multiplied by −1), so it is really enough to treat just three cases:

(v,w) = (i, j), (j,k), (k, i).

In these three cases, v ×w is the other vector in the standard basis. Also, Ai is equal to the first column
a1 of A, and likewise Aj is equal to the second column a2 of A and finally Ak is equal to the third column
a3 of A. Hence, we need to prove the three identities

A⊤(a1 × a2) = (det(A))k, A⊤(a2 × a3) = (det(A))i, A⊤(a3 × a1) = (det(A))j

or more explicitly

A⊤(a1 × a2) =




0
0

det(A)


 , A⊤(a2 × a3) =



det(A)

0
0


 , A⊤(a3 × a1) =




0
det(A)

0


 . (F.4.1)

The rows of A⊤ from top to bottom are the columns of A from left to right. In other words, in terms
of rows we have

A⊤ =




a1

a2

a3


 ,

so via the language of matrix-vector products we have

A⊤(ar × as) =




a1

a2

a3


 (ar × as) =



a1 · (ar × as)
a2 · (ar × as)
a3 · (ar × as)


 (F.4.2)

for any 1 ≤ r, s ≤ 3.
Taking r ̸= s, ar × as is perpendicular to ar and as, so the rth and sth entries on the right side of

(F.4.2) vanish. In each case in (F.4.1), this establishes the correctness of the two vanishing entries. The
remaining entry in each case is a scalar triple product:

a3 · (a1 × a2), a1 · (a2 × a3), a2 · (a3 × a1)
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for the respective cases in (F.4.1). Thus, our task comes down to proving that each of these scalar triple
products is equal to det(A). By Theorem F.3.1, these scalar triple products are the determinants of the
following respective 3× 3 matrices with rows as indicated:




a3

a1

a2


 ,




a1

a2

a3


 ,




a2

a3

a1


 .

The second of these three matrices is exactly A⊤, whose determinant is the same as that of A. The first is
obtained from A⊤ via two row swaps: swap a3 in the third row with the second row, and then with the first
row. Thus, its determinant is obtained from det(A⊤) = det(A) via two sign changes, which is no change
at all. Finally, the third matrix is the analogous double swap of rows to move the first row to the bottom,
so it too has the same determinant.

The desired identity for a general 3 × 3 matrix A has been established, so now consider the special
case when A is an orientation-preserving orthogonal matrix. Then A⊤ = A−1 and det(A) = 1, so the
established identity says A−1((Av) × (Aw)) = v × w, so multiplying both sides on the left by A gives
(Av)× (Aw) = A(v ×w), the desired result for such A. □

Since it is somewhat of a mouthful to keep saying “orientation-preserving rigid motion fixing the
origin”, for the rest of this appendix we use the following familiar terminology.

Definition F.4.2. A rotation around the origin is a function R : R3 → R3 that fixes the origin,
preserves length, and preserves orientation.

By Theorem 20.4.1 and Corollary E.4.4, these are precisely the effect of orthogonal 3×3 matrices
with determinant equal to 1, and by Remark E.5.3 these always arise as rotation by some angle around
a line through the origin (thereby explaining the terminology).

The refined formula A(v ×w) = (Av)× (Aw) in Theorem F.4.1 for rotations A around the origin is
not true for general 3× 3 matrices A. For example, if

A =



1 0 1
0 1 0
0 0 1


 , v = i, w = j

then A(v × w) = Ak = i + k whereas (Av) × (Aw) = i × j = k. In fact, Theorem F.4.1 can be used
to show that for invertible 3 × 3 matrices A, if the equality A(v × w) = (Av) × (Aw) holds for every
v,w ∈ R3 then A must be orthogonal with determinant 1.

Finally, after all of our effort, we can establish that v × w (and not merely its length) is given by a
purely geometric recipe when neither of v or w is a scalar multiple of the other (when one of them is a
scalar multiple of the other we have v ×w = 0 by Proposition F.2.2(iv)).

Proposition F.4.3 (Right-hand Rule). Consider v,w ∈ R3 for which neither is a scalar multiple of
the other (so v,w ̸= 0). The vector v ×w (whose magnitude is the area of the parallelogram in the
plane span(v,w) with corners at 0,v,w,v +w) lies on the line L through the origin perpendicular
to the plane span(v,w), and its direction on L is given by the “right-hand rule” defined as follows:

Make your right hand flat, point the fingers in the direction of v, and rotate the hand so that
w is pointing out of your palm. Raise your right thumb so it is in the “hitchhiker” position.
Then v ×w points in the same direction along L as your right thumb.
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PROOF. The right-hand rule is unaffected by rotations of space fixing the origin. Such motions are
given by 3 × 3 orthogonal matrices with determinant equal to 1 (Theorem 20.4.1 and Corollary E.4.4),
and by Theorem F.4.1 any such linear transformation A satisfies A(v × w) = (Av) × (Aw). Hence,
to establish the right-hand rule for computing cross products of 3-vectors v and w for which neither is a
scalar multiple of the other, it suffices to check this after first applying any rotation around the origin to v
and w together.

Here are some such motions. The plane span(v,w) through the origin can be spun around the origin
in space so that it becomes the xy-plane. We then rotate this plane around the origin so that v points along
the positive x-axis. Then the vector w in this plane, which is not a scalar multiple of v, has either positive
or negative y-coordinate. Spin the plane in space by 180° around the x-axis if necessary so that w has
positive y-coordinate.

We have reduced our general task to a very special case: now v = ai with a > 0 and w = bi+ cj with
c > 0, so span(v,w) is the xy-plane and the normal line to this through the origin is the z-axis. It remains
to establish the right-hand rule in our special situation. Since ac > 0, so v×w = (ai)× (bi+ cj) = (ac)k
points along the positive z-axis, we just have to check that when the right-hand rule is applied to v = ai
and w = bi + cj with a, c > 0 then the outcome is the positive z-axis rather than the negative z-axis.
By the right-hand rule, if the fingers of the right hand point along the positive x-axis (direction of v) and
the palm is perpendicular to the xy-plane with w coming out of the palm at any angle strictly between 0°
and 180° (not necessarily a right angle), the raised thumb points in the direction of the positive z-axis by
Figure F.1.1, and we have seen that this is the direction of v ×w. □

To conclude this appendix, we now confirm that the cross product is the essentially unique answer to
the Question raised at the start of this appendix.

Proposition F.4.4. Consider R3-valued functions f(v,w) of general v,w ∈ R3 with the following prop-
erties:

(i) f(v,w) depends linearly on each of v and w (i.e., f(v,x) is linear in x for each v, and f(x,w) is
linear in x for each w),

(ii) it is rotationally invariant: for every rotation R of R3 around 0, f(R(v), R(w)) = R(f(v,w)).
The only such functions are scalar multiples of the cross product: there is a scalar c for which f(v,w) =
c(v × w) for every v,w ∈ R3. If we further require that the point f(i, j) on the z-axis (being a scalar
multiple of i× j = k) is equal to k then f coincides with the cross product.

PROOF. We have seen that the cross product satisfies all of these properties. We have to show that any
f at all satisfying (i) and (ii) must have the form f(v,w) = c(v×w) for some scalar c. The first key step
is to show that for all v,w ∈ R3, f(v,w) is perpendicular to v and w. We separately treat the cases that
v and w are linearly independent or are linearly dependent.

Suppose v and w are linearly independent. Let R be the180-degree rotation around the axis perpen-
dicular to the plane spanned by v and w, so Rv = −v and Rw = −w. Then

R(f(v,w)) = f(Rv, Rw) = f(−v,−w) = f(v,w)

(the first equality uses (ii) and the final equality uses (i)), so f(v,w) lies along the axis of rotation and
thus is perpendicular to v and w as desired.

If instead v and w are linear dependent then one of them is a scalar multiple of the other, and we shall
show f(v,w) = 0. By (i) we can factor out the scalar multiplier to reduce to showing f(v,v) = 0 for
all v ∈ R3. If v = 0 then the desired vanishing follows from bilinearity: v = 0 = 0v, so f(v,v) =
f(0v,v) = 0f(v,v) = 0. Suppose instead v ̸= 0. Let R be a rotation around the axis through v by an

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Page 698



angle strictly between 0 degrees and 360 degrees. Since Rv = v by how R is defined, we have

R(f(v,v)) = f(Rv, Rv) = f(v,v)

by (ii), so f(v,v) is fixed by R and hence lies on the axis of rotation. By design, that axis is the line
spanned by v, so f(v,v) is a scalar multiple of v. We want to show this scalar multiple is 0.

Pick a line L through the origin in the plane orthogonal to v, and letR′ be a 180-degree rotation around
L. We have R′(cv) = −cv for all scalars c, since cv is perpendicular to L (so it lies in the plane being
rotated 180 degrees by R′). Since f(v,v) is some scalar multiple of v, it follows that R′(f(v,v)) =
−f(v,v). But (ii) gives R′(f(v,v)) = f(R′v, R′v) = f(−v,−v) = f(v,v), the final equality due to
bilinearity from (i). Thus −f(v,v) = R′(f(v,v)) = f(v,v). The only vector equal to its own negative
is the zero vector, so f(v,v) = 0 as desired. This completes the verification that f(v,w) is perpendicular
to v and w for all v,w ∈ R3, with the additional feature that it vanishes when v and w are linearly
dependent.

By the orthogonality property that we just established, f(i, j) is perpendiecular to both i and j, so it
belongs to the normal line to the xy-plane through the origin, which is to say the z-axis. Hence, f(i, j) =
ck for some scalar c. Letting g(v,w) = c(v × w) for that c, we will show f(v,w) = g(v,w) for all
3-vectors v and w. Now we can once again invoke the general linearity trick that we have applied several
times (it applies to f thanks to hypothesis (i)) to reduce to showing that

f(e, e′) = c(e× e′) (F.4.3)

for all choices of e and e′ in the standard basis (possibly being the same basis vector).
Given a pair of perpendicular unit vectors v and w in R3 (such as distinct e and e′ in the standard

basis of R3), we shall build an R as in (ii) so that R(v) = i and R(w) = j. First spin the plane span(v,w)
around the origin in space so it is carried onto a plane P through the origin in which the image of v points
along the positive x-axis. Then v has been carried to i since that is the only unit vector lying on the positive
x-axis. Next, we can spin the plane P around the x-axis (hence leaving the image i of v in place) so that
w is carried to a vector along the positive y-axis. Now w has been carried to j since that is the only unit
vector lying on the positive y-axis.

Letting R be the composition of these rotations, it is also such a rotation. By design, R(v) = i and
R(w) = j. Using (ii), we have

R(f(v,w)) = f(R(v), R(w)) = f(i, j) = ck = c(i×j) = c(R(v)×R(w)) = cR(v×w) = R(c(v×w)),

where the second-to-last equality uses the invariance of the cross product under such operations R (The-
orem F.4.1). Applying R−1 to the left and right sides of this string of equalities gives that f(v,w) =
c(v × w) as claimed. We have therefore proved (F.4.3) when e and e′ are any different vectors in the
standard basis. On the other hand, if e = e′ then we already know f(e, e′) = f(e, e) = 0, and certainly
e× e′ = e× e = 0, so (F.4.3) again holds (since 0 = c0).

We have shown that f(v,w) = c(v ×w) for all v,w ∈ R3, with the scalar c satisfying f(i, j) = ck.
If we also assume f(i, j) = k then ck = k, so c = 1 and hence f coincides with the cross product. □
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“. . . research on neural networks was held up for 20 years until somebody remembered the Chain Rule!”
T. Griffiths, Luce Professor of Information Technology, Consciousness, and Culture (Princeton)

“. . . linear algebra simplifies the complex processes that underlie neural network operations, [. . . ] allowing
[AI models] to efficiently process vast amounts of data, recognize patterns, and make decisions.”

Medium article “The Crucial Role of Mathematics in AI Development”

G. Neural networks and the multivariable Chain Rule (optional)

The ability of computers to identify high-level patterns through experience (i.e., machine-learning
based on training data) has been demonstrated quite spectacularly with AlphaGo (and its descendants
such as AlphaZero). This is based on the concept of a neural network, which we discuss here in order
to identify where an essential mathematical insight occurs involving the multivariable Chain Rule.

G.1. Mathematical model of a neural network as a composition of functions. Consider the task of
a computer being given a picture with 1000 pixels (encoded as a vector in R1000) and aiming to determine
whether or not it is a picture of a cat. The output of the computer’s work will be a single real number
between 0 and 1 that measures how likely it is that the picture is of a cat.

The overall process of feeding the picture into the computer and extracting the output from the com-
puter should be given by evaluating a function fcat : R1000 → R on a 1000-vector that encodes the input
of the pixel intensities. The desired features of fcat are:
• if the input is a picture of a cat, fcat returns a value > 0.5,
• if the input is not a picture of a cat then fcat returns a value < 0.5.

This is a “classifier” problem (cat or not cat?), and the computer needs to construct such a function! The
process of building fcat inside a computer (in a way we describe below) is an instance of “machine learn-
ing”. It must be kept in mind that the function fcat constructed by the computer will be an extraordinarily
non-linear function, far too complicated for any human to ever discover or write down.

Two different computers working on this same “machine learning” task may build very different func-
tions fcat. All that matters is that the function does a good job at answering “cat or not cat?”; many
different functions may perform equally well at this task, and we only care that the computer constructs an
fcat that works well in practice. The process by which fcat is built inside a computer involves expressing
it as a composition of many intermediate vector-valued functions (that also have to be constructed by the
computer), and this all makes essential use of multivariable differential calculus, as we will explain below.

From a mathematical point of view, a neural network is an expression of a function f : Rn → Rm

(often m = 1, as for fcat above) as a composition of (typically highly non-linear) vector-valued functions:

Rn f1−→ Rd1 f2−→ Rd2 f3−→ . . .
fN−1−→ RdN−1

fN−→ Rm

in which Rn on the left is called the input layer, Rm on the right is called the output layer, and each Rdi in
between is called a hidden layer. Such a composition involving N functions fi is called an N -layer neural
network (so a single-layer network involves no hidden layers and so no function composition at all).

Defining d0 = n and dN = m for convenience of notation, we refer to Rdj as the jth layer (with
j = 0, 1, . . . , N ) and call dj the number of nodes in that layer. Each function fi describes how to get from
the output of the (i− 1)th layer (which means just the input when i = 1) to the next layer. If we denote a
vector in Rdj as xj = (x1,j, . . . , xdj ,j) then (for reasons based on analogies with the behavior of neurons in
a brain) each xi,j is called a neuron, hence the name “neural network” for the overall function composition
process. Many people dislike the analogies with a brain and so avoid such terminology, instead referring
to each xi,j as a unit and calling the overall composition process a multi-layer perceptron.
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The main point is that at the start f is not known (not even to the computer). The computer will
construct (or “learn”) fi’s so that if f is defined to be the composition fN ◦ · · · ◦ f1 then it performs well
at answering a specific artificial intelligence problem (e.g., cat or not cat?). Finding such fi’s is where
multivariable calculus (e.g., gradient descent and the Chain Rule) play a critical role, as we shall see.

G.2. Building the component functions. The neural network underlying the construction of fcat will
define it mathematically as a composition, with the following as a toy version (in which all layers apart
from the output layer have 1000 nodes):

R1000 f1→ R1000 f2→ R1000 f3→ R1000 f4→ R. (G.2.1)

In other words, the computer will define fcat as a composition of the shape

f4 ◦ f3 ◦ f2 ◦ f1 (G.2.2)

for fi’s that need to be built inside the computer.
Here is a minor but potentially confusing issue. We think of input as moving from left to right when

writing symbolism as in (G.2.1), but function composition notation as in (G.2.2) goes the other way
around: input is first fed into the function f1 on the far right in (G.2.2) and we successively evaluate
each function and feed its output into the next function to the left, eventually reaching the final output after
evaluating the function f4 that is written on the far left in (G.2.2). A visualization of this is given in Figure
G.2.1, motivated by consistency with the order of writing things in (G.2.2) rather than in (G.2.1) because
our subsequent discussion is going to focus a lot on the mathematics of function composition.

a1

a2

a3

...

a1000

b1

b2

b3

...

b1000

c1

c2

c3

...

c1000

d1

d2

d3

...

d1000

output

input layerfirst layersecond layerthird layerfourth layer

FIGURE G.2.1. A schematic of a 4-layer neural network. Circles are “neurons”, lines
joining neurons are “connections” among them. Going from input to output is usually
drawn left to right (as in (G.2.1)), but we draw it the opposite way for consistency with
(G.2.2): when we write f4 ◦ f3 ◦ f2 ◦ f1, functions on the right feed into those on the left.

In Figure G.2.1, notice that there are 1000 × 1000 “connections” between the neurons within each
pair of adjacent layers. For each j = 1, 2, 3 the 1000 neurons in the jth layer correspond to xi,j for
i = 1, 2, . . . , 1000 (so i keeps track of the node within a given layer), and the ith component function
fi,j : R1000 → R of fj expresses xi,j as a function of the numerical values at the 1000 neurons in the
previous layer. All 1000 “connections” from the neurons in the (j−1)th layer that feed into the ith neuron
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in the jth layer are regarded collectively as a single entity, expressing the functional dependence fi,j of
xi,j on all 1000 values at the neurons in the previous layer.

But how does the computer determine the functions fi,j to be used (for a given artificial intelligence
task)? For each i, fi,j will be taken to be a function of a special type: a composition of some linear
function wi,j : R

1000 → R (whose coefficients are called weights) and a single specific non-linear function
σ : R → R; the same σ is used for all i (more on this below). The data of the 1000 linear “weight”
functions wi,j : R

1000 → R of xj−1 ∈ R1000 can be collected into a single 1000 × 1000 matrix Mj (with
ith row given by the coefficients of the linear wi,j); this encodes fj . (Strictly speaking, in practice wi,j is
really a linear function plus a constant called the bias, but for simplicity in the present discussion we are
setting every bias to be 0.) These Mj’s need to be found!

Summarizing, the function f : R1000 → R used by the computer will be defined to be

f = w︸︷︷︸
f4:R1000→R

◦G ◦ C︸ ︷︷ ︸
f3

◦G ◦B︸ ︷︷ ︸
f2

◦G ◦ A︸ ︷︷ ︸
f1

(G.2.3)

where:
• A,B,C are 1000× 1000 matrices (to be determined for the problem at hand, such as figuring out if a

picture shows a cat, and in the preceding discussion are the matrices M1,M2,M3),
• w : R1000 → R is a linear function (it is determined by the problem at hand, and corresponds to the
1× 1000 matrix M4 in the preceding discussion);

• G : R1000 → R1000 is the specific function

G







y1
y2
. . .
y1000





 =




σ(y1)
σ(y2)
. . .

σ(y1000)


 (G.2.4)

where σ : R → R (called an activation function, due to analogies with a brain) encodes how strongly
a neuron’s output depends on its total input.

Historically, a popular choice of activation function was the so-called “sigmoid function” σ(y) =
1

1 + e−y
because it nicely interpolates values from near 0 to near 1 over a range of inputs that is not too

long, as shown in Figure G.2.2. In more recent years, this choice has fallen out of favor and many other
options are considered in practice (such as the “rectified linear unit” function f(x) = max(0, x)).

−6 −4 −2 0 2 4 6

0

0.2

0.4
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0.8

1

FIGURE G.2.2. The graph of 1/(1 + e−y) over the interval [−5, 5].
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In realistic applications, one uses many more layers and the number of neurons in each layer can be on
the order of millions (not 1000 as above). The output of intermediate functions (for example, the output
of G ◦B) might be imagined as recording low-level features of the image, such as edges or color changes,
but in reality the situation inside the computer is so complicated that one can’t usually assign tangible
meaning to specific layers.

G.3. Teaching a neural network with gradient descent. How does a neural network learn, by which
we mean: how does it figure out good choices of A,B,C,w so that the resulting function f has the
behavior we seek to be a good choice for fcat? We make some initial choice for A,B,C,w to make an
initial function f as above, and test this on a large body of images (called a “test set”, or “training data”).
For some of these images, f will correctly classify the image as cat or non-cat; on other images, it will
produce the wrong answer. We then compute a “score” between 0 and 1 that measures how well the neural
network did on its test:

E = score of the neural network on the test images. (G.3.1)

(The testing process is automated; for the test set the correct answers are known and the performance of f
on that is measured accordingly.)

We want E to be as close to 1 as possible, corresponding to getting as many images correctly classified
as possible. But this is a maximization problem in many variables because E is really a function of all the
parameters of the neural network: the entries of the various matrices A,B,C that appear above, as well as
the coefficients of the linear function w. We will use the method of gradient descent from Section 11.3 to
find A,B,C,w that collectively minimize the error on training data.

The gradient descent method uses a lot of partial derivatives. These will be computed by the (mul-
tivariable) Chain Rule in Theorem 17.1.5 which says in a precise way that the derivative matrix for a
composition of many functions is obtained by multiplying together many derivative matrices.

G.4. The (multivariable) Chain Rule and neural networks. Our toy model for a neural network as
in Figure G.2.1 defines a function of interest f : R1000 → R as a composition of the form

f = w ◦ (G ◦ C) ◦ (G ◦B) ◦ (G ◦ A)
as in (G.2.3) where A,B,C are 1000 × 1000 matrices, G is as in (G.2.4), and w : R1000 → R is a linear
function. But which A,B,C,w are best suited to the goal of the neural network? This is where “training”
comes in, and multivariable optimization plays a crucial role.

Training a neural network involves changing entries of the matrices A,B,C and the coefficients of w
in such a way that the resulting new function fnew after such changes performs better on test data. In other
words, we run the neural network on a specific test set (evaluating f at specific inputs), and then – if the
result is incorrect – we try to change A, B, C, or w to improve f . (In practice, we do this for many test
inputs at once.) Thus, we need to carry out many computations to answer questions of the following sort:

Basic Question: How does a small change in the upper-left entry a11 of A affect the output of f
when evaluated on a specific input v0 ∈ R1000?

Here, note:
• The focus on a11 is arbitrary. In fact, we need to understand the effect on f of a small change in any

of the matrix entries of A, B, or C, as well as in the coefficients of w.
• In practice, we use these computations to run the gradient descent algorithm (see Section 11.3), or a

more sophisticated version of that algorithm (e.g., “stochastic gradient descent”). This takes place on
RN where N is tremendously huge (e.g., for our toy example, N = 3× 10002 + 1000 = 3, 001, 000,
accounting for the matrix entries of A,B,C and the coefficients of w).
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• This is a computation of a different sort than the ones usually encountered in optimization: we are
not differentiating f with respect to the input! Rather, for specific numerical inputs v0 ∈ R1000 we
are differentiating f(v0) with respect to the matrix entries of A (viewed as parameters). To explain
the idea, here is a single-variable analogue of this shift in perspective. Consider the function

fa(x) = axe−ax2

for a > 0, where a is viewed initially as a fixed number. When we seek to make the value fa(2) =
2ae−4a on the specific input x = 2 as big as possible, now a has become a variable! This optimization
problem has the solution a = 1/4.

The strategy of improving artificial intelligence by adjusting the parameters of a function to make
it behave better on test data has been known since long before computers were fast enough to make a
practical implementation possible. Indeed, this idea was discussed by the founder of modern information
theory, Claude Shannon, in a 1950 paper [Shan1] that he wrote about chess-playing machines (this was
during the era of vacuum-tube computers; the first transistor-based computer for sale was built in 1958).
In that context, Shannon wrote:

The chief weakness of the machine is that it will not learn by its mistakes. The only way to improve
its play is by improving the program. Some thought has been given to designing a program that
would develop its own improvements in strategy with increasing experience in play. Although
it appears to be theoretically possible, the methods thought of so far do not seem to be very
practical. One possibility is to devise a program that would change the terms and coefficients
involved in the evaluation function on the basis of the results of games the machine had already
played. Small variations might be introduced in these terms, and the values would be selected to
give the greatest percentage of wins.
The Gordian question, more easily raised than answered, is: Does a chess-playing machine of
this type “think”? The answer depends entirely on how we define thinking.

Remark G.4.1. One should be cautious about putting too much faith in the reliability of machine learning
(see [He], [Ri]). For example, minor deviations from sample data can confuse a well-tested machine
learning algorithm in ways that would never affect any human (e.g., a self-driving car can get confused
by an approaching person with a red “Stop” sign on their shirt, an image classifier can “think” that a stop
sign with small stickers on it is a speed limit sign, and a change in 100 random pixels in an image –
imperceptible to any person – can make a computer no longer recognize an image of a cat as being a cat;
also see [Hsu]). Debugging is also a serious problem, such as with self-driving cars. Richard Feynman
remarked upon the balance between empirical and conceptual knowledge in the context of physics in his
Nobel Prize lecture [Feyn2], and it applies equally well to machine learning today:

“In face of the lack of direct mathematical demonstration, one must be careful and thorough . . . ,
and one should make a perpetual attempt to demonstrate as much . . . as possible. Nevertheless,
a very great deal more truth can become known than can be proven.”

Coming back to the Basic Question, when using v0 =




1
0
...
0


 ∈ R1000 (for simplicity) it becomes this:

How does a small change in upper-left entry a11 of A affect the output of f on the input




1
0
...
0


?
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Since A




1
0
...
0


 =




a11
a21

...
an1


, we have

f







1
0
...
0





 = w ◦G ◦ C ◦G ◦B ◦G







a11
a21

...
an1





 .

We want to think of this as a function of all the matrix entries of A,B,C, and the coefficients of w, and to
compute its partial derivative with respect to a11. The Chain Rule gives a product of lots of matrices and
a column vector:

(partial derivative with respect to a11) = (Dw)︸ ︷︷ ︸
1×1000

× (DG)︸ ︷︷ ︸
1000×1000

× (DC)︸ ︷︷ ︸
1000×1000

×(DG)× (DB)× (DG)×




1
0
...
0


 .

WARNING! We are being a bit sloppy here with the notation. The Chain Rule really gives us specific
points at which to evaluate each of the derivative matrices of w,G,C and so on, on the right side. To
keep the notation from exploding out of control, we have not written the evaluation points. Thus, for
example, there are actually three different matrices for the three occurrences ofDG in the above equation.
An important aspect is that each of these three matrices denoted as DG (evaluated at various points) is
diagonal since the ith entry of G(x) ∈ R1000 is the function Gi(x) = σ(xi) that depends only on xi (so
for j ̸= i the off-diagonal entry ∂Gi/∂xj vanishes). In some treatments of neural networks, you will not
find this diagonal matrix written out explicitly; instead, an extra notion called the “Hadamard product” is
introduced as a shorthand for the multiplication of a vector by a diagonal matrix (also see Remark 14.3.10).

What if we had asked exactly the same question, but with a11 replaced by a12? The result comes out
similarly except that the column vector on the right changes to have its entry “1” appear in the second
position rather than the first:

(partial derivative with respect to a12) = (Dw)︸ ︷︷ ︸
1×1000

× (DG)︸ ︷︷ ︸
1000×1000

× (DC)︸ ︷︷ ︸
1000×1000

×(DG)× (DB)× (DG)×




0
1
0
...
0



.

There are similar formulas for other partial derivatives.
Our end conclusion is like this: if we can compute the matrix product

(Dw)︸ ︷︷ ︸
1×1000

× (DG)︸ ︷︷ ︸
1000×1000

× (DC)︸ ︷︷ ︸
1000×1000

×(DG)× (DB)× (DG) (G.4.1)

then we can easily compute the partial derivative of the output with respect to any matrix entry ofA. There
is a similar formula for partial derivatives with respect to matrix entries of B or C or the coefficients of w;
they involve fewer matrix multiplications (i.e., we drop the last few terms in (G.4.1)), for much the same
reason that when computing a partial derivative of the form ∂

∂x
(f(g(x, h(y, k(z))))) via the Chain Rule

everything involving the functions h(y1, y2) and k(z) is carried along like a constant; i.e., no derivatives
of h or k intervene.
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Note that the Chain Rule enables us to compute derivatives of a composite function without grinding
out a huge explicit formula for the function. This is useful in single-variable calculus (e.g., we can dif-
ferentiate (x + 3)20 as 20(x + 3)19 without first needing to explicitly expand (x + 3)20 via the Binomial
Theorem). In a neural network setting with more than a few layers, the Chain Rule is even more essential
for computing the partial derivatives that arise. But there is something else about the Chain Rule that is
important for time efficiency, as we now discuss.

G.5. Left-handed or right-handed multiplication? In practice, the derivatives are computed
by an algorithm called backpropagation (which we are not going to describe in detail, but rests on the
Chain Rule via expressions as in (G.4.1)), and we want to point out a mathematical observation about
multiplying matrices that conveys a sense of what makes backpropagation very efficient in practice.

Suppose you are given the matrix product

[
3 −1 5

]


1 0 −1
2 1 4
3 1 1






0 2 1
3 −1 0
−2 0 −1





2 1 −1
1 1 3
0 −1 4




Note that this looks a lot like (G.4.1): it has a row vector followed by several matrices. In (G.4.1)
the vectors and matrices are much bigger (1000 entries in each row and column rather than 3) but the
same basic principles are going to apply. Please evaluate this product yourself before reading on;
this will help you better appreciate the discussion that follows.

How did you do it? There are two natural ways to evaluate the matrix product: left to right, and
right to left. Proceeding left to right we get

[
16 4 −2

]



0 2 1
3 −1 0
−2 0 −1





2 1 −1
1 1 3
0 −1 4


 =

[
16 28 18

]


2 1 −1
1 1 3
0 −1 4


 =

[
60 26 140

]
.

Proceeding right to left we get

[
3 −1 5

]


1 0 −1
2 1 4
3 1 1






2 1 10
5 2 −6
−4 −1 −2


 =

[
3 −1 5

]



6 2 12
−7 0 6
7 4 22


 =

[
60 26 140

]
.

Viewed on paper (or on a computer screen), these look almost the same. However, if you did them by
hand, you will notice that the second way is much more time-consuming than the first:
• done the first way (left to right), we perform three matrix-vector multiplications.
• done the second way (right to left), we perform two matrix multiplications and one matrix-vector

multiplication.
Clearly, multiplying a matrix by another matrix involves many more computations than multiply-

ing a matrix by a vector (for n × n matrices and vectors in Rn, the matrix-matrix product involves
n3 multiplications whereas the matrix-vector product involves n2 multiplications). Therefore, left-to-
right is faster than right-to-left, and if the number n of entries in the vectors is on the order of millions
then the extra efficiency is significant in practice.

The mathematical idea of backpropagation is to evaluate (G.4.1), and all the related expressions
that occur when computing partial derivatives of the output of a neural network, by left-to-right mul-
tiplication rather than right-to-left. Going from left to right might seem like the most natural thing in
the world when the computation is presented as a pure linear algebra multiplication problem as above,
but the context in which this arises for neural networks doesn’t make this choice so natural-looking at
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all! Recall that the actual situation of interest arises from applying the Chain Rule to a function com-
position such as f4(f3(f2(f1(x)))), and when evaluating such a composite function we have to begin
on the right with f1 and work our way to the left by successive evaluation.

But for the computation of a product of derivative matrices (as emerge from the Chain Rule), the
associativity of matrix multiplication allows us to alternatively compute things beginning on the left
and working our way to the right. When interpreted in terms of the neural network, this is often re-
ferred to as “propagating errors backward from output to input” (hence the name “backpropagation”).

This combination of the associativity of matrix multiplication and the Chain Rule expressed in
terms of matrix multiplication is also relevant to the design of highly efficient neural networks beyond
scalar-valued output (as with fcat : R1000 → R). We’ll explain this in the context of auto-encoders
used for “dimension reduction” (in facial recognition and image compression, for example), which
can involve a neural network seeking to “learn” a vector-valued f : Rn → Rn via an d-layer neural
network of the form

Rn f1−→ Rn f2−→ Rn f3−→ . . .
fd−1−→ Rn fd−→ Rn,

so for the optimization work it is necessary to compute the n× n derivative matrices

Dk = D(fd ◦ · · · ◦ fk)
(evaluating at specific points) for 1 ≤ k ≤ d. The Chain Rule tells us

Dk =Md(Md−1(Md−2(· · · (Mk+1Mk) · · · ))) (G.5.1)

where Mj = Dfj (evaluated at an appropriate point); the parentheses here match the order in which
one would compute the corresponding function composition.

Here is the key insight. Since (G.5.1) involves d− k matrix products, the determination of all the
Dk’s requires (d− 1) + (d− 2) + · · ·+ 1 = d(d− 1)/2 ≈ (1/2)d2 matrix products when computed
via the parenthesization as in (G.5.1). But the associativity of matrix multiplication allows us to
massively cut down on the number of such products to compute: we can rewrite the parentheses in
(G.5.1) as

Dk = (((· · · (MdMd−1)Md−2) . . . )Mk+1)Mk = Dk+1Mk.

Aha! So instead of ≈ (1/2)d2 products of n × n matrices to compute the Dk’s, we only need to
compute ≈ d of them:

Dd =Md, Dd−1 = DdMd−1, Dd−2 = Dd−1Md−2, . . . , D2 = D3M2, D1 = D2M1.

When combined with modern algorithms for efficient matrix multiplication (tailored to matrices with
many 0’s in the case of convolution neural networks), this provides the tremendous time savings that
makes backpropagation work efficiently in practice.
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“An algorithm must be seen to be believed, and the best way to learn what an algorithm is all about is
to try it.”

D. Knuth [Kn, Sec. 1.1, p. 4]

H. The QR algorithm (optional)

As is mentioned in Remark 23.3.7, a fundamental application of the QR-decomposition from Chapter
22 is the QR algorithm: this is how computers accurately compute the eigenvalues of n× n matrices, and
it is regarded as one of the 10 most important numerical algorithms developed in the 20th century.

This algorithm was invented independently and simultaneously during the time period 1958-1962
by Vera Kublanovskaya33 in the Soviet Union and by John Francis34 in England. Curiously, the early
applications of this work in the Soviet Union were limited to n ≤ 5 with calculations done by hand or
with calculators; it was not put on electronic computers or used for applications outside mathematics itself
[GU, Sec. 3.4]. It must be emphasized that the algorithm does not assume the matrix is symmetric; this
is important for applications. Credit for refining the QR algorithm into a powerful and widely applicable
tool goes largely to J.H. Wilkinson for his book [Wil1] (within one year of its publication in 1965, a book
review [Pa] of this work said: “Long awaited and much needed, this book is already hard to procure.”).

We shall describe the most basic version of the QR algorithm and why it works, as an application
of orthogonality in linear algebra. The algorithm must be refined in several ways in order to work effi-
ciently and be numerically stable (i.e., well-behaved under slight changes in the input data, to allow for
experimental error in measurements). The issue of numerical stability is absolutely critical: many me-
chanical engineering designs (such as for airplanes) involve solving eigenvalue problems, so one needs
confidence in the numerics before the design begins. (One impetus for the creation of the algorithm was
for applications in aircraft design [GU, p. 469].)

H.1. The algorithm. Assume A is invertible with n eigenvalues λ1, λ2, . . . , λn in R that have dif-
ferent absolute values, arranged so that |λ1| > |λ2| > · · · > |λn|. Imposing such a hypothesis on the
eigenvalues for an algorithm aimed at accurately computing the eigenvalues may seem circular, but it is
not because there are ways to check it without knowing the eigenvalues. More importantly, these hy-
potheses on A can be completely bypassed by modifying the algorithm (via a technique called “Wilkinson
shifts”), and this is done for all implementations of the algorithm.

Define A0 = A and write its QR-decomposition as A0 = Q0R0. Now flip the order of multiplication!
That is, define A1 = R0Q0.

The matricesA1 andA0 typically have little to do with each other. But they have one thing in common:
the same eigenvalues! In fact, the products BC and CB of any two n×n matrices B and C have the same
eigenvalues. For invertible B we have BC = (BC)BB−1 = B(CB)B−1, and the eigenvalues of any
n× n matrix M match those of BMB−1 (because multiplication by the invertible B carries eigenvectors
of M exactly over to those of BMB−1 while preserving the eigenvalue: Mv = λv precisely when
BMv = B(λv) = λ(Bv), yet BMv = (BMB−1)(Bv)). Limit arguments allow to pass from invertible
B to general B (for algebraic reasons that we omit).

33Vera Kublanovskaya (1920-2012) worked in numerical linear algebra and other areas of applied mathematics. In addi-
tional to her work on the QR algorithm, she studied inverse eigenvalue problems and developed a method of computing the
Jordan canonical form of a matrix. She was mathematically active into her 90’s and finished her last paper on the day before
she passed away.

34John Francis (b. 1934) is a retired British computer scientist who left the field of numerical analysis almost immediately
after inventing the QR algorithm in the early 1960’s. He worked for a variety of computer companies during his career, and
was entirely unaware of the tremendous practical importance of the QR algorithm until nearly 50 years after its invention.
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Next, form the QR-decomposition of A1, written as A1 = Q1R1. Now flip again! That is, define
A2 = R1Q1 (so its eigenvalues match those of A1, which in turn match those of A0 = A), and form the
QR-decomposition of this, written as A2 = Q2R2. Rinse and repeat, getting successive n × n matrices
Am = Rm−1Qm−1 whose QR-decomposition we write as QmRm and then use those to define Am+1 =
RmQm, and so on. All Am’s have the same eigenvalues as A.

The pleasant surprise is that, subject to a very mild further assumption (which we’ll get to below,
and becomes unnecessary under a modification of the algorithm by incorporating “Wilkinson shifts”, as
mentioned above), the matrices Am “converge” entrywise to an upper triangular matrix. But the common
eigenvalues for A and the Am’s are inherited by this limit matrix, and for an upper triangular matrix it can
be shown that the eigenvalues are exactly the diagonal entries. Hence, the diagonal entries of this limit
matrix are the eigenvalues we sought!

Remark H.1.1. The convergence to an upper triangular matrix is where one needs the initial assumption
concerning eigenvalues in R with different absolute values. The convergence can fail otherwise; e.g., for

A =

[
0 1
1 0

]
with eigenvalues 1 and −1 one has Am = A for all m, so in this case the above procedure

accomplishes nothing. There are ways around this, by modifying the algorithm.

H.2. Why does it work? What is the real meaning of the maneuver of flipping the order of multipli-
cation of Q and R at each step, and why does this strange-looking process converge to an upper triangular
matrix? We now sketch an answer to this, and refer to [Wat] for further details.

Let vi be an eigenvector of A for the eigenvalue λi (recall that |λ1| > |λ2| > . . . ), and define Vk =
span(v1, . . . ,vk), so Vk is k-dimensional and V1 ⊂ V2 ⊂ · · · ⊂ Vn = Rn. These Vk’s satisfy the following
remarkable property, sometimes referred to as “power iteration”. It illustrates the phenomenon that big
powers of a matrix are controlled by the eigenvalues and eigenvectors.

Proposition H.2.1. Let W be any nonzero linear subspace of Rn, with some dimension k. Assume
W satisfies the “general position” condition that it doesn’t contain any nonzero vectors in the subspace
span(vk+1, . . . ,vn) with complementary dimension n − k (this holds for “most” k-dimensional W ). As
we repeatedly applyA to the entirety ofW over and over again (i.e., for eachm ≥ 1 we consider the linear
subspace Am(W ) consisting of the vectors of the form Am(w) for w ∈ W ), the k-dimensional subspaces
Am(W ) in Rn for m = 1, 2, . . . get arbitrarily “close” to Vk.

The notion of “closeness” for linear subspaces of Rn with a common dimension k as in this proposition
means that every unit vector in one of them is very close to a unit vector in the other. In the case of lines
through the origin, which is to say k = 1, this means that the two lines have a very small angle between
them. For planes in R3 through the origin, this notion of closeness is the same as the normal lines to the
planes having a very small angle between them.

PROOF. The validity of the proposition in for general k can be reduced to the case k = 1; this may
sound very surprising, but it can be shown using a trick that we omit (involving determinants), so we focus
on the case k = 1. Now W = span(w) is a line, and we can write

w = c1v1 + c2v2 + · · ·+ cnvn

for some scalars c1, . . . , cn. We have c1 ̸= 0 by the “general position” hypothesis on W , and Am(W ) is
the span of Am(w).

We compute

Am(w) = c1A
m(v1) + c2A

m(v2) + · · ·+ cnA
m(vn) = c1λ

m
1 v1 + c2λ

m
2 v2 + · · ·+ cnλ

m
n vn.
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The line this spans is unaffected by dividing it by λm1 . But when we do that division we get

c1v1 + c2(λ2/λ1)
mv2 + · · ·+ cn(λn/λ1)

mvn

with the coefficients (λj/λ1)m for j = 2, . . . , n all very close to 0 for large m since |λj/λ1| = |λj|/|λ1| <
1. (For any number with absolute value < 1, its high powers rapidly approach 0.)

Hence, the line Am(W ) = span(Am(w)) is very close to the line span(c1v1) = span(v1) = V1, as
desired. (This final step uses the “general position” condition c1 ̸= 0.) □

To exploit this proposition, we take W to be Wk = span(e1, . . . , ek). Applying the proposition to Wk

requires a “general position” condition on the collection of ei’s relative to the eigenvectors vj , which we
now assume (in practice it can be avoided by modifying the algorithm).

Apply Gram–Schmidt to the basis Am(e1), . . . , A
m(ek) of Am(Wk) to get an orthogonal basis of

Am(Wk). The vectors in this orthogonal basis will usually be very long or very short for large m (de-
pending on the |λi|’s), so we get rid of that effect by dividing the output vectors by their lengths to get an
orthonormal basis {q1,m, . . . ,qk,m} of Am(Wk). These unit vectors must get very close to unit vectors in
Vk since Am(Wk) is very close to Vk by Proposition H.2.1.

Since the first r vectors emerging from Gram–Schmidt only ever depend on the first r vectors of the
input, when we run the same procedure for Am(Wk+1) the first k vectors in the resulting orthonormal
basis are the same as the k vectors q1,m, . . . ,qk,m obtained for Am(Wk). In other words, these qi,m’s
built for different k all fit together coherently, as part of an overall orthonormal basis q1,m, . . . ,qn,m of
Am(Wn) = Rn.

The wonderful fact is that, up to a sign, we can pin down exactly which unit vector in Vk each unit
vector qi,m is very close to for each 1 ≤ i ≤ k:

Proposition H.2.2. Let {w1, . . . ,wn} be the output of Gram–Schmidt applied to {v1, . . . ,vn}, so the unit
vectors w′

i = wi/∥wi∥ constitute an orthonormal basis of Rn whose first k members span Vk.
Each qi,m gets very close to one of ±w′

i (sign maybe depending on m).

PROOF. Since the first r vectors emerging from Gram–Schmidt only depend on the first r vectors of
the input, to analyze anything about qi,m only Am(e1), . . . , A

m(ei) are relevant. This says that we only
need to focus on Am(Wi). In other words, we can rename i as k and focus on the case i = k, assuming
(when k > 1) that the proposition is established for all smaller values of i.

First consider k = 1. Then ±w′
1 are the only unit vectors in V1 since a line through the origin only has

two unit vectors. But Am(W1) is very close V1 (for big m) by Proposition H.2.1, so the unit vector q1,m in
Am(W1) must be close to one of the only two unit vectors ±w′

1 in V1. This settles the case k = 1, and so
also settles the case i = 1 in general.

Next, suppose k = 2. The unit vector q2,m is orthogonal to q1,m ≈ ±w′
1, so whatever unit vector in V2

it is very close to must be essentially orthogonal to w′
1 and so very close to a unit vector in the orthogonal

complement of span(w′
1) in V2. Here we are repeatedly using Theorem 6.2.4 and the Pythagorean The-

orem in Rn (Theorem 2.3.1), and hopefully the geometric intuition is plausible just by drawing pictures.
The orthogonal complement in the plane V2 to the line span(w′

1) = V1 is a line, so ±w′
2 are the only two

unit vectors in that orthogonal complement. Hence, q2,m ≈ ±w′
2 for big m.

And on it goes similarly for larger k, basically because the orthogonal complement to Vk−1 in Vk is
always a line (since dimVk = 1+ dimVk−1), so that orthogonal complement must be spanned by the unit
vector w′

k that it contains. Hence, this orthogonal complement has ±w′
k as its only unit vectors, so qk,m

must be close to one of them when m is big. □
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By design of the QR-decomposition in terms of the Gram–Schmidt process, if we write the QR-
decomposition of Am as Q′

mR
′
m then the columns of Q′

m are exactly q1,m, . . . ,qn,m from left to right.
But at the cost of some signs, Proposition H.2.2 tells us that these vectors are converging entrywise to the
vectors w′

1, . . . ,w
′
n that have nothing to do with m, so at the cost of some signs the orthogonal matrices

Q′
m for big m are all getting very close to each other (in the sense of each matrix entry).

To leverage this knowledge about Q′
m for big m, we need some other way to describe the QR-

decomposition of Am. It is precisely at this step that the weird maneuver of flipped products in the QR
algorithm emerges. To see what is going on, let’s consider m = 4: we have

A4 = AAAA = Q0R0Q0R0Q0R0Q0R0 = Q0(R0Q0)(R0Q0)(R0Q0)R0,

using associativity of matrix multiplication at this final step. But by design, the flipped product R0Q0 is
what we call A1, which in turn has QR-decomposition denoted Q1R1, so substituting this and using the
same associativity trick gives

A4 = Q0(Q1R1)(Q1R1)(Q1R1)R0 = Q0Q1(R1Q1)(R1Q1)R1R0.

But now again we play the same game: R1Q1 is what we callA2, whoseQR-decomposition is denoted
Q2R2, and so we substitute this to get

A4 = Q0Q1(Q2R2)(Q2R2)R1R0 = Q0Q1Q2(R2Q2)R2R1R0.

One last pass: R2Q2 is what we call A3, whose QR-decomposition is denoted Q3R3, so substituting this
and using associativity gives

A4 = Q0Q1Q2(Q3R3)R2R1R0 = (Q0Q1Q2Q3)(R3R2R1R0).

Any product of orthogonal matrices is orthogonal, and any product of upper triangular matrices with
positive diagonal entries is again such a matrix, so Q0Q1Q2Q3 is orthogonal and R3R2R1R0 is upper
triangular with positive diagonal entries. But the QR-decomposition of an invertible matrix is uniquely
determined (this essentially expresses that Gram–Schmidt is an unambiguous algorithm), so the factors
Q′

4, R
′
4 of the QR-decomposition of A4 must agree with these 4-fold products: Q′

4 = Q0Q1Q2Q3, R′
4 =

R3R2R1R0. This works the same way with “4” replaced by any m, so

Q′
m = Q0Q1 · · ·Qm−1.

But we have already seen that up to some signs, the matrices Q′
m all get very close to each other for large

m. Since Q′
m+1 = Q′

mQm, it follows from the closeness of Q′
m+1 and Q′

m up to some signs that if m is
big then Qm is close to the identity matrix up to some signs.

By definitionQmRm is theQR-decomposition ofAm, so up to some signs we conclude thatAm ≈ Rm

for large m. Changing the entries of an upper triangular matrix by some signs doesn’t affect it being upper
triangular (though it may affect positivity conditions on diagonal entries), so Am is very close to an upper
triangular matrix for big m! Since the eigenvalues of an upper triangular matrix are exactly its diagonal
entries, it can be deduced (using characteristic polynomials as in Section E.5, so that theoretical device is
lurking in the justification of the QR algorithm) from the nearness of Am to an upper triangular matrix
for big m that the diagonal entries of the Am’s are getting very close to the eigenvalues of Am for big m.
But those in turn are exactly the eigenvalues of A, so we conclude that for big m the diagonal entries of
Am are very close to the eigenvalues of A. This is already the main thing one wants from the algorithm:
staring at the diagonal of Am for big m reveals the eigenvalues of A to ever greater accuracy.

We stop the argument at this point, without addressing the stronger convergence result, since we have
already explained the key ideas behind the two main points: why the maneuver of flipping the QR-
products is natural (as in the analysis of A4 above, adapted to each Am) and why an upper triangular
property emerges in the Am’s as m grows.
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“. . . in all my life I have never labored at all as hard, and . . . I have become imbued with a great respect
for mathematics, the subtle parts of which, in my innocence, I had till now regarded as pure luxury.”

A. Einstein

I. Newton’s method for optimization (optional)

An application of the Hessian from Chapter 25 to numerical optimization of functions f : Rn → R
is Newton’s method for optimization. It is often much faster than gradient descent. This is really an
application to ∇f : Rn → Rn of what is called Newton’s method in Section 18.5, but we introduce it here
from scratch for the intended application (so it isn’t necessary to look back in Section 18.5).

I.1. The algorithm. Recall the idea of gradient descent in Section 11.3: to optimize the function
f(x1, . . . , xn), move from an initial point a some distance in the direction of ±(∇f)(a). One of the major
problems with this technique is that we didn’t clarify how far to move in the direction of the gradient or
its negative.

Let us revisit that situation. Starting at x = a, how should we move to try to get to a critical point of
f? By definition, a critical point c of f satisfies (∇f)(c) = 0. The gradient is a vector-valued function
g = ∇f : Rn → Rn, so according to (13.5.4) applied to g we can approximate (∇f)(a+ h) = g(a+ h)
to first order in h by the formula

(∇f)(a+ h) = g(a+ h) ≈ g(a) + ((Dg)(a))h = (∇f)(a) + ((Dg)(a))h

for the n× n matrix (Dg)(a).
Now comes a pleasant surprise, when we calculate exactly what (Dg)(a) is. The ij-entry of this matrix

is ∂gi/∂xj for the ith component function gi : Rn → R of g = ∇f : Rn → Rn. By the definition of ∇f ,
its ith component function gi is ∂f/∂xi = fxi

. Hence, the ij-entry of (Dg)(a) is (gi)xj
(a) = fxixj

(a).
This is exactly the ij-entry of the Hessian (Hf)(a) of f at a!

In other words, the linear approximation to the gradient of f at a has the form:

(∇f)(a+ h) ≈ (∇f)(a) + ((Hf)(a))h.

We want this to equal 0 for a suitable (hopefully small) choice of h. Setting the approximate expression
on the right side equal to 0 is a linear system for the unknown h. If the matrix (Hf)(a) is invertible (as it
often is), we can solve for h using the matrix inverse: h ≈ −((Hf)(a))−1((∇f)(a)). Summarizing:

(Newton’s method for optimization) To find a critical point of f : Rn → R (i.e., a zero of ∇f : Rn →
Rn) near a ∈ Rn, consider the sequence of vectors a1, a2, a3, · · · ∈ Rn defined by a1 = a and

ak+1 = ak − ((Hf)(ak))
−1((∇f)(ak)) for all k ≥ 1 (I.1.1)

(provided (Hf)(ak) is invertible for every k, as usually happens). This sequence of n-vectors often
converges rapidly to a critical point of f .

Remark I.1.1. For n = 1, this procedure to find a zero of f ′ replaces a with a− f ′(a)/f ′′(a). This is the
application to the function f ′ of the version of Newton’s method given in some single-variable calculus
books to find zeros of a function. See Remark 18.5.5 for further discussion and references on this case.

Remark I.1.2. When implementing Newton’s method to solve high-dimensional optimization problems
(such as arise in machine learning), one must use more sophisticated versions of the procedure we have
just described. This is necessary to bypass practical drawbacks such as the “cost” in computer time to
compute a Hessian and to store its inverse in computer memory. Another serious issue is that the method
seeks critical points and so treats local maxima, local minima, and saddle points on equal footing; e.g.,
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when (∇f)(a) ̸= 0, the projection of the “Newton step” −((Hf)(a))−1(∇f)(a) into the line spanned
by (∇f)(a) might be in the direction of (∇f)(a) rather than −(∇f)(a) unless f is strictly convex (see
Remark 26.1.6). The book [NW] has an extensive discussion of enhancements of Newton’s method to
improve its utility in a variety of applications.

Example I.1.3. We noted in Examples 11.3.4 and 18.5.4 that gradient descent is sometimes too slow
for solving a minimization problem that arises in black hole imaging. One of the first techniques de-
veloped to handle this replaced a multivariable function with a quadratic approximation as in (25.3.1)
(see [BJZFDF1, Sec. 4.3(2)]). The deviation from a critical point is estimated by solving a system
of linear equations via an inverse matrix, rederiving in that setting the formula (I.1.1) in Newton’s
method for optimization: see equation (11) in [BJZFDF2, Sec. 2.2], where they denote byX what we
call h; the sign in (I.1.1) doesn’t appear there because their expression for the term corresponding to
(∇f)(a) has an overall sign in front and so the signs cancel. Ongoing research for imaging of rapidly
evolving black holes uses quadratic approximations to save a lot of time in the optimization work. ■

Example I.1.4. The need to rapidly solve non-linear equations has been discussed in Section 18.5 (for
robotics and computer animation in Example 18.5.2, and for GPS in Example 18.5.3). If we formulate
such a system of equations in vector language as f(x) = 0 for some f : Rn → Rm having component
functions f1, . . . , fm : Rn → R, note that f(x) = 0 precisely when

0 = ∥f(x)∥2 = f1(x)
2 + · · ·+ fm(x)

2.

This leads to an interesting idea: finding a simultaneous zero to the (typically non-linear) fj’s is an
instance of minimizing the function F (x) =

∑m
j=1 fj(x)

2, so maybe we can try to find such a solution
via optimization techniques! It might happen in some context that we can’t find a zero of f but the
minimization problem for

∑
f 2
j still has a solution, and that could wind up being “good enough” for

a specific practical application. This actually does arise in practice, such as for the non-linear robotics
equations referenced in Example 18.5.2; see [AL, Sec. 9.3.3] ■

I.2. Worked examples and divergence.

Example I.2.1. Consider f(x, y) = 5x2 + 5y2 − y − x2y. We have (∇f)(x, y) =

[
10x− 2xy

10y − x2 − 1

]
, so

critical points correspond to simultaneous solutions of 10x − 2xy = 0 and 10y = 1 + x2. The first
equation says 2x(5− y) = 0, so either x = 0 or y = 5. Using 10y = 1 + x2, we get three critical points:
(0, 1/10), (7, 5), (−7, 5). One checks via the Hessian that (0, 1/10) is a local minimum and (±7, 5) are
saddle points.

Let’s see what Newton’s method for optimization gives in this case. The Hessian is

(Hf)(x, y) =

[
10− 2y −2x
−2x 10

]
.

Starting at some a ∈ R2, we repeatedly replace a as follows: a⇝ a− ((Hf)(a))−1(∇f)(a).
We will start from various a and see what happens, to an accuracy of three decimal digits:

(0, 0)⇝ (0, 0.1)⇝ (0, 0.1)⇝ (0, 0.1)

(1, 1)⇝ (−0.263, 0.053)⇝ (−0.008, 0.093)⇝ (0.000, 0.099) ≈ (0, 0.1)

(4, 4)⇝ (10, 6.5)⇝ (7.628, 5.356)⇝ (7.044, 5.027)⇝ (7.000, 5.000)

(−10, 7)⇝ (−7.682, 5.464)⇝ (−7.055, 5.038)⇝ (−7.000, 5.000)

In each case, the process rapidly finds (at least to three decimal digits of accuracy) a critical point, though
sometimes it converges to a saddle point rather than to a local extremum. ■
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There is an issue with Newton’s method for optimization in general that doesn’t arise in the preced-
ing example: it is quite possible for the iteration of Newton’s method to diverge! That is, rather than
approaching a critical point, the coordinates of the points may get larger and larger (or wander around
without settling down). So just as with gradient descent, one needs to be careful about where to start: if
one starts close enough to a critical point then Newton’s method behaves well, but in general it can behave
very badly. If we test Newton’s method for optimization on some more complicated examples we have
encountered, such as Example 11.3.6, then the divergence possibility really can occur, as we now show.

Example I.2.2. Let’s try to find a critical point of the function

f(x, y) = x+ y − (0.1)(ln(x) + ln(y) + ln(2x+ 3y − 1) + ln(3x+ y − 1))

near (x, y) = (1, 1). In Example 11.3.6 we computed (∇f)(x, y) =


1− (0.1)

(
1
x
+ 2

2x+3y−1
+ 3

3x+y−1

)

1− (0.1)
(

1
y
+ 3

2x+3y−1
+ 1

3x+y−1

)

 .

From this we can compute the Hessian symbolically:

(Hf)(x, y) = (0.1)

[
1
x2 +

4
(2x+3y−1)2

+ 9
(3x+y−1)2

6
(2x+3y−1)2

+ 3
(3x+y−1)2

6
(2x+3y−1)2

+ 3
(3x+y−1)2

1
y2

+ 9
(2x+3y−1)2

+ 1
(3x+y−1)2

]
.

This is a mess, but it doesn’t matter because your computer will now get to have all the fun. Starting
with some a, the procedure is to replace a as follows: a ⇝ a − ((Hf)(a))−1(∇f)(a). If we start with

a =

[
1/3
1/3

]
, we get the following (which converges rather well in each vector entry):

[
1/3
1/3

]
⇝

[
0.41299790356394129979035639412997903564 . . .
0.26205450733752620545073375262054507338 . . .

]

⇝

[
0.44850360428579606216900075033150309103 . . .
0.25546941901895044564328143442209736580 . . .

]

⇝

[
0.45526290813621170139491682975066826914 . . .
0.25422585464543071908753288736293389316 . . .

]

⇝

[
0.45544061941914408360836876811748355810 . . .
0.25419795092219395153781925500985995100 . . .

]

⇝

[
0.45544073797918743943582322567410840354 . . .
0.25419793380584604829728575431346773107 . . .

]
.

Note that to three decimal digits’ accuracy, in three steps this reached the same critical point as we
found in Example 11.3.6 using 100 steps of gradient descent. Moreover, at the point we just reached
in five steps, ∇f vanishes to 12 decimal digits in each entry (it is very close to a critical point of f !).

But how did we know to start with a =

[
1/3
1/3

]
? What if, say, we had started with a =

[
1
1

]
? Then

we would get this:
[
1
1

]
⇝

[
−1.128
−2.830

]
⇝

[
−7.811
−50.938

]
⇝

[
−105.724
−11455.719

]
⇝ something really big.

Disaster! The vector a gets bigger at each step, not going towards anything. We hit a real problem
with Newton iteration: if you don’t start close enough to a critical point, you can get nonsense. This is
a very interesting issue to understand, but it is outside the scope of this course to discuss further here.

■
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Example I.2.3. For f(x, y) = 8x2 + 6xy + 4x3 + 3xy2 we have

∇f =

[
16x+ 6y + 12x2 + 3y2

6x+ 6xy

]
, Hf =

[
16 + 24x 6 + 6y
6 + 6y 6x

]
.

(As practice, please work out the gradient and Hessian for yourself to confirm these expressions.)
Let’s first show that the critical points of f are (0, 0), (0,−2), (−3/2,−1), (1/6,−1). The critical

points (a, b) are points at which both fx and fy vanish. From the formulas as given in the expression for
∇f , we need to simultaneously solve

16a+ 6b+ 12a2 + 3b2 = 0, 6a+ 6ab = 0.

The left side of the second equation factors as 6a(1 + b), so it vanishes precisely when a = 0 or b = −1.
We substitute each option into the first equation to see what happens.

With a = 0, the first equation becomes 6b+ 3b2 = 0, for which the left side factors as 3b(2 + b). This
vanishes exactly for b = 0 and b = −2, yielding the critical points (0, 0) and (0,−2). With b = −1, the
first equation becomes 16a − 6 + 12a2 + 3 = 0, or equivalently 12a2 + 16a − 3 = 0. By the quadratic
formula, this has as its solutions

a =
−16±

√
256 + 144

24
=

−16±
√
400

24
=

−16± 20

24
=

4

24
and

−36

24
.

These two options simplify to 1/6 and −3/2, yielding the critical points (−3/2,−1) and (1/6,−1). Using
the Hessian, one can check that (0, 0) and (0,−2) are saddle points, (−3/2,−1) is a local maximum, and
(1/6,−1) is a local minimum.

As an illustration of Newton’s method for optimization, next we carry out one step of the method at
the following points (and see how the output approaches some of the critical points we have found):
• (0,−1/2) (near the critical points (1/6,−1) and (0, 0), slightly closer to (0, 0)),
• (−1,−1) (near the critical point (−3/2,−1)),
• (0, 1) (closest to the critical point (0, 0), though not especially close to it).

Warning. If one begins at (a,−1) with a = (−8 ±
√
91)/18 ≈ 0.0855,−0.9744 then the Hessian is

diagonal with nonzero diagonal entries, so it is invertible, but the output of the first step is (0,−1) at
which the Hessian is not invertible. Newton’s method thereby gets stuck after one step! Avoiding this type
of problem is an issue one has to grapple with when implementing Newton’s method.

In each case, if the initial point is denoted a then the point we seek to calculate for the output of the
first step of Newton’s method for optimization is

a− ((Hf)(a))−1(∇f)(a).
So we aim to evaluate this expression for each of the initial points a = (0,−1/2), (−1,−1), (0, 1). For
each case, first we will compute the gradient (∇f)(a) and Hessian (Hf)(a) via numerical evaluation at a
of the general symbolic expressions given for ∇f and Hf . Then we will plug those into the expression of
interest and carry out its complete calculation to get an exact answer.

First, suppose a = (0,−1/2). For this case, we compute

(∇f)(0,−1/2) =

[
−6/2 + 3/4

0

]
=

[
−9/4
0

]
, (Hf)(0,−1/2) =

[
16 6− 3

6− 3 0

]
=

[
16 3
3 0

]
.

Hence, the first step of Newton’s method gives the point
[

0
−1/2

]
−
[
16 3
3 0

]−1 [−9/4
0

]
=

[
0

−1/2

]
−
[

0 1/3
1/3 −16/9

] [
−9/4
0

]
=

[
0

−1/2

]
−
[

0
−3/4

]
=

[
0
1/4

]

that is closest to the critical point (0, 0) (much more so than was the initial point (0,−1/2)).
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Next, suppose a = (−1,−1). For this case, we compute

(∇f)(−1,−1) =

[
−16− 6 + 12 + 3

−6 + 6

]
=

[
−7
0

]
, (Hf)(−1,−1) =

[
16− 24 0

0 −6

]
=

[
−8 0
0 −6

]
.

Hence, the first step of Newton’s method gives the point
[
−1
−1

]
−
[
−8 0
0 −6

]−1 [−7
0

]
=

[
−1
−1

]
−
[
−1/8 0
0 −1/6

] [
−7
0

]
=

[
−1
−1

]
−
[
7/8
0

]
=

[
−15/8
−1

]

that is closest to the critical point
[
−3/2
−1

]
and slightly closer to it (by 1/8) than is the initial point (−1,−1).

Finally, suppose a = (0, 1). For this case we compute

(∇f)(0, 1) =
[
6 + 3
0

]
=

[
9
0

]
, (Hf)(0, 1) =

[
16 12
12 0

]
.

Hence, the first step of Newton’s method gives the point
[
0
1

]
−
[
16 12
12 0

]−1 [
9
0

]
=

[
0
1

]
−
[

0 1/12
1/12 −1/9

] [
9
0

]
=

[
0
1

]
−
[

0
3/4

]
=

[
0
1/4

]
,

which is the same as we got from the first initial point we tried (and is closest to the critical point (0, 0),
much more so than is the initial point (0, 1)).

We can push the preceding computations a bit further, as follows. If you do a general symbolic calcu-
lation by hand (it is not so bad) you can check that any initial point (x,−1) is taken by Newton’s method
to the point (g(x),−1) with

g(x) =
x

2
− 1

3
+

25

24(2 + 3x)

(e.g., g(−1) = −1/2−1/3−25/24 = −45/24 = −15/8, recovering the output of the second initial point
above) and that any initial point (0, y) is taken by Newton’s method to the point (0, h(y)) with

h(y) =
y

2
− 1

2
+

1

2y + 2

(e.g., h(−1/2) = −1/4 − 1/2 + 1/1 = 1/4 and h(1) = 1/2 − 1/2 + 1/4 = 1/4, recovering the outputs
of the first and third initial points above). So given a point of either type, which includes each of the ones
in Example I.2.3, to run Newton’s method repeatedly amounts to feeding g or h into itself.

Beginning with the output (−15/8,−1) from (−1,−1), running Newton’s method 3 more times
gives the successive outputs (g(−15/8), 1) ≈ (−1.558,−1), (g(g(−15/8)), 1) ≈ (−1.502,−1), and
(g(g(g(−15/8))),−1) ≈ (−1.500002,−1). So after 4 steps from the initial point (−1,−1), we are ap-
proximating the local maximum (−3/2,−1) accurately to 5 decimal digits.

Beginning with the output (0, 1/4) from (0,−1/2) and (0, 1), running Newton’s method 3 more times
gives the successive outputs (0, h(1/4)) ≈ (0, 0.025), (0, h(h(1/4))) ≈ (0, 0.0003), and

(0, h(h(h(1/4)))) ≈ (0, 0.00000005).

So after 4 steps from the initial points (0,−1/2) and (0, 1), we are approximating the saddle point (0, 0)
accurately to 7 decimal digits. ■
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“. . . as time goes on, it becomes increasingly evident that the rules which the mathematician finds
interesting are the same as those which Nature has chosen.”

P. Dirac, co-winner of 1933 Nobel Prize in Physics

J. Hessians and chemistry (optional)

Knowledge about the definiteness properties of the Hessian of f : Rn → R at a critical point (e.g.,
positive-definite, indefinite, etc.) is a valuable tool in the study of molecular structure. In this setting, the
function f is the electronic energy Ee of a molecule; this is a function of an n-vector x whose entries
record the position in R3 of every atom in a molecule (so even for molecules with 5 or 6 atoms, n is
somewhat large, around 15 or more). The Rn in which x lives is called the “state space” since it keeps
track of the state of the molecular structure, and one then calls x the “state vector”. Finding local minima
of the function Ee(x) is rather useful, as we now illustrate in two ways via the Hessian.

J.1. Positive-definite Hessian and molecular structure. At a given temperature, the local minima
for the electronic energy function Ee of a single molecule correspond to the possible molecular structures.
The state vector x tends to wander around near the local minimum corresponding to whatever is the
current molecular structure. To find the locations of the local minima, chemists use a computer program
that encodes the necessary molecular physics to calculate Ee(x) and its gradient for an initial choice of
x. A chemist then carries out gradient descent (Section 11.3) until reaching an a at which the gradient
vanishes (numerically). This is a critical point, but it might not be a local minimum. If the Hessian ofEe at
this critical point a has all positive eigenvalues then that confirms that a genuine local minimum has been
found. Other initial choices of x can be tried, which, if sufficiently different from the first choice, may
travel under gradient descent to other local minima b and thereby correspond to other possible molecular
structures.

As the atoms vibrate and twist (due to the surrounding temperature), x changes and correspondingly
the value of the energy Ee(x) changes. When the molecule is in a local minimum state a for Ee at
which the Hessian has positive eigenvalues λ1, . . . , λn, a lot of quantitative information is encoded in the
λi’s: they allow chemists to calculate frequencies seen in vibrational spectroscopy for the corresponding
molecular structure, and to estimate the amount of heat stored in the molecule as well as its entropy and
its free energy as the temperature (and therefore the amount of atomic motion) increases.

J.2. Indefinite Hessian and molecular transition. The critical points of Ee with an indefinite Hes-
sian help for describing transitions between different molecular structures. We now illustrate this in the
setting of Figure J.2.1, which gives two ways of double-bonding collections of hydrogen and carbon atoms,
called cis-2-butene and trans-2-butene.

C C

H H

H3C CH3

cis-2-butene

C C

H

HH3C

CH3

trans-2-butene

FIGURE J.2.1. Two molecules whose transition involves a critical point with one negative
eigenvalue for the Hessian of electronic energy
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At a given temperature the two molecular states in Figure J.2.1 correspond to two different local
minima a (for cis-2-butene) and b (for trans-2-butene) of the electronic energy function Ee, with Ee(b) a
bit smaller than Ee(a). Since both a and b are basins for Ee (they are local minima), for the molecule to
transition from one state to the other it needs to acquire some more energy to escape the basin it is in and
to fall into another basin.

The transition is rare: at a temperature as high as 500° Celsius it usually takes 3 minutes for such a
transition to occur, and at 450° Celsius it takes around 2 days for such a transition to occur [LL] (and at
room temperature it takes an incredibly long time). The reason for this rarity is due to the presence of an
indefinite critical point c for Ee halfway between a and b (in the state space), whose energy level Ee(c)
exceeds Ee(a) and Ee(b) by a large amount and for which the Hessian of Ee at c has only one negative
eigenvalue (the others are all positive). The visualization you should keep in mind for the discussion below
with c is that of a saddle point high up above two different basins and a ball in one basin bouncing around
and being given random energy boosts. Only rarely will the ball have enough energy to reach the level
of the high-up saddle point, and when the ball does so it tends to drop into the basin on the other side
provided it is moving in the right direction. The bouncing ball plays the role of the state vector x and the
saddle point plays the role of c.

If we let L be the line in the state space for the only negative eigenvalue of the Hessian of Ee at c and
decompose the state vector x into its components along L and the (n − 1)-dimensional L⊥, for x near c
the positivity of all but one of the eigenvalues tends to keep ProjL⊥(x) constrained to be near c (much
like being in a basin). To transition from a to b requires that L-component of the motion of x near a gets
enough of a kick to increase Ee(x) to exceed Ee(c) and to be moving in the right direction to go over the
saddle at c and drop down to the other side and land in basin b. In particular, the transition from a to b
generally always goes through the intermediate state corresponding to c, and that happens rarely because
of the big difference between Ee(a) and Ee(c).

Remark J.2.1. The same qualitative reasoning as in the preceding example applies to the transition from
b to a (also going through c). Hence, in the presence of many molecules of one or both types the overall
process of transition in both directions among the molecules is a 2-state Markov chain as in Chapter 16,
with different probabilities for transitioning in each direction. Studying the behavior of large powers of the
corresponding 2 × 2 Markov matrix allows chemists to explain the long-term behavior of such a system,
such as why (at a given temperature) the two molecular structures are found in definite proportions after a
long time has passed and what those proportions are; this is controlled by the eigenvalues of that Markov
matrix. The topic of large powers of such matrices is discussed in Section 27.2, using our knowledge of
eigenvalues.
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